298 lines
11 KiB
C++
298 lines
11 KiB
C++
/**
|
|
* \file GeodesicLineExact.cpp
|
|
* \brief Implementation for GeographicLib::GeodesicLineExact class
|
|
*
|
|
* Copyright (c) Charles Karney (2012-2022) <charles@karney.com> and licensed
|
|
* under the MIT/X11 License. For more information, see
|
|
* https://geographiclib.sourceforge.io/
|
|
*
|
|
* This is a reformulation of the geodesic problem. The notation is as
|
|
* follows:
|
|
* - at a general point (no suffix or 1 or 2 as suffix)
|
|
* - phi = latitude
|
|
* - beta = latitude on auxiliary sphere
|
|
* - omega = longitude on auxiliary sphere
|
|
* - lambda = longitude
|
|
* - alpha = azimuth of great circle
|
|
* - sigma = arc length along great circle
|
|
* - s = distance
|
|
* - tau = scaled distance (= sigma at multiples of pi/2)
|
|
* - at northwards equator crossing
|
|
* - beta = phi = 0
|
|
* - omega = lambda = 0
|
|
* - alpha = alpha0
|
|
* - sigma = s = 0
|
|
* - a 12 suffix means a difference, e.g., s12 = s2 - s1.
|
|
* - s and c prefixes mean sin and cos
|
|
**********************************************************************/
|
|
|
|
#include <GeographicLib/GeodesicLineExact.hpp>
|
|
|
|
#if defined(_MSC_VER)
|
|
// Squelch warnings about mixing enums
|
|
# pragma warning (disable: 5054)
|
|
#endif
|
|
|
|
namespace GeographicLib {
|
|
|
|
using namespace std;
|
|
|
|
void GeodesicLineExact::LineInit(const GeodesicExact& g,
|
|
real lat1, real lon1,
|
|
real azi1, real salp1, real calp1,
|
|
unsigned caps) {
|
|
tiny_ = g.tiny_;
|
|
_lat1 = Math::LatFix(lat1);
|
|
_lon1 = lon1;
|
|
_azi1 = azi1;
|
|
_salp1 = salp1;
|
|
_calp1 = calp1;
|
|
_a = g._a;
|
|
_f = g._f;
|
|
_b = g._b;
|
|
_c2 = g._c2;
|
|
_f1 = g._f1;
|
|
_e2 = g._e2;
|
|
_nC4 = g._nC4;
|
|
// Always allow latitude and azimuth and unrolling of longitude
|
|
_caps = caps | LATITUDE | AZIMUTH | LONG_UNROLL;
|
|
|
|
real cbet1, sbet1;
|
|
Math::sincosd(Math::AngRound(_lat1), sbet1, cbet1); sbet1 *= _f1;
|
|
// Ensure cbet1 = +epsilon at poles
|
|
Math::norm(sbet1, cbet1); cbet1 = fmax(tiny_, cbet1);
|
|
_dn1 = (_f >= 0 ? sqrt(1 + g._ep2 * Math::sq(sbet1)) :
|
|
sqrt(1 - _e2 * Math::sq(cbet1)) / _f1);
|
|
|
|
// Evaluate alp0 from sin(alp1) * cos(bet1) = sin(alp0),
|
|
_salp0 = _salp1 * cbet1; // alp0 in [0, pi/2 - |bet1|]
|
|
// Alt: calp0 = hypot(sbet1, calp1 * cbet1). The following
|
|
// is slightly better (consider the case salp1 = 0).
|
|
_calp0 = hypot(_calp1, _salp1 * sbet1);
|
|
// Evaluate sig with tan(bet1) = tan(sig1) * cos(alp1).
|
|
// sig = 0 is nearest northward crossing of equator.
|
|
// With bet1 = 0, alp1 = pi/2, we have sig1 = 0 (equatorial line).
|
|
// With bet1 = pi/2, alp1 = -pi, sig1 = pi/2
|
|
// With bet1 = -pi/2, alp1 = 0 , sig1 = -pi/2
|
|
// Evaluate omg1 with tan(omg1) = sin(alp0) * tan(sig1).
|
|
// With alp0 in (0, pi/2], quadrants for sig and omg coincide.
