/** * \file GeodesicLine30.cpp * \brief Implementation for GeographicLib::GeodesicLine30 class * * Copyright (c) Charles Karney (2009-2022) and licensed * under the MIT/X11 License. For more information, see * https://geographiclib.sourceforge.io/ * * This is a reformulation of the geodesic problem. The notation is as * follows: * - at a general point (no suffix or 1 or 2 as suffix) * - phi = latitude * - beta = latitude on auxiliary sphere * - omega = longitude on auxiliary sphere * - lambda = longitude * - alpha = azimuth of great circle * - sigma = arc length along great circle * - s = distance * - tau = scaled distance (= sigma at multiples of pi/2) * - at northwards equator crossing * - beta = phi = 0 * - omega = lambda = 0 * - alpha = alpha0 * - sigma = s = 0 * - a 12 suffix means a difference, e.g., s12 = s2 - s1. * - s and c prefixes mean sin and cos **********************************************************************/ #include "GeodesicLine30.hpp" namespace GeographicLib { using namespace std; template GeodesicLine30::GeodesicLine30(const Geodesic30& g, real lat1, real lon1, real azi1, unsigned caps) : _a(g._a) , _f(g._f) , _b(g._b) , _c2(g._c2) , _f1(g._f1) // Always allow latitude and azimuth , _caps(caps | LATITUDE | AZIMUTH) { azi1 = Math::AngNormalize(azi1); // Guard against underflow in salp0 azi1 = Geodesic30::AngRound(azi1); lon1 = Math::AngNormalize(lon1); _lat1 = lat1; _lon1 = lon1; _azi1 = azi1; // alp1 is in [0, pi] real alp1 = azi1 * Math::degree(); // Enforce sin(pi) == 0 and cos(pi/2) == 0. Better to face the ensuing // problems directly than to skirt them. _salp1 = azi1 == -180 ? 0 : sin(alp1); _calp1 = abs(azi1) == 90 ? 0 : cos(alp1); real cbet1, sbet1, phi; phi = lat1 * Math::degree(); // Ensure cbet1 = +epsilon at poles sbet1 = _f1 * sin(phi); cbet1 = abs(lat1) == 90 ? Geodesic30::tiny_ : cos(phi); Geodesic30::SinCosNorm(sbet1, cbet1); // Evaluate alp0 from sin(alp1) * cos(bet1) = sin(alp0), _salp0 = _salp1 * cbet1; // alp0 in [0, pi/2 - |bet1|] // Alt: calp0 = hypot(sbet1, calp1 * cbet1). The following // is slightly better (consider the case salp1 = 0). _calp0 = hypot(_calp1, _salp1 * sbet1); // Evaluate sig with tan(bet1) = tan(sig1) * cos(alp1). // sig = 0 is nearest northward crossing of equator. // With bet1 = 0, alp1 = pi/2, we have sig1 = 0 (equatorial line). // With bet1 = pi/2, alp1 = -pi, sig1 = pi/2 // With bet1 = -pi/2, alp1 = 0 , sig1 = -pi/2 // Evaluate omg1 with tan(omg1) = sin(alp0) * tan(sig1). // With alp0 in (0, pi/2], quadrants for sig and omg coincide. // No atan2(0,0) ambiguity at poles since cbet1 = +epsilon. // With alp0 = 0, omg1 = 0 for alp1 = 0, omg1 = pi for alp1 = pi. _ssig1 = sbet1; _somg1 = _salp0 * sbet1; _csig1 = _comg1 = sbet1 != 0 || _calp1 != 0 ? cbet1 * _calp1 : 1; Geodesic30::SinCosNorm(_ssig1, _csig1); // sig1 in (-pi, pi] Geodesic30::SinCosNorm(_somg1, _comg1); _k2 = Math::sq(_calp0) * g._ep2; real eps = _k2 / (2 * (1 + sqrt(1 + _k2)) + _k2); if (_caps & CAP_C1) { _A1m1 = Geodesic30::A1m1f(eps); Geodesic30::C1f(eps, _C1a); _B11 = Geodesic30::SinCosSeries(true, _ssig1, _csig1, _C1a, nC1_); real s = sin(_B11), c = cos(_B11); // tau1 = sig1 + B11 _stau1 = _ssig1 * c + _csig1 * s; _ctau1 = _csig1 * c - _ssig1 * s; // Not necessary because C1pa reverts C1a // _B11 = -SinCosSeries(true, _stau1, _ctau1, _C1pa, nC1p_); } if (_caps & CAP_C1p) Geodesic30::C1pf(eps, _C1pa); if (_caps & CAP_C2) { _A2m1 = Geodesic30::A2m1f(eps); Geodesic30::C2f(eps, _C2a); _B21 = Geodesic30::SinCosSeries(true, _ssig1, _csig1, _C2a, nC2_); } if (_caps & CAP_C3) { g.C3f(eps, _C3a); _A3c = -_f * _salp0 * g.A3f(eps); _B31 = Geodesic30::SinCosSeries(true, _ssig1, _csig1, _C3a, nC3_-1); } if (_caps & CAP_C4) { g.C4f(_k2, _C4a); // Multiplier = a^2 * e^2 * cos(alpha0) * sin(alpha0) _A4 = Math::sq(_a) * _calp0 * _salp0 * g._e2; _B41 = Geodesic30::SinCosSeries(false, _ssig1, _csig1, _C4a, nC4_); } } template real GeodesicLine30::GenPosition(bool arcmode, real s12_a12, unsigned outmask, real& lat2, real& lon2, real& azi2, real& s12, real& m12, real& M12, real& M21, real& S12) const { outmask &= _caps & OUT_ALL; if (!( Init() && (arcmode || (_caps & DISTANCE_IN & OUT_ALL)) )) // Uninitialized or impossible distance calculation requested return Math::NaN(); // Avoid warning about uninitialized B12. real sig12, ssig12, csig12, B12 = 0, AB1 = 0; if (arcmode) { // Interpret s12_a12 as spherical arc length sig12 = s12_a12 * Math::degree(); real s12a = abs(s12_a12); s12a -= 180 * floor(s12a / 180); ssig12 = s12a == 0 ? 0 : sin(sig12); csig12 = s12a == 90 ? 0 : cos(sig12); } else { // Interpret s12_a12 as distance real tau12 = s12_a12 / (_b * (1 + _A1m1)), s = sin(tau12), c = cos(tau12); // tau2 = tau1 + tau12 B12 = - Geodesic30::SinCosSeries(true, _stau1 * c + _ctau1 * s, _ctau1 * c - _stau1 * s, _C1pa, nC1p_); sig12 = tau12 - (B12 - _B11); ssig12 = sin(sig12); csig12 = cos(sig12); } real omg12, lam12, lon12; real ssig2, csig2, sbet2, cbet2, somg2, comg2, salp2, calp2; // sig2 = sig1 + sig12 ssig2 = _ssig1 * csig12 + _csig1 * ssig12; csig2 = _csig1 * csig12 - _ssig1 * ssig12; if (outmask & (DISTANCE | REDUCEDLENGTH | GEODESICSCALE)) { if (arcmode) B12 = Geodesic30::SinCosSeries(true, ssig2, csig2, _C1a, nC1_); AB1 = (1 + _A1m1) * (B12 - _B11); } // sin(bet2) = cos(alp0) * sin(sig2) sbet2 = _calp0 * ssig2; // Alt: cbet2 = hypot(csig2, salp0 * ssig2); cbet2 = hypot(_salp0, _calp0 * csig2); if (cbet2 == 0) // I.e., salp0 = 0, csig2 = 0. Break the degeneracy in this case cbet2 = csig2 = Geodesic30::tiny_; // tan(omg2) = sin(alp0) * tan(sig2) somg2 = _salp0 * ssig2; comg2 = csig2; // No need to normalize // tan(alp0) = cos(sig2)*tan(alp2) salp2 = _salp0; calp2 = _calp0 * csig2; // No need to normalize // omg12 = omg2 - omg1 omg12 = atan2(somg2 * _comg1 - comg2 * _somg1, comg2 * _comg1 + somg2 * _somg1); if (outmask & DISTANCE) s12 = arcmode ? _b * ((1 + _A1m1) * sig12 + AB1) : s12_a12; if (outmask & LONGITUDE) { lam12 = omg12 + _A3c * ( sig12 + (Geodesic30::SinCosSeries(true, ssig2, csig2, _C3a, nC3_-1) - _B31)); lon12 = lam12 / Math::degree(); lon12 = Math::AngNormalize(lon12); lon2 = Math::AngNormalize(_lon1 + lon12); } if (outmask & LATITUDE) lat2 = atan2(sbet2, _f1 * cbet2) / Math::degree(); if (outmask & AZIMUTH) // minus signs give range [-180, 180). 0- converts -0 to +0. azi2 = 0 - atan2(-salp2, calp2) / Math::degree(); if (outmask & (REDUCEDLENGTH | GEODESICSCALE)) { real ssig1sq = Math::sq(_ssig1), ssig2sq = Math::sq( ssig2), w1 = sqrt(1 + _k2 * ssig1sq), w2 = sqrt(1 + _k2 * ssig2sq), B22 = Geodesic30::SinCosSeries(true, ssig2, csig2, _C2a, nC2_), AB2 = (1 + _A2m1) * (B22 - _B21), J12 = (_A1m1 - _A2m1) * sig12 + (AB1 - AB2); if (outmask & REDUCEDLENGTH) // Add parens around (_csig1 * ssig2) and (_ssig1 * csig2) to ensure // accurate cancellation in the case of coincident points. m12 = _b * ((w2 * (_csig1 * ssig2) - w1 * (_ssig1 * csig2)) - _csig1 * csig2 * J12); if (outmask & GEODESICSCALE) { M12 = csig12 + (_k2 * (ssig2sq - ssig1sq) * ssig2 / (w1 + w2) - csig2 * J12) * _ssig1 / w1; M21 = csig12 - (_k2 * (ssig2sq - ssig1sq) * _ssig1 / (w1 + w2) - _csig1 * J12) * ssig2 / w2; } } if (outmask & AREA) { real B42 = Geodesic30::SinCosSeries(false, ssig2, csig2, _C4a, nC4_); real salp12, calp12; if (_calp0 == 0 || _salp0 == 0) { // alp12 = alp2 - alp1, used in atan2 so no need to normalize salp12 = salp2 * _calp1 - calp2 * _salp1; calp12 = calp2 * _calp1 + salp2 * _salp1; // The right thing appears to happen if alp1 = +/-180 and alp2 = 0, viz // salp12 = -0 and alp12 = -180. However this depends on the sign // being attached to 0 correctly. The following ensures the correct // behavior. if (salp12 == 0 && calp12 < 0) { salp12 = Geodesic30::tiny_ * _calp1; calp12 = -1; } } else { // tan(alp) = tan(alp0) * sec(sig) // tan(alp2-alp1) = (tan(alp2) -tan(alp1)) / (tan(alp2)*tan(alp1)+1) // = calp0 * salp0 * (csig1-csig2) / (salp0^2 + calp0^2 * csig1*csig2) // If csig12 > 0, write // csig1 - csig2 = ssig12 * (csig1 * ssig12 / (1 + csig12) + ssig1) // else // csig1 - csig2 = csig1 * (1 - csig12) + ssig12 * ssig1 // No need to normalize salp12 = _calp0 * _salp0 * (csig12 <= 0 ? _csig1 * (1 - csig12) + ssig12 * _ssig1 : ssig12 * (_csig1 * ssig12 / (1 + csig12) + _ssig1)); calp12 = Math::sq(_salp0) + Math::sq(_calp0) * _csig1 * csig2; } S12 = _c2 * atan2(salp12, calp12) + _A4 * (B42 - _B41); } return arcmode ? s12_a12 : sig12 / Math::degree(); } template class GeodesicLine30; #if GEOGRAPHICLIB_HAVE_LONG_DOUBLE template class GeodesicLine30; #endif } // namespace GeographicLib