Files
SimCore/libs/geographiclib/examples/JacobiConformal.hpp

177 lines
6.9 KiB
C++

/**
* \file JacobiConformal.hpp
* \brief Header for GeographicLib::JacobiConformal class
*
* \note This is just sample code. It is not part of GeographicLib
* itself.
*
* Copyright (c) Charles Karney (2014-2020) <charles@karney.com> and licensed
* under the MIT/X11 License. For more information, see
* https://geographiclib.sourceforge.io/
**********************************************************************/
#if !defined(GEOGRAPHICLIB_JACOBICONFORMAL_HPP)
#define GEOGRAPHICLIB_JACOBICONFORMAL_HPP 1
#include <GeographicLib/EllipticFunction.hpp>
namespace GeographicLib {
/**
* \brief Jacobi's conformal projection of a triaxial ellipsoid
*
* <b>NOTE:</b> This is just sample code. It is not part of GeographicLib
* itself.
*
* This is a conformal projection of the ellipsoid to a plane in which
* the grid lines are straight; see Jacobi,
* <a href="https://books.google.com/books?id=ryEOAAAAQAAJ&pg=PA212">
* Vorlesungen &uuml;ber Dynamik, &sect;28</a>. The constructor takes the
* semi-axes of the ellipsoid (which must be in order). Member functions map
* the ellipsoidal coordinates &omega; and &beta; separately to \e x and \e
* y. Jacobi's coordinates have been multiplied by
* (<i>a</i><sup>2</sup>&minus;<i>c</i><sup>2</sup>)<sup>1/2</sup> /
* (2<i>b</i>) so that the customary results are returned in the cases of
* a sphere or an ellipsoid of revolution.
*
* The ellipsoid is oriented so that the large principal ellipse, \f$Z=0\f$,
* is the equator, \f$\beta=0\f$, while the small principal ellipse,
* \f$Y=0\f$, is the prime meridian, \f$\omega=0\f$. The four umbilic
* points, \f$\left|\omega\right| = \left|\beta\right| = \frac12\pi\f$, lie
* on middle principal ellipse in the plane \f$X=0\f$.
*
* For more information on this projection, see \ref jacobi.
**********************************************************************/
class JacobiConformal {
typedef Math::real real;
real _a, _b, _c, _ab2, _bc2, _ac2;
EllipticFunction _ex, _ey;
static void norm(real& x, real& y) {
using std::hypot;
real z = hypot(x, y); x /= z; y /= z;
}
public:
/**
* Constructor for a trixial ellipsoid with semi-axes.
*
* @param[in] a the largest semi-axis.
* @param[in] b the middle semi-axis.
* @param[in] c the smallest semi-axis.
*
* The semi-axes must satisfy \e a &ge; \e b &ge; \e c > 0 and \e a >
* \e c. This form of the constructor cannot be used to specify a
* sphere (use the next constructor).
**********************************************************************/
JacobiConformal(real a, real b, real c)
: _a(a), _b(b), _c(c)
, _ab2((_a - _b) * (_a + _b))
, _bc2((_b - _c) * (_b + _c))
, _ac2((_a - _c) * (_a + _c))
, _ex(_ab2 / _ac2 * Math::sq(_c / _b), -_ab2 / Math::sq(_b),
_bc2 / _ac2 * Math::sq(_a / _b), Math::sq(_a / _b))
, _ey(_bc2 / _ac2 * Math::sq(_a / _b), +_bc2 / Math::sq(_b),
_ab2 / _ac2 * Math::sq(_c / _b), Math::sq(_c / _b))
{
using std::isfinite;
if (!(isfinite(_a) && _a >= _b && _b >= _c && _c > 0))
throw GeographicErr("JacobiConformal: axes are not in order");
if (!(_a > _c))
throw GeographicErr
("JacobiConformal: use alternate constructor for sphere");
}
/**
* Alternate constructor for a triaxial ellipsoid.
*
* @param[in] a the largest semi-axis.
* @param[in] b the middle semi-axis.
* @param[in] c the smallest semi-axis.
* @param[in] ab the relative magnitude of \e a &minus; \e b.
* @param[in] bc the relative magnitude of \e b &minus; \e c.
*
* This form can be used to specify a sphere. The semi-axes must
* satisfy \e a &ge; \e b &ge; c > 0. The ratio \e ab : \e bc must equal
* (<i>a</i>&minus;<i>b</i>) : (<i>b</i>&minus;<i>c</i>) with \e ab
* &ge; 0, \e bc &ge; 0, and \e ab + \e bc > 0.
**********************************************************************/
JacobiConformal(real a, real b, real c, real ab, real bc)
: _a(a), _b(b), _c(c)
, _ab2(ab * (_a + _b))
, _bc2(bc * (_b + _c))
, _ac2(_ab2 + _bc2)
, _ex(_ab2 / _ac2 * Math::sq(_c / _b),
-(_a - _b) * (_a + _b) / Math::sq(_b),
_bc2 / _ac2 * Math::sq(_a / _b), Math::sq(_a / _b))
, _ey(_bc2 / _ac2 * Math::sq(_a / _b),
+(_b - _c) * (_b + _c) / Math::sq(_b),
_ab2 / _ac2 * Math::sq(_c / _b), Math::sq(_c / _b))
{
using std::isfinite;
if (!(isfinite(_a) && _a >= _b && _b >= _c && _c > 0 &&
ab >= 0 && bc >= 0))
throw GeographicErr("JacobiConformal: axes are not in order");
if (!(ab + bc > 0 && isfinite(_ac2)))
throw GeographicErr("JacobiConformal: ab + bc must be positive");
}
/**
* @return the quadrant length in the \e x direction.
**********************************************************************/
Math::real x() const { return Math::sq(_a / _b) * _ex.Pi(); }
/**
* The \e x projection.
*
* @param[in] somg sin(&omega;).
* @param[in] comg cos(&omega;).
* @return \e x.
**********************************************************************/
Math::real x(real somg, real comg) const {
real somg1 = _b * somg, comg1 = _a * comg; norm(somg1, comg1);
return Math::sq(_a / _b)
* _ex.Pi(somg1, comg1, _ex.Delta(somg1, comg1));
}
/**
* The \e x projection.
*
* @param[in] omg &omega; (in degrees).
* @return \e x (in degrees).
*
* &omega; must be in [&minus;180&deg;, 180&deg;].
**********************************************************************/
Math::real x(real omg) const {
real somg, comg;
Math::sincosd(omg, somg, comg);
return x(somg, comg) / Math::degree();
}
/**
* @return the quadrant length in the \e y direction.
**********************************************************************/
Math::real y() const { return Math::sq(_c / _b) * _ey.Pi(); }
/**
* The \e y projection.
*
* @param[in] sbet sin(&beta;).
* @param[in] cbet cos(&beta;).
* @return \e y.
**********************************************************************/
Math::real y(real sbet, real cbet) const {
real sbet1 = _b * sbet, cbet1 = _c * cbet; norm(sbet1, cbet1);
return Math::sq(_c / _b)
* _ey.Pi(sbet1, cbet1, _ey.Delta(sbet1, cbet1));
}
/**
* The \e y projection.
*
* @param[in] bet &beta; (in degrees).
* @return \e y (in degrees).
*
* &beta; must be in (&minus;180&deg;, 180&deg;].
**********************************************************************/
Math::real y(real bet) const {
real sbet, cbet;
Math::sincosd(bet, sbet, cbet);
return y(sbet, cbet) / Math::degree();
}
};
} // namespace GeographicLib
#endif // GEOGRAPHICLIB_JACOBICONFORMAL_HPP