|
|
// No atan2(0,0) ambiguity at poles since cbet1 = +epsilon.
|
|
// With alp0 = 0, omg1 = 0 for alp1 = 0, omg1 = pi for alp1 = pi.
|
|
_ssig1 = sbet1; _somg1 = _salp0 * sbet1;
|
|
_csig1 = _comg1 = sbet1 != 0 || _calp1 != 0 ? cbet1 * _calp1 : 1;
|
|
// Without normalization we have schi1 = somg1.
|
|
_cchi1 = _f1 * _dn1 * _comg1;
|
|
Math::norm(_ssig1, _csig1); // sig1 in (-pi, pi]
|
|
// Math::norm(_somg1, _comg1); -- don't need to normalize!
|
|
// Math::norm(_schi1, _cchi1); -- don't need to normalize!
|
|
|
|
_k2 = Math::sq(_calp0) * g._ep2;
|
|
_eE.Reset(-_k2, -g._ep2, 1 + _k2, 1 + g._ep2);
|
|
|
|
if (_caps & CAP_E) {
|
|
_eE0 = _eE.E() / (Math::pi() / 2);
|
|
_eE1 = _eE.deltaE(_ssig1, _csig1, _dn1);
|
|
real s = sin(_eE1), c = cos(_eE1);
|
|
// tau1 = sig1 + B11
|
|
_stau1 = _ssig1 * c + _csig1 * s;
|
|
_ctau1 = _csig1 * c - _ssig1 * s;
|
|
// Not necessary because Einv inverts E
|
|
// _eE1 = -_eE.deltaEinv(_stau1, _ctau1);
|
|
}
|
|
|
|
if (_caps & CAP_D) {
|
|
_dD0 = _eE.D() / (Math::pi() / 2);
|
|
_dD1 = _eE.deltaD(_ssig1, _csig1, _dn1);
|
|
}
|
|
|
|
if (_caps & CAP_H) {
|
|
_hH0 = _eE.H() / (Math::pi() / 2);
|
|
_hH1 = _eE.deltaH(_ssig1, _csig1, _dn1);
|
|
}
|
|
|
|
if (_caps & CAP_C4) {
|
|
// Multiplier = a^2 * e^2 * cos(alpha0) * sin(alpha0)
|
|
_aA4 = Math::sq(_a) * _calp0 * _salp0 * _e2;
|
|
if (_aA4 == 0)
|
|
_bB41 = 0;
|
|
else {
|
|
GeodesicExact::I4Integrand i4(g._ep2, _k2);
|
|
_cC4a.resize(_nC4);
|
|
g._fft.transform(i4, _cC4a.data());
|
|
_bB41 = DST::integral(_ssig1, _csig1, _cC4a.data(), _nC4);
|
|
}
|
|
}
|
|
|
|
_a13 = _s13 = Math::NaN();
|
|
}
|
|
|
|
GeodesicLineExact::GeodesicLineExact(const GeodesicExact& g,
|
|
real lat1, real lon1, real azi1,
|
|
unsigned caps) {
|
|
azi1 = Math::AngNormalize(azi1);
|
|
real salp1, calp1;
|
|
// Guard against underflow in salp0. Also -0 is converted to +0.
|
|
Math::sincosd(Math::AngRound(azi1), salp1, calp1);
|
|
LineInit(g, lat1, lon1, azi1, salp1, calp1, caps);
|
|
}
|
|
|
|
GeodesicLineExact::GeodesicLineExact(const GeodesicExact& g,
|
|
real lat1, real lon1,
|
|
real azi1, real salp1, real calp1,
|
|
unsigned caps,
|
|
bool arcmode, real s13_a13) {
|
|
LineInit(g, lat1, lon1, azi1, salp1, calp1, caps);
|
|
GenSetDistance(arcmode, s13_a13);
|
|
}
|
|
|
|
Math::real GeodesicLineExact::GenPosition(bool arcmode, real s12_a12,
|
|
unsigned outmask,
|
|
real& lat2, real& lon2, real& azi2,
|
|
real& s12, real& m12,
|
|
real& M12, real& M21,
|
|
real& S12) const {
|
|
outmask &= _caps & OUT_MASK;
|
|
if (!( Init() && (arcmode || (_caps & (OUT_MASK & DISTANCE_IN))) ))
|
|
// Uninitialized or impossible distance calculation requested
|
|
return Math::NaN();
|
|
|
|
// Avoid warning about uninitialized B12.
