Files
SimCore/libs/geographiclib/develop/GeodesicLine30.hpp

594 lines
25 KiB
C++

/**
* \file GeodesicLine30.hpp
* \brief Header for GeographicLib::GeodesicLine30 class
*
* Copyright (c) Charles Karney (2009-2022) <charles@karney.com> and licensed
* under the MIT/X11 License. For more information, see
* https://geographiclib.sourceforge.io/
**********************************************************************/
#if !defined(GEOGRAPHICLIB_GEODESICLINEEXACT_HPP)
#define GEOGRAPHICLIB_GEODESICLINEEXACT_HPP 1
#include <GeographicLib/Constants.hpp>
#include "Geodesic30.hpp"
namespace GeographicLib {
/**
* \brief A geodesic line
*
* GeodesicLine30 facilitates the determination of a series of points on a
* single geodesic. The starting point (\e lat1, \e lon1) and the azimuth \e
* azi1 are specified in the constructor. GeodesicLine30.Position returns
* the location of point 2 a distance \e s12 along the geodesic.
* Alternatively GeodesicLine30.ArcPosition gives the position of point 2
* an arc length \e a12 along the geodesic.
*
* The default copy constructor and assignment operators work with this
* class. Similarly, a vector can be used to hold GeodesicLine30 objects.
*
* The calculations are accurate to better than 15 nm (15 nanometers). See
* Sec. 9 of
* <a href="https://arxiv.org/abs/1102.1215v1">arXiv:1102.1215v1</a> for
* details.
*
* The algorithms are described in
* - C. F. F. Karney,
* <a href="https://doi.org/10.1007/s00190-012-0578-z">
* Algorithms for geodesics</a>,
* J. Geodesy <b>87</b>, 43--55 (2013);
* DOI: <a href="https://doi.org/10.1007/s00190-012-0578-z">
* 10.1007/s00190-012-0578-z</a>;
* <a href="https://geographiclib.sourceforge.io/geod-addenda.html">
* addenda</a>.
* .
* For more information on geodesics see \ref geodesic.
**********************************************************************/
template<typename real>
class GeodesicLine30 {
private:
friend class Geodesic30<real>;
static const int nC1_ = Geodesic30<real>::nC1_;
static const int nC1p_ = Geodesic30<real>::nC1p_;
static const int nC2_ = Geodesic30<real>::nC2_;
static const int nC3_ = Geodesic30<real>::nC3_;
static const int nC4_ = Geodesic30<real>::nC4_;
real _lat1, _lon1, _azi1;
real _a, _f, _b, _c2, _f1, _salp0, _calp0, _k2,
_salp1, _calp1, _ssig1, _csig1, _stau1, _ctau1, _somg1, _comg1,
_A1m1, _A2m1, _A3c, _B11, _B21, _B31, _A4, _B41;
// index zero elements of _C1a, _C1pa, _C2a, _C3a are unused
real _C1a[nC1_ + 1], _C1pa[nC1p_ + 1], _C2a[nC2_ + 1], _C3a[nC3_],
_C4a[nC4_]; // all the elements of _C4a are used
unsigned _caps;
enum captype {
CAP_NONE = Geodesic30<real>::CAP_NONE,
CAP_C1 = Geodesic30<real>::CAP_C1,
CAP_C1p = Geodesic30<real>::CAP_C1p,
CAP_C2 = Geodesic30<real>::CAP_C2,
CAP_C3 = Geodesic30<real>::CAP_C3,
CAP_C4 = Geodesic30<real>::CAP_C4,
CAP_ALL = Geodesic30<real>::CAP_ALL,
OUT_ALL = Geodesic30<real>::OUT_ALL,
};
public:
/**
* Bit masks for what calculations to do. They signify to the
* GeodesicLine30::GeodesicLine30 constructor and to
* Geodesic30::Line what capabilities should be included in the
* GeodesicLine30 object. This is merely a duplication of
* Geodesic30::mask.
**********************************************************************/
enum mask {
/**
* No capabilities, no output.
* @hideinitializer
**********************************************************************/
NONE = Geodesic30<real>::NONE,
/**
* Calculate latitude \e lat2. (It's not necessary to include this as a
* capability to GeodesicLine30 because this is included by default.)
* @hideinitializer
**********************************************************************/
LATITUDE = Geodesic30<real>::LATITUDE,
/**
* Calculate longitude \e lon2.
* @hideinitializer
**********************************************************************/
LONGITUDE = Geodesic30<real>::LONGITUDE,
/**
* Calculate azimuths \e azi1 and \e azi2. (It's not necessary to
* include this as a capability to GeodesicLine30 because this is
* included by default.)
