ADD: added other eigen lib

This commit is contained in:
Henry Winkel
2022-12-21 16:19:04 +01:00
parent a570766dc6
commit 9e56c7f2c0
832 changed files with 36586 additions and 20006 deletions

View File

@@ -16,6 +16,10 @@
#error a macro SVD_FOR_MIN_NORM(MatrixType) must be defined prior to including svd_common.h
#endif
#ifndef SVD_STATIC_OPTIONS
#error a macro SVD_STATIC_OPTIONS(MatrixType, Options) must be defined prior to including svd_common.h
#endif
#include "svd_fill.h"
#include "solverbase.h"
@@ -55,50 +59,44 @@ void svd_check_full(const MatrixType& m, const SvdType& svd)
}
// Compare partial SVD defined by computationOptions to a full SVD referenceSvd
template<typename SvdType, typename MatrixType>
void svd_compare_to_full(const MatrixType& m,
unsigned int computationOptions,
const SvdType& referenceSvd)
{
template <typename MatrixType, typename SvdType, int Options>
void svd_compare_to_full(const MatrixType& m, const SvdType& referenceSvd) {
typedef typename MatrixType::RealScalar RealScalar;
Index rows = m.rows();
Index cols = m.cols();
Index diagSize = (std::min)(rows, cols);
RealScalar prec = test_precision<RealScalar>();
SvdType svd(m, computationOptions);
SVD_STATIC_OPTIONS(MatrixType, Options) svd(m);
VERIFY_IS_APPROX(svd.singularValues(), referenceSvd.singularValues());
if(computationOptions & (ComputeFullV|ComputeThinV))
{
if (Options & (ComputeFullV | ComputeThinV)) {
VERIFY( (svd.matrixV().adjoint()*svd.matrixV()).isIdentity(prec) );
VERIFY_IS_APPROX( svd.matrixV().leftCols(diagSize) * svd.singularValues().asDiagonal() * svd.matrixV().leftCols(diagSize).adjoint(),
referenceSvd.matrixV().leftCols(diagSize) * referenceSvd.singularValues().asDiagonal() * referenceSvd.matrixV().leftCols(diagSize).adjoint());
}
if(computationOptions & (ComputeFullU|ComputeThinU))
{
if (Options & (ComputeFullU | ComputeThinU)) {
VERIFY( (svd.matrixU().adjoint()*svd.matrixU()).isIdentity(prec) );
VERIFY_IS_APPROX( svd.matrixU().leftCols(diagSize) * svd.singularValues().cwiseAbs2().asDiagonal() * svd.matrixU().leftCols(diagSize).adjoint(),
referenceSvd.matrixU().leftCols(diagSize) * referenceSvd.singularValues().cwiseAbs2().asDiagonal() * referenceSvd.matrixU().leftCols(diagSize).adjoint());
}
// The following checks are not critical.
// For instance, with Dived&Conquer SVD, if only the factor 'V' is computedt then different matrix-matrix product implementation will be used
// and the resulting 'V' factor might be significantly different when the SVD decomposition is not unique, especially with single precision float.
// For instance, with Dived&Conquer SVD, if only the factor 'V' is computed then different matrix-matrix product
// implementation will be used and the resulting 'V' factor might be significantly different when the SVD
// decomposition is not unique, especially with single precision float.