|
|
real sig12, ssig12, csig12, E2 = 0, AB1 = 0;
|
|
if (arcmode) {
|
|
// Interpret s12_a12 as spherical arc length
|
|
sig12 = s12_a12 * Math::degree();
|
|
Math::sincosd(s12_a12, ssig12, csig12);
|
|
} else {
|
|
// Interpret s12_a12 as distance
|
|
real
|
|
tau12 = s12_a12 / (_b * _eE0),
|
|
s = sin(tau12),
|
|
c = cos(tau12);
|
|
// tau2 = tau1 + tau12
|
|
E2 = - _eE.deltaEinv(_stau1 * c + _ctau1 * s, _ctau1 * c - _stau1 * s);
|
|
sig12 = tau12 - (E2 - _eE1);
|
|
ssig12 = sin(sig12);
|
|
csig12 = cos(sig12);
|
|
}
|
|
|
|
real ssig2, csig2, sbet2, cbet2, salp2, calp2;
|
|
// sig2 = sig1 + sig12
|
|
ssig2 = _ssig1 * csig12 + _csig1 * ssig12;
|
|
csig2 = _csig1 * csig12 - _ssig1 * ssig12;
|
|
real dn2 = _eE.Delta(ssig2, csig2);
|
|
if (outmask & (DISTANCE | REDUCEDLENGTH | GEODESICSCALE)) {
|
|
if (arcmode) {
|
|
E2 = _eE.deltaE(ssig2, csig2, dn2);
|
|
}
|
|
AB1 = _eE0 * (E2 - _eE1);
|
|
}
|
|
// sin(bet2) = cos(alp0) * sin(sig2)
|
|
sbet2 = _calp0 * ssig2;
|
|
// Alt: cbet2 = hypot(csig2, salp0 * ssig2);
|
|
cbet2 = hypot(_salp0, _calp0 * csig2);
|
|
if (cbet2 == 0)
|
|
// I.e., salp0 = 0, csig2 = 0. Break the degeneracy in this case
|
|
cbet2 = csig2 = tiny_;
|
|
// tan(alp0) = cos(sig2)*tan(alp2)
|
|
salp2 = _salp0; calp2 = _calp0 * csig2; // No need to normalize
|
|
|
|
if (outmask & DISTANCE)
|
|
s12 = arcmode ? _b * (_eE0 * sig12 + AB1) : s12_a12;
|
|
|
|
if (outmask & LONGITUDE) {
|
|
real somg2 = _salp0 * ssig2, comg2 = csig2, // No need to normalize
|
|
E = copysign(real(1), _salp0); // east-going?
|
|
// Without normalization we have schi2 = somg2.
|
|
real cchi2 = _f1 * dn2 * comg2;
|
|
real chi12 = outmask & LONG_UNROLL
|
|
? E * (sig12
|
|
- (atan2( ssig2, csig2) - atan2( _ssig1, _csig1))
|
|
+ (atan2(E * somg2, cchi2) - atan2(E * _somg1, _cchi1)))
|
|
: atan2(somg2 * _cchi1 - cchi2 * _somg1,
|
|
cchi2 * _cchi1 + somg2 * _somg1);
|
|
real lam12 = chi12 -
|
|
_e2/_f1 * _salp0 * _hH0 *
|
|
(sig12 + (_eE.deltaH(ssig2, csig2, dn2) - _hH1));
|
|
real lon12 = lam12 / Math::degree();
|
|
lon2 = outmask & LONG_UNROLL ? _lon1 + lon12 :
|
|
Math::AngNormalize(Math::AngNormalize(_lon1) +
|
|
Math::AngNormalize(lon12));
|
|
}
|
|
|
|
if (outmask & LATITUDE)
|
|
lat2 = Math::atan2d(sbet2, _f1 * cbet2);
|
|
|
|
if (outmask & AZIMUTH)
|
|
azi2 = Math::atan2d(salp2, calp2);
|
|
|
|
if (outmask & (REDUCEDLENGTH | GEODESICSCALE)) {
|
|
real J12 = _k2 * _dD0 * (sig12 + (_eE.deltaD(ssig2, csig2, dn2) - _dD1));
|
|
if (outmask & REDUCEDLENGTH)
|
|
// Add parens around (_csig1 * ssig2) and (_ssig1 * csig2) to ensure
|
|
// accurate cancellation in the case of coincident points.
