Files
SimCore/libs/geographiclib/include/GeographicLib/DST.hpp

178 lines
6.8 KiB
C++

/**
* \file DST.hpp
* \brief Header for GeographicLib::DST class
*
* Copyright (c) Charles Karney (2022) <charles@karney.com> and licensed under
* the MIT/X11 License. For more information, see
* https://geographiclib.sourceforge.io/
**********************************************************************/
#if !defined(GEOGRAPHICLIB_DST_HPP)
#define GEOGRAPHICLIB_DST_HPP 1
#include <GeographicLib/Constants.hpp>
#include <functional>
#include <memory>
/// \cond SKIP
template<typename scalar_t>
class kissfft;
/// \endcond
namespace GeographicLib {
/**
* \brief Discrete sine transforms
*
* This decomposes periodic functions \f$ f(\sigma) \f$ (period \f$ 2\pi \f$)
* which are odd about \f$ \sigma = 0 \f$ and even about \f$ \sigma = \frac12
* \pi \f$ into a Fourier series
* \f[
* f(\sigma) = \sum_{l=0}^\infty F_l \sin\bigl((2l+1)\sigma\bigr).
* \f]
*
* The first \f$ N \f$ components of \f$ F_l \f$, for \f$0 \le l < N\f$ may
* be approximated by
* \f[
* F_l = \frac2N \sum_{j=1}^{N}
* p_j f(\sigma_j) \sin\bigl((2l+1)\sigma_j\bigr),
* \f]
* where \f$ \sigma_j = j\pi/(2N) \f$ and \f$ p_j = \frac12 \f$ for \f$ j = N
* \f$ and \f$ 1 \f$ otherwise. \f$ F_l \f$ is a discrete sine transform of
* type DST-III and may be conveniently computed using the fast Fourier
* transform, FFT; this is implemented with the DST::transform method.
*
* Having computed \f$ F_l \f$ based on \f$ N \f$ evaluations of \f$
* f(\sigma) \f$ at \f$ \sigma_j = j\pi/(2N) \f$, it is possible to
* refine these transform values and add another \f$ N \f$ coefficients by
* evaluating \f$ f(\sigma) \f$ at \f$ (j-\frac12)\pi/(2N) \f$; this is
* implemented with the DST::refine method.
*
* Here we compute FFTs using the kissfft package
* https://github.com/mborgerding/kissfft by Mark Borgerding.
*
* Example of use:
* \include example-DST.cpp
*
* \note The FFTW package https://www.fftw.org/ can also be used. However
* this is a more complicated dependency, its CMake support is broken, and it
* doesn't work with mpreals (GEOGRAPHICLIB_PRECISION = 5).
**********************************************************************/
class DST {
private:
typedef Math::real real;
int _N;
typedef kissfft<real> fft_t;
std::shared_ptr<fft_t> _fft;
// Implement DST-III (centerp = false) or DST-IV (centerp = true)
void fft_transform(real data[], real F[], bool centerp) const;
// Add another N terms to F
void fft_transform2(real data[], real F[]) const;
public:
/**
* Constructor specifying the number of points to use.
*
* @param[in] N the number of points to use.
**********************************************************************/
GEOGRAPHICLIB_EXPORT DST(int N = 0);
/**
* Reset the given number of points.
*
* @param[in] N the number of points to use.
**********************************************************************/
void GEOGRAPHICLIB_EXPORT reset(int N);
/**
* Return the number of points.
*
* @return the number of points to use.
**********************************************************************/
int N() const { return _N; }
/**
* Determine first \e N terms in the Fourier series
*
* @param[in] f the function used for evaluation.
* @param[out] F the first \e N coefficients of the Fourier series.
*
* The evaluates \f$ f(\sigma) \f$ at \f$ \sigma = (j + 1) \pi / (2 N) \f$
* for integer \f$ j \in [0, N) \f$. \e F should be an array of length at
* least \e N.
**********************************************************************/
void GEOGRAPHICLIB_EXPORT transform(std::function<real(real)> f, real F[])
const;
/**
* Refine the Fourier series by doubling the number of points sampled
*
* @param[in] f the function used for evaluation.
* @param[inout] F on input the first \e N coefficents of the Fourier
* series; on output the refined transform based on 2\e N points, i.e.,
* the first 2\e N coefficents.
*
* The evaluates \f$ f(\sigma) \f$ at additional points \f$ \sigma = (j +
* \frac12) \pi / (2 N) \f$ for integer \f$ j \in [0, N) \f$, computes the
* DST-IV transform of these, and combines this with the input \e F to
* compute the 2\e N term DST-III discrete sine transform. This is
* equivalent to calling transform with twice the value of \e N but is more
* efficient, given that the \e N term coefficients are already known. See
* the example code above.
**********************************************************************/
void GEOGRAPHICLIB_EXPORT refine(std::function<real(real)> f, real F[])
const;
/**
* Evaluate the Fourier sum given the sine and cosine of the angle
*
* @param[in] sinx sin&sigma;.
* @param[in] cosx cos&sigma;.
* @param[in] F the array of Fourier coefficients.
* @param[in] N the number of Fourier coefficients.
* @return the value of the Fourier sum.
**********************************************************************/
static real GEOGRAPHICLIB_EXPORT eval(real sinx, real cosx,
const real F[], int N);
/**
* Evaluate the integral of Fourier sum given the sine and cosine of the
* angle
*
* @param[in] sinx sin&sigma;.
* @param[in] cosx cos&sigma;.
* @param[in] F the array of Fourier coefficients.
* @param[in] N the number of Fourier coefficients.
* @return the value of the integral.
*
* The constant of integration is chosen so that the integral is zero at
* \f$ \sigma = \frac12\pi \f$.
**********************************************************************/
static real GEOGRAPHICLIB_EXPORT integral(real sinx, real cosx,
const real F[], int N);
/**
* Evaluate the definite integral of Fourier sum given the sines and
* cosines of the angles at the endpoints.
*
* @param[in] sinx sin&sigma;<sub>1</sub>.
* @param[in] cosx cos&sigma;<sub>1</sub>.
* @param[in] siny sin&sigma;<sub>2</sub>.
* @param[in] cosy cos&sigma;<sub>2</sub>.
* @param[in] F the array of Fourier coefficients.
* @param[in] N the number of Fourier coefficients.
* @return the value of the integral.
*
* The integral is evaluated between limits &sigma;<sub>1</sub> and
* &sigma;<sub>2</sub>.
**********************************************************************/
static real GEOGRAPHICLIB_EXPORT integral(real sinx, real cosx,
real siny, real cosy,
const real F[], int N);
};
} // namespace GeographicLib
#endif // GEOGRAPHICLIB_DST_HPP