++g_test_level;
if(computationOptions & ComputeFullU) VERIFY_IS_APPROX(svd.matrixU(), referenceSvd.matrixU());
if(computationOptions & ComputeThinU) VERIFY_IS_APPROX(svd.matrixU(), referenceSvd.matrixU().leftCols(diagSize));
if(computationOptions & ComputeFullV) VERIFY_IS_APPROX(svd.matrixV().cwiseAbs(), referenceSvd.matrixV().cwiseAbs());
if(computationOptions & ComputeThinV) VERIFY_IS_APPROX(svd.matrixV(), referenceSvd.matrixV().leftCols(diagSize));
if (Options & ComputeFullU) VERIFY_IS_APPROX(svd.matrixU(), referenceSvd.matrixU());
if (Options & ComputeThinU) VERIFY_IS_APPROX(svd.matrixU(), referenceSvd.matrixU().leftCols(diagSize));
if (Options & ComputeFullV) VERIFY_IS_APPROX(svd.matrixV().cwiseAbs(), referenceSvd.matrixV().cwiseAbs());
if (Options & ComputeThinV) VERIFY_IS_APPROX(svd.matrixV(), referenceSvd.matrixV().leftCols(diagSize));
--g_test_level;
}
//
template<typename SvdType, typename MatrixType>
void svd_least_square(const MatrixType& m, unsigned int computationOptions)
{
template <typename SvdType, typename MatrixType>
void svd_least_square(const MatrixType& m) {
typedef typename MatrixType::Scalar Scalar;
typedef typename MatrixType::RealScalar RealScalar;
Index rows = m.rows();
@@ -113,10 +111,10 @@ void svd_least_square(const MatrixType& m, unsigned int computationOptions)
typedef Matrix<Scalar, ColsAtCompileTime, Dynamic> SolutionType;
RhsType rhs = RhsType::Random(rows, internal::random<Index>(1, cols));
SvdType svd(m, computationOptions);
SvdType svd(m);
if(internal::is_same<RealScalar,double>::value) svd.setThreshold(1e-8);
else if(internal::is_same<RealScalar,float>::value) svd.setThreshold(2e-4);
if (internal::is_same<RealScalar, double>::value) svd.setThreshold(RealScalar(1e-8));
else if(internal::is_same<RealScalar,float>::value) svd.setThreshold(RealScalar(2e-4));
SolutionType x = svd.solve(rhs);
@@ -162,10 +160,9 @@ void svd_least_square(const MatrixType& m, unsigned int computationOptions)
}
}
// check minimal norm solutions, the inoput matrix m is only used to recover problem size
template<typename MatrixType>
void svd_min_norm(const MatrixType& m, unsigned int computationOptions)
{
// check minimal norm solutions, the input matrix m is only used to recover problem size
template <typename MatrixType, int Options>
void svd_min_norm(const MatrixType& m) {
typedef typename MatrixType::Scalar Scalar;
Index cols = m.cols();
@@ -199,7 +196,7 @@ void svd_min_norm(const MatrixType& m, unsigned int computationOptions)
tmp.tail(cols-rank).setZero();
SolutionType x21 = qr.householderQ() * tmp;
// now check with SVD
SVD_FOR_MIN_NORM(MatrixType2) svd2(m2, computationOptions);
SVD_STATIC_OPTIONS(MatrixType2, Options) svd2(m2);
SolutionType x22 = svd2.solve(rhs2);
VERIFY_IS_APPROX(m2*x21, rhs2);
VERIFY_IS_APPROX(m2*x22, rhs2);
@@ -212,7 +209,7 @@ void svd_min_norm(const MatrixType& m, unsigned int computationOptions)
Matrix<Scalar,RowsAtCompileTime3,Dynamic> C = Matrix<Scalar,RowsAtCompileTime3,Dynamic>::Random(rows3,rank);
MatrixType3 m3 = C * m2;
RhsType3 rhs3 = C * rhs2;
SVD_FOR_MIN_NORM(MatrixType3) svd3(m3, computationOptions);
SVD_STATIC_OPTIONS(MatrixType3, Options) svd3(m3);
SolutionType x3 = svd3.solve(rhs3);
VERIFY_IS_APPROX(m3*x3, rhs3);