* @hideinitializer
**********************************************************************/
AZIMUTH = Geodesic30<real>::AZIMUTH,
/**
* Calculate distance \e s12.
* @hideinitializer
**********************************************************************/
DISTANCE = Geodesic30<real>::DISTANCE,
/**
* Allow distance \e s12 to be used as input in the direct geodesic
* problem.
* @hideinitializer
**********************************************************************/
DISTANCE_IN = Geodesic30<real>::DISTANCE_IN,
/**
* Calculate reduced length \e m12.
* @hideinitializer
**********************************************************************/
REDUCEDLENGTH = Geodesic30<real>::REDUCEDLENGTH,
/**
* Calculate geodesic scales \e M12 and \e M21.
* @hideinitializer
**********************************************************************/
GEODESICSCALE = Geodesic30<real>::GEODESICSCALE,
/**
* Calculate area \e S12.
* @hideinitializer
**********************************************************************/
AREA = Geodesic30<real>::AREA,
/**
* All capabilities, calculate everything.
* @hideinitializer
**********************************************************************/
ALL = Geodesic30<real>::ALL,
};
/** \name Constructors
**********************************************************************/
///@{
/**
* Constructor for a geodesic line staring at latitude \e lat1, longitude
* \e lon1, and azimuth \e azi1 (all in degrees).
*
* @param[in] g A Geodesic30 object used to compute the necessary
* information about the GeodesicLine30.
* @param[in] lat1 latitude of point 1 (degrees).
* @param[in] lon1 longitude of point 1 (degrees).
* @param[in] azi1 azimuth at point 1 (degrees).
* @param[in] caps bitor'ed combination of GeodesicLine30::mask values
* specifying the capabilities the GeodesicLine30 object should
* possess, i.e., which quantities can be returned in calls to
* GeodesicLine::Position.
*
* \e lat1 should be in the range [&minus;90&deg;, 90&deg;]; \e lon1 and \e
* azi1 should be in the range [&minus;540&deg;, 540&deg;).
*
* The GeodesicLine30::mask values are
* - \e caps |= GeodesicLine30::LATITUDE for the latitude \e lat2; this
* is added automatically
* - \e caps |= GeodesicLine30::LONGITUDE for the latitude \e lon2
* - \e caps |= GeodesicLine30::AZIMUTH for the latitude \e azi2; this is
* added automatically
* - \e caps |= GeodesicLine30::DISTANCE for the distance \e s12
* - \e caps |= GeodesicLine30::REDUCEDLENGTH for the reduced length \e
m12
* - \e caps |= GeodesicLine30::GEODESICSCALE for the geodesic scales \e
* M12 and \e M21
* - \e caps |= GeodesicLine30::AREA for the area \e S12
* - \e caps |= GeodesicLine30::DISTANCE_IN permits the length of the
* geodesic to be given in terms of \e s12; without this capability the
* length can only be specified in terms of arc length.
* .
* The default value of \e caps is GeodesicLine30::ALL which turns on
* all the capabilities.
*
* If the point is at a pole, the azimuth is defined by keeping the \e lon1
* fixed and writing \e lat1 = &plusmn;(90&deg; &minus; &epsilon;) and
* taking the limit &epsilon; &rarr; 0+.
**********************************************************************/
GeodesicLine30(const Geodesic30<real>& g, real lat1, real lon1, real azi1,
unsigned caps = ALL)
;
/**
* A default constructor. If GeodesicLine30::Position is called on the
* resulting object, it returns immediately (without doing any
* calculations). The object can be set with a call to
* Geodesic30::Line. Use Init() to test whether object is still in this
* uninitialized state.
**********************************************************************/
GeodesicLine30() : _caps(0U) {}
///@}
/** \name Position in terms of distance
**********************************************************************/
///@{
/**
* Compute the position of point 2 which is a distance \e s12 (meters)
* from point 1.
*
* @param[in] s12 distance between point 1 and point 2 (meters); it can be
* signed.
* @param[out] lat2 latitude of point 2 (degrees).
* @param[out] lon2 longitude of point 2 (degrees); requires that the
* GeodesicLine30 object was constructed with \e caps |=
* GeodesicLine30::LONGITUDE.
* @param[out] azi2 (forward) azimuth at point 2 (degrees).
* @param[out] m12 reduced length of geodesic (meters); requires that the
* GeodesicLine30 object was constructed with \e caps |=
* GeodesicLine30::REDUCEDLENGTH.
* @param[out] M12 geodesic scale of point 2 relative to point 1
* (dimensionless); requires that the GeodesicLine30 object was
* constructed with \e caps |= GeodesicLine30::GEODESICSCALE.