|
|
m12 = _b * ((dn2 * (_csig1 * ssig2) - _dn1 * (_ssig1 * csig2))
|
|
- _csig1 * csig2 * J12);
|
|
if (outmask & GEODESICSCALE) {
|
|
real t = _k2 * (ssig2 - _ssig1) * (ssig2 + _ssig1) / (_dn1 + dn2);
|
|
M12 = csig12 + (t * ssig2 - csig2 * J12) * _ssig1 / _dn1;
|
|
M21 = csig12 - (t * _ssig1 - _csig1 * J12) * ssig2 / dn2;
|
|
}
|
|
}
|
|
|
|
if (outmask & AREA) {
|
|
real B42 = _aA4 == 0 ? 0 :
|
|
DST::integral(ssig2, csig2, _cC4a.data(), _nC4);
|
|
real salp12, calp12;
|
|
if (_calp0 == 0 || _salp0 == 0) {
|
|
// alp12 = alp2 - alp1, used in atan2 so no need to normalize
|
|
salp12 = salp2 * _calp1 - calp2 * _salp1;
|
|
calp12 = calp2 * _calp1 + salp2 * _salp1;
|
|
// We used to include here some patch up code that purported to deal
|
|
// with nearly meridional geodesics properly. However, this turned out
|
|
// to be wrong once _salp1 = -0 was allowed (via
|
|
// GeodesicExact::InverseLine). In fact, the calculation of {s,c}alp12
|
|
// was already correct (following the IEEE rules for handling signed
|
|
// zeros). So the patch up code was unnecessary (as well as
|
|
// dangerous).
|
|
} else {
|
|
// tan(alp) = tan(alp0) * sec(sig)
|
|
// tan(alp2-alp1) = (tan(alp2) -tan(alp1)) / (tan(alp2)*tan(alp1)+1)
|
|
// = calp0 * salp0 * (csig1-csig2) / (salp0^2 + calp0^2 * csig1*csig2)
|
|
// If csig12 > 0, write
|
|
// csig1 - csig2 = ssig12 * (csig1 * ssig12 / (1 + csig12) + ssig1)
|
|
// else
|
|
// csig1 - csig2 = csig1 * (1 - csig12) + ssig12 * ssig1
|
|
// No need to normalize
|
|
salp12 = _calp0 * _salp0 *
|
|
(csig12 <= 0 ? _csig1 * (1 - csig12) + ssig12 * _ssig1 :
|
|
ssig12 * (_csig1 * ssig12 / (1 + csig12) + _ssig1));
|
|
calp12 = Math::sq(_salp0) + Math::sq(_calp0) * _csig1 * csig2;
|
|
}
|
|
S12 = _c2 * atan2(salp12, calp12) + _aA4 * (B42 - _bB41);
|
|
}
|
|
|
|
return arcmode ? s12_a12 : sig12 / Math::degree();
|
|
}
|
|
|
|
void GeodesicLineExact::SetDistance(real s13) {
|
|
_s13 = s13;
|
|
real t;
|
|
// This will set _a13 to NaN if the GeodesicLineExact doesn't have the
|
|
// DISTANCE_IN capability.
|
|
_a13 = GenPosition(false, _s13, 0u, t, t, t, t, t, t, t, t);
|
|
}
|
|
|
|
void GeodesicLineExact::SetArc(real a13) {
|
|
_a13 = a13;
|
|
// In case the GeodesicLineExact doesn't have the DISTANCE capability.
|
|
_s13 = Math::NaN();
|
|
real t;
|
|
GenPosition(true, _a13, DISTANCE, t, t, t, _s13, t, t, t, t);
|
|
}
|
|
|
|
void GeodesicLineExact::GenSetDistance(bool arcmode, real s13_a13) {
|
|
arcmode ? SetArc(s13_a13) : SetDistance(s13_a13);
|
|
}
|
|
|
|
} // namespace GeographicLib
|