VERIFY_IS_APPROX(m3*x21, rhs3);
@@ -239,57 +236,6 @@ void svd_test_solvers(const MatrixType& m, const SolverType& solver) {
check_solverbase<CMatrixType, MatrixType>(m, solver, rows, cols, cols2);
}
// Check full, compare_to_full, least_square, and min_norm for all possible compute-options
template<typename SvdType, typename MatrixType>
void svd_test_all_computation_options(const MatrixType& m, bool full_only)
{
// if (QRPreconditioner == NoQRPreconditioner && m.rows() != m.cols())
// return;
STATIC_CHECK(( internal::is_same<typename SvdType::StorageIndex,int>::value ));
SvdType fullSvd(m, ComputeFullU|ComputeFullV);
CALL_SUBTEST(( svd_check_full(m, fullSvd) ));
CALL_SUBTEST(( svd_least_square<SvdType>(m, ComputeFullU | ComputeFullV) ));
CALL_SUBTEST(( svd_min_norm(m, ComputeFullU | ComputeFullV) ));
#if defined __INTEL_COMPILER
// remark #111: statement is unreachable
#pragma warning disable 111
#endif
svd_test_solvers(m, fullSvd);
if(full_only)
return;
CALL_SUBTEST(( svd_compare_to_full(m, ComputeFullU, fullSvd) ));
CALL_SUBTEST(( svd_compare_to_full(m, ComputeFullV, fullSvd) ));
CALL_SUBTEST(( svd_compare_to_full(m, 0, fullSvd) ));
if (MatrixType::ColsAtCompileTime == Dynamic) {
// thin U/V are only available with dynamic number of columns
CALL_SUBTEST(( svd_compare_to_full(m, ComputeFullU|ComputeThinV, fullSvd) ));
CALL_SUBTEST(( svd_compare_to_full(m, ComputeThinV, fullSvd) ));
CALL_SUBTEST(( svd_compare_to_full(m, ComputeThinU|ComputeFullV, fullSvd) ));
CALL_SUBTEST(( svd_compare_to_full(m, ComputeThinU , fullSvd) ));
CALL_SUBTEST(( svd_compare_to_full(m, ComputeThinU|ComputeThinV, fullSvd) ));
CALL_SUBTEST(( svd_least_square<SvdType>(m, ComputeFullU | ComputeThinV) ));
CALL_SUBTEST(( svd_least_square<SvdType>(m, ComputeThinU | ComputeFullV) ));
CALL_SUBTEST(( svd_least_square<SvdType>(m, ComputeThinU | ComputeThinV) ));
CALL_SUBTEST(( svd_min_norm(m, ComputeFullU | ComputeThinV) ));
CALL_SUBTEST(( svd_min_norm(m, ComputeThinU | ComputeFullV) ));
CALL_SUBTEST(( svd_min_norm(m, ComputeThinU | ComputeThinV) ));
// test reconstruction
Index diagSize = (std::min)(m.rows(), m.cols());
SvdType svd(m, ComputeThinU | ComputeThinV);
VERIFY_IS_APPROX(m, svd.matrixU().leftCols(diagSize) * svd.singularValues().asDiagonal() * svd.matrixV().leftCols(diagSize).adjoint());
}
}
// work around stupid msvc error when constructing at compile time an expression that involves
// a division by zero, even if the numeric type has floating point
template<typename Scalar>
@@ -300,29 +246,28 @@ template<typename T> EIGEN_DONT_INLINE T sub(T a, T b) { return a - b; }
// This function verifies we don't iterate infinitely on nan/inf values,
// and that info() returns InvalidInput.
template<typename SvdType, typename MatrixType>
void svd_inf_nan()
{
SvdType svd;
template <typename MatrixType>
void svd_inf_nan() {
SVD_STATIC_OPTIONS(MatrixType, ComputeFullU | ComputeFullV) svd;
typedef typename MatrixType::Scalar Scalar;
Scalar some_inf = Scalar(1) / zero<Scalar>();
VERIFY(sub(some_inf, some_inf) != sub(some_inf, some_inf));
svd.compute(MatrixType::Constant(10,10,some_inf), ComputeFullU | ComputeFullV);
svd.compute(MatrixType::Constant(10, 10, some_inf));