* @param[out] M21 geodesic scale of point 1 relative to point 2
* (dimensionless); requires that the GeodesicLine30 object was
* constructed with \e caps |= GeodesicLine30::GEODESICSCALE.
* @param[out] S12 area under the geodesic (meters<sup>2</sup>); requires
* that the GeodesicLine30 object was constructed with \e caps |=
* GeodesicLine30::AREA.
* @return \e a12 arc length of between point 1 and point 2 (degrees).
*
* The values of \e lon2 and \e azi2 returned are in the range
* [&minus;180&deg;, 180&deg;).
*
* The GeodesicLine30 object \e must have been constructed with \e caps
* |= GeodesicLine30::DISTANCE_IN; otherwise Math::NaN() is returned and
* no parameters are set. Requesting a value which the GeodesicLine30
* object is not capable of computing is not an error; the corresponding
* argument will not be altered.
*
* The following functions are overloaded versions of
* GeodesicLine30::Position which omit some of the output parameters.
* Note, however, that the arc length is always computed and returned as
* the function value.
**********************************************************************/
real Position(real s12,
real& lat2, real& lon2, real& azi2,
real& m12, real& M12, real& M21,
real& S12) const {
real t;
return GenPosition(false, s12,
LATITUDE | LONGITUDE | AZIMUTH |
REDUCEDLENGTH | GEODESICSCALE | AREA,
lat2, lon2, azi2, t, m12, M12, M21, S12);
}
/**
* See the documentation for GeodesicLine30::Position.
**********************************************************************/
real Position(real s12, real& lat2, real& lon2) const {
real t;
return GenPosition(false, s12,
LATITUDE | LONGITUDE,
lat2, lon2, t, t, t, t, t, t);
}
/**
* See the documentation for GeodesicLine30::Position.
**********************************************************************/
real Position(real s12, real& lat2, real& lon2,
real& azi2) const {
real t;
return GenPosition(false, s12,
LATITUDE | LONGITUDE | AZIMUTH,
lat2, lon2, azi2, t, t, t, t, t);
}
/**
* See the documentation for GeodesicLine30::Position.
**********************************************************************/
real Position(real s12, real& lat2, real& lon2,
real& azi2, real& m12) const {
real t;
return GenPosition(false, s12,
LATITUDE | LONGITUDE |
AZIMUTH | REDUCEDLENGTH,
lat2, lon2, azi2, t, m12, t, t, t);
}
/**
* See the documentation for GeodesicLine30::Position.
**********************************************************************/
real Position(real s12, real& lat2, real& lon2,
real& azi2, real& M12, real& M21)
const {
real t;
return GenPosition(false, s12,
LATITUDE | LONGITUDE |
AZIMUTH | GEODESICSCALE,
lat2, lon2, azi2, t, t, M12, M21, t);
}
/**
* See the documentation for GeodesicLine30::Position.
**********************************************************************/
real Position(real s12,
real& lat2, real& lon2, real& azi2,
real& m12, real& M12, real& M21)
const {
real t;
return GenPosition(false, s12,
LATITUDE | LONGITUDE | AZIMUTH |
REDUCEDLENGTH | GEODESICSCALE,
lat2, lon2, azi2, t, m12, M12, M21, t);
}
///@}
/** \name Position in terms of arc length
**********************************************************************/
///@{
/**
* Compute the position of point 2 which is an arc length \e a12 (degrees)
* from point 1.
*
* @param[in] a12 arc length between point 1 and point 2 (degrees); it can
* be signed.
* @param[out] lat2 latitude of point 2 (degrees).
* @param[out] lon2 longitude of point 2 (degrees); requires that the
* GeodesicLine30 object was constructed with \e caps |=
* GeodesicLine30::LONGITUDE.
* @param[out] azi2 (forward) azimuth at point 2 (degrees).
* @param[out] s12 distance between point 1 and point 2 (meters); requires
* that the GeodesicLine30 object was constructed with \e caps |=
* GeodesicLine30::DISTANCE.
* @param[out] m12 reduced length of geodesic (meters); requires that the
* GeodesicLine30 object was constructed with \e caps |=
* GeodesicLine30::REDUCEDLENGTH.
* @param[out] M12 geodesic scale of point 2 relative to point 1
* (dimensionless); requires that the GeodesicLine30 object was
* constructed with \e caps |= GeodesicLine30::GEODESICSCALE.
* @param[out] M21 geodesic scale of point 1 relative to point 2
* (dimensionless); requires that the GeodesicLine30 object was
* constructed with \e caps |= GeodesicLine30::GEODESICSCALE.