VERIFY(svd.info() == InvalidInput);
Scalar nan = std::numeric_limits<Scalar>::quiet_NaN();
VERIFY(nan != nan);
svd.compute(MatrixType::Constant(10,10,nan), ComputeFullU | ComputeFullV);
svd.compute(MatrixType::Constant(10, 10, nan));
VERIFY(svd.info() == InvalidInput);
MatrixType m = MatrixType::Zero(10,10);
m(internal::random<int>(0,9), internal::random<int>(0,9)) = some_inf;
svd.compute(m, ComputeFullU | ComputeFullV);
svd.compute(m);
VERIFY(svd.info() == InvalidInput);
m = MatrixType::Zero(10,10);
m(internal::random<int>(0,9), internal::random<int>(0,9)) = nan;
svd.compute(m, ComputeFullU | ComputeFullV);
svd.compute(m);
VERIFY(svd.info() == InvalidInput);
// regression test for bug 791
@@ -330,7 +275,7 @@ void svd_inf_nan()
m << 0, 2*NumTraits<Scalar>::epsilon(), 0.5,
0, -0.5, 0,
nan, 0, 0;
svd.compute(m, ComputeFullU | ComputeFullV);
svd.compute(m);
VERIFY(svd.info() == InvalidInput);
m.resize(4,4);
@@ -338,7 +283,7 @@ void svd_inf_nan()
0, 3, 1, 2e-308,
1, 0, 1, nan,
0, nan, nan, 0;
svd.compute(m, ComputeFullU | ComputeFullV);
svd.compute(m);
VERIFY(svd.info() == InvalidInput);
}
@@ -355,8 +300,8 @@ void svd_underoverflow()
Matrix2d M;
M << -7.90884e-313, -4.94e-324,
0, 5.60844e-313;
SVD_DEFAULT(Matrix2d) svd;
svd.compute(M,ComputeFullU|ComputeFullV);
SVD_STATIC_OPTIONS(Matrix2d, ComputeFullU | ComputeFullV) svd;
svd.compute(M);
CALL_SUBTEST( svd_check_full(M,svd) );
// Check all 2x2 matrices made with the following coefficients:
@@ -367,7 +312,7 @@ void svd_underoverflow()
do
{
M << value_set(id(0)), value_set(id(1)), value_set(id(2)), value_set(id(3));
svd.compute(M,ComputeFullU|ComputeFullV);
svd.compute(M);
CALL_SUBTEST( svd_check_full(M,svd) );
id(k)++;
@@ -390,16 +335,13 @@ void svd_underoverflow()
3.7841695601406358e+307, 2.4331702789740617e+306, -3.5235707140272905e+307,
-8.7190887618028355e+307, -7.3453213709232193e+307, -2.4367363684472105e+307;
SVD_DEFAULT(Matrix3d) svd3;
svd3.compute(M3,ComputeFullU|ComputeFullV); // just check we don't loop indefinitely
SVD_STATIC_OPTIONS(Matrix3d, ComputeFullU | ComputeFullV) svd3;
svd3.compute(M3); // just check we don't loop indefinitely
CALL_SUBTEST( svd_check_full(M3,svd3) );
}
// void jacobisvd(const MatrixType& a = MatrixType(), bool pickrandom = true)
template<typename MatrixType>
void svd_all_trivial_2x2( void (*cb)(const MatrixType&,bool) )
{
template <typename MatrixType>
void svd_all_trivial_2x2(void (*cb)(const MatrixType&)) {
MatrixType M;
VectorXd value_set(3);
value_set << 0, 1, -1;
@@ -408,9 +350,9 @@ void svd_all_trivial_2x2( void (*cb)(const MatrixType&,bool) )
do
{
M << value_set(id(0)), value_set(id(1)), value_set(id(2)), value_set(id(3));
cb(M,false);
cb(M);
id(k)++;
if(id(k)>=value_set.size())
{
@@ -434,22 +376,10 @@ void svd_preallocate()
internal::set_is_malloc_allowed(true);
svd.compute(m);
VERIFY_IS_APPROX(svd.singularValues(), v);
VERIFY_RAISES_ASSERT(svd.matrixU());
VERIFY_RAISES_ASSERT(svd.matrixV());
SVD_DEFAULT(MatrixXf) svd2(3,3);
internal::set_is_malloc_allowed(false);
svd2.compute(m);
internal::set_is_malloc_allowed(true);
VERIFY_IS_APPROX(svd2.singularValues(), v);
VERIFY_RAISES_ASSERT(svd2.matrixU());
VERIFY_RAISES_ASSERT(svd2.matrixV());
svd2.compute(m, ComputeFullU | ComputeFullV);