* @param[out] S12 area under the geodesic (meters<sup>2</sup>); requires
* that the GeodesicLine30 object was constructed with \e caps |=
* GeodesicLine30::AREA.
*
* The values of \e lon2 and \e azi2 returned are in the range
* [&minus;180&deg;, 180&deg;).
*
* Requesting a value which the GeodesicLine30 object is not capable of
* computing is not an error; the corresponding argument will not be
* altered.
*
* The following functions are overloaded versions of
* GeodesicLine30::ArcPosition which omit some of the output parameters.
**********************************************************************/
void ArcPosition(real a12, real& lat2, real& lon2, real& azi2,
real& s12, real& m12, real& M12, real& M21,
real& S12) const {
GenPosition(true, a12,
LATITUDE | LONGITUDE | AZIMUTH | DISTANCE |
REDUCEDLENGTH | GEODESICSCALE | AREA,
lat2, lon2, azi2, s12, m12, M12, M21, S12);
}
/**
* See the documentation for GeodesicLine30::ArcPosition.
**********************************************************************/
void ArcPosition(real a12, real& lat2, real& lon2)
const {
real t;
GenPosition(true, a12,
LATITUDE | LONGITUDE,
lat2, lon2, t, t, t, t, t, t);
}
/**
* See the documentation for GeodesicLine30::ArcPosition.
**********************************************************************/
void ArcPosition(real a12,
real& lat2, real& lon2, real& azi2)
const {
real t;
GenPosition(true, a12,
LATITUDE | LONGITUDE | AZIMUTH,
lat2, lon2, azi2, t, t, t, t, t);
}
/**
* See the documentation for GeodesicLine30::ArcPosition.
**********************************************************************/
void ArcPosition(real a12, real& lat2, real& lon2, real& azi2,
real& s12) const {
real t;
GenPosition(true, a12,
LATITUDE | LONGITUDE | AZIMUTH | DISTANCE,
lat2, lon2, azi2, s12, t, t, t, t);
}
/**
* See the documentation for GeodesicLine30::ArcPosition.
**********************************************************************/
void ArcPosition(real a12, real& lat2, real& lon2, real& azi2,
real& s12, real& m12) const {
real t;
GenPosition(true, a12,
LATITUDE | LONGITUDE | AZIMUTH |
DISTANCE | REDUCEDLENGTH,
lat2, lon2, azi2, s12, m12, t, t, t);
}
/**
* See the documentation for GeodesicLine30::ArcPosition.
**********************************************************************/
void ArcPosition(real a12, real& lat2, real& lon2, real& azi2,
real& s12, real& M12, real& M21)
const {
real t;
GenPosition(true, a12,
LATITUDE | LONGITUDE | AZIMUTH |
DISTANCE | GEODESICSCALE,
lat2, lon2, azi2, s12, t, M12, M21, t);
}
/**
* See the documentation for GeodesicLine30::ArcPosition.
**********************************************************************/
void ArcPosition(real a12, real& lat2, real& lon2, real& azi2,
real& s12, real& m12, real& M12, real& M21)
const {
real t;
GenPosition(true, a12,
LATITUDE | LONGITUDE | AZIMUTH |
DISTANCE | REDUCEDLENGTH | GEODESICSCALE,
lat2, lon2, azi2, s12, m12, M12, M21, t);
}
///@}
/** \name The general position function.
**********************************************************************/
///@{
/**
* The general position function. GeodesicLine30::Position and
* GeodesicLine30::ArcPosition are defined in terms of this function.
*
* @param[in] arcmode boolean flag determining the meaning of the second
* parameter; if arcmode is false, then the GeodesicLine30 object must
* have been constructed with \e caps |= GeodesicLine30::DISTANCE_IN.
* @param[in] s12_a12 if \e arcmode is false, this is the distance between
* point 1 and point 2 (meters); otherwise it is the arc length between
* point 1 and point 2 (degrees); it can be signed.
* @param[in] outmask a bitor'ed combination of GeodesicLine30::mask
* values specifying which of the following parameters should be set.
* @param[out] lat2 latitude of point 2 (degrees).
* @param[out] lon2 longitude of point 2 (degrees); requires that the
* GeodesicLine30 object was constructed with \e caps |=
* GeodesicLine30::LONGITUDE.
* @param[out] azi2 (forward) azimuth at point 2 (degrees).
* @param[out] s12 distance between point 1 and point 2 (meters); requires
* that the GeodesicLine30 object was constructed with \e caps |=
* GeodesicLine30::DISTANCE.