VERIFY_IS_APPROX(svd2.matrixU(), Matrix3f::Identity());
VERIFY_IS_APPROX(svd2.matrixV(), Matrix3f::Identity());
internal::set_is_malloc_allowed(false);
svd2.compute(m);
internal::set_is_malloc_allowed(true);
SVD_DEFAULT(MatrixXf) svd3(3,3,ComputeFullU|ComputeFullV);
SVD_STATIC_OPTIONS(MatrixXf, ComputeFullU | ComputeFullV) svd2(3, 3);
internal::set_is_malloc_allowed(false);
svd2.compute(m);
internal::set_is_malloc_allowed(true);
@@ -457,13 +387,203 @@ void svd_preallocate()
VERIFY_IS_APPROX(svd2.matrixU(), Matrix3f::Identity());
VERIFY_IS_APPROX(svd2.matrixV(), Matrix3f::Identity());
internal::set_is_malloc_allowed(false);
svd2.compute(m, ComputeFullU|ComputeFullV);
svd2.compute(m);
internal::set_is_malloc_allowed(true);
}
template<typename SvdType,typename MatrixType>
void svd_verify_assert(const MatrixType& m, bool fullOnly = false)
{
template <typename MatrixType, int QRPreconditioner = 0>
void svd_verify_assert_full_only(const MatrixType& m = MatrixType()) {
enum { RowsAtCompileTime = MatrixType::RowsAtCompileTime };
typedef Matrix<typename MatrixType::Scalar, RowsAtCompileTime, 1> RhsType;
RhsType rhs = RhsType::Zero(m.rows());
SVD_STATIC_OPTIONS(MatrixType, QRPreconditioner) svd0;
VERIFY_RAISES_ASSERT((svd0.matrixU()));
VERIFY_RAISES_ASSERT((svd0.singularValues()));
VERIFY_RAISES_ASSERT((svd0.matrixV()));
VERIFY_RAISES_ASSERT((svd0.solve(rhs)));
VERIFY_RAISES_ASSERT((svd0.transpose().solve(rhs)));
VERIFY_RAISES_ASSERT((svd0.adjoint().solve(rhs)));
SVD_STATIC_OPTIONS(MatrixType, QRPreconditioner) svd1(m);
VERIFY_RAISES_ASSERT((svd1.matrixU()));
VERIFY_RAISES_ASSERT((svd1.matrixV()));
VERIFY_RAISES_ASSERT((svd1.solve(rhs)));
SVD_STATIC_OPTIONS(MatrixType, QRPreconditioner | ComputeFullU) svdFullU(m);
VERIFY_RAISES_ASSERT((svdFullU.matrixV()));
VERIFY_RAISES_ASSERT((svdFullU.solve(rhs)));
SVD_STATIC_OPTIONS(MatrixType, QRPreconditioner | ComputeFullV) svdFullV(m);
VERIFY_RAISES_ASSERT((svdFullV.matrixU()));
VERIFY_RAISES_ASSERT((svdFullV.solve(rhs)));
}
template <typename MatrixType, int QRPreconditioner = 0>
void svd_verify_assert(const MatrixType& m = MatrixType()) {
enum { RowsAtCompileTime = MatrixType::RowsAtCompileTime };
typedef Matrix<typename MatrixType::Scalar, RowsAtCompileTime, 1> RhsType;
RhsType rhs = RhsType::Zero(m.rows());
SVD_STATIC_OPTIONS(MatrixType, QRPreconditioner | ComputeThinU) svdThinU(m);
VERIFY_RAISES_ASSERT((svdThinU.matrixV()));
VERIFY_RAISES_ASSERT((svdThinU.solve(rhs)));
SVD_STATIC_OPTIONS(MatrixType, QRPreconditioner | ComputeThinV) svdThinV(m);
VERIFY_RAISES_ASSERT((svdThinV.matrixU()));
VERIFY_RAISES_ASSERT((svdThinV.solve(rhs)));
svd_verify_assert_full_only<MatrixType, QRPreconditioner>(m);
}
template <typename MatrixType, int Options>
void svd_compute_checks(const MatrixType& m) {
typedef SVD_STATIC_OPTIONS(MatrixType, Options) SVDType;
enum {
RowsAtCompileTime = MatrixType::RowsAtCompileTime,
ColsAtCompileTime = MatrixType::ColsAtCompileTime,
DiagAtCompileTime = internal::min_size_prefer_dynamic(RowsAtCompileTime, ColsAtCompileTime),
MatrixURowsAtCompileTime = SVDType::MatrixUType::RowsAtCompileTime,
MatrixUColsAtCompileTime = SVDType::MatrixUType::ColsAtCompileTime,
MatrixVRowsAtCompileTime = SVDType::MatrixVType::RowsAtCompileTime,