* @param[out] m12 reduced length of geodesic (meters); requires that the
* GeodesicLine30 object was constructed with \e caps |=
* GeodesicLine30::REDUCEDLENGTH.
* @param[out] M12 geodesic scale of point 2 relative to point 1
* (dimensionless); requires that the GeodesicLine30 object was
* constructed with \e caps |= GeodesicLine30::GEODESICSCALE.
* @param[out] M21 geodesic scale of point 1 relative to point 2
* (dimensionless); requires that the GeodesicLine30 object was
* constructed with \e caps |= GeodesicLine30::GEODESICSCALE.
* @param[out] S12 area under the geodesic (meters<sup>2</sup>); requires
* that the GeodesicLine30 object was constructed with \e caps |=
* GeodesicLine30::AREA.
* @return \e a12 arc length of between point 1 and point 2 (degrees).
*
* The GeodesicLine30::mask values possible for \e outmask are
* - \e outmask |= GeodesicLine30::LATITUDE for the latitude \e lat2.
* - \e outmask |= GeodesicLine30::LONGITUDE for the latitude \e lon2.
* - \e outmask |= GeodesicLine30::AZIMUTH for the latitude \e azi2.
* - \e outmask |= GeodesicLine30::DISTANCE for the distance \e s12.
* - \e outmask |= GeodesicLine30::REDUCEDLENGTH for the reduced length
* \e m12.
* - \e outmask |= GeodesicLine30::GEODESICSCALE for the geodesic scales
* \e M12 and \e M21.
* - \e outmask |= GeodesicLine30::AREA for the area \e S12.
* .
* Requesting a value which the GeodesicLine30 object is not capable of
* computing is not an error; the corresponding argument will not be
* altered. Note, however, that the arc length is always computed and
* returned as the function value.
**********************************************************************/
real GenPosition(bool arcmode, real s12_a12, unsigned outmask,
real& lat2, real& lon2, real& azi2,
real& s12, real& m12, real& M12, real& M21,
real& S12) const;
///@}
/** \name Inspector functions
**********************************************************************/
///@{
/**
* @return true if the object has been initialized.
**********************************************************************/
bool Init() const { return _caps != 0U; }
/**
* @return \e lat1 the latitude of point 1 (degrees).
**********************************************************************/
real Latitude() const
{ return Init() ? _lat1 : Math::NaN<real>(); }
/**
* @return \e lon1 the longitude of point 1 (degrees).
**********************************************************************/
real Longitude() const
{ return Init() ? _lon1 : Math::NaN<real>(); }
/**
* @return \e azi1 the azimuth (degrees) of the geodesic line at point 1.
**********************************************************************/
real Azimuth() const
{ return Init() ? _azi1 : Math::NaN<real>(); }
/**
* @return \e azi0 the azimuth (degrees) of the geodesic line as it crosses
* the equator in a northward direction.
**********************************************************************/
real EquatorialAzimuth() const {
using std::atan2;
return Init() ?
atan2(_salp0, _calp0) / Math::degree<real>() : Math::NaN<real>();
}
/**
* @return \e a1 the arc length (degrees) between the northward equatorial
* crossing and point 1.
**********************************************************************/
real EquatorialArc() const {
using std::atan2;
return Init() ?
atan2(_ssig1, _csig1) / Math::degree<real>() : Math::NaN<real>();
}
/**
* @return \e a the equatorial radius of the ellipsoid (meters). This is
* the value inherited from the Geodesic30 object used in the
* constructor.
**********************************************************************/
real EquatorialRadius() const
{ return Init() ? _a : Math::NaN<real>(); }
/**
* @return \e f the flattening of the ellipsoid. This is the value
* inherited from the Geodesic30 object used in the constructor.
**********************************************************************/
real Flattening() const
{ return Init() ? _f : Math::NaN<real>(); }
/// \cond SKIP
/**
* <b>DEPRECATED</b>
* @return \e r the inverse flattening of the ellipsoid.
**********************************************************************/
real InverseFlattening() const
{ return Init() ? 1/_f : Math::NaN<real>(); }
/// \endcond
/**
* @return \e caps the computational capabilities that this object was
* constructed with. LATITUDE and AZIMUTH are always included.
**********************************************************************/
unsigned Capabilities() const { return _caps; }
/**
* @param[in] testcaps a set of bitor'ed GeodesicLine30::mask values.
* @return true if the GeodesicLine30 object has all these capabilities.
**********************************************************************/
bool Capabilities(unsigned testcaps) const {
testcaps &= OUT_ALL;
return (_caps & testcaps) == testcaps;
}
///@}
};
} // namespace GeographicLib
#endif // GEOGRAPHICLIB_GEODESICLINEEXACT_HPP