MatrixVColsAtCompileTime = SVDType::MatrixVType::ColsAtCompileTime
};
SVDType staticSvd(m);
VERIFY(MatrixURowsAtCompileTime == RowsAtCompileTime);
VERIFY(MatrixVRowsAtCompileTime == ColsAtCompileTime);
if (Options & ComputeThinU) VERIFY(MatrixUColsAtCompileTime == DiagAtCompileTime);
if (Options & ComputeFullU) VERIFY(MatrixUColsAtCompileTime == RowsAtCompileTime);
if (Options & ComputeThinV) VERIFY(MatrixVColsAtCompileTime == DiagAtCompileTime);
if (Options & ComputeFullV) VERIFY(MatrixVColsAtCompileTime == ColsAtCompileTime);
if (Options & (ComputeThinU | ComputeFullU))
VERIFY(staticSvd.computeU());
else
VERIFY(!staticSvd.computeU());
if (Options & (ComputeThinV | ComputeFullV))
VERIFY(staticSvd.computeV());
else
VERIFY(!staticSvd.computeV());
if (staticSvd.computeU()) VERIFY(staticSvd.matrixU().isUnitary());
if (staticSvd.computeV()) VERIFY(staticSvd.matrixV().isUnitary());
if (staticSvd.computeU() && staticSvd.computeV()) {
svd_test_solvers(m, staticSvd);
svd_least_square<SVDType, MatrixType>(m);
// svd_min_norm generates non-square matrices so it can't be used with NoQRPreconditioner
if ((Options & internal::QRPreconditionerBits) != NoQRPreconditioner) svd_min_norm<MatrixType, Options>(m);
}
}
// Deprecated behavior.
template <typename SvdType, typename MatrixType>
void svd_check_runtime_options(const MatrixType& m, unsigned int computationOptions) {
const bool fixedRowAndThinU = SvdType::RowsAtCompileTime != Dynamic && (computationOptions & ComputeThinU) != 0 && m.cols() < m.rows();
const bool fixedColAndThinV = SvdType::ColsAtCompileTime != Dynamic && (computationOptions & ComputeThinV) != 0 && m.rows() < m.cols();
if (fixedRowAndThinU || fixedColAndThinV) {
VERIFY_RAISES_ASSERT(SvdType svd(m, computationOptions));
return;
}
Index diagSize = (std::min)(m.rows(), m.cols());
SvdType svd(m, computationOptions);
if (svd.computeU()) {
VERIFY(svd.matrixU().isUnitary());
if (computationOptions & ComputeThinU) VERIFY(svd.matrixU().cols() == diagSize);
}
if (svd.computeV()) {
VERIFY(svd.matrixV().isUnitary());
if (computationOptions & ComputeThinV) VERIFY(svd.matrixV().cols() == diagSize);
}
if (svd.computeU() && svd.computeV()) {
svd_test_solvers(m, svd);
svd.matrixU().isUnitary();
svd.matrixV().isUnitary();
}
}
template <typename MatrixType, int QRPreconditioner = 0>
void svd_option_checks(const MatrixType& m) {
svd_compute_checks<MatrixType, QRPreconditioner>(m);
svd_compute_checks<MatrixType, QRPreconditioner | ComputeThinU>(m);
svd_compute_checks<MatrixType, QRPreconditioner | ComputeThinV>(m);
svd_compute_checks<MatrixType, QRPreconditioner | ComputeThinU | ComputeThinV>(m);
svd_compute_checks<MatrixType, QRPreconditioner | ComputeFullU>(m);
svd_compute_checks<MatrixType, QRPreconditioner | ComputeFullV>(m);
svd_compute_checks<MatrixType, QRPreconditioner | ComputeFullU | ComputeFullV>(m);
svd_compute_checks<MatrixType, QRPreconditioner | ComputeThinU | ComputeFullV>(m);
svd_compute_checks<MatrixType, QRPreconditioner | ComputeFullU | ComputeThinV>(m);
typedef SVD_STATIC_OPTIONS(MatrixType, QRPreconditioner | ComputeFullU | ComputeFullV) FullSvdType;
FullSvdType fullSvd(m);
svd_check_full(m, fullSvd);
svd_compare_to_full<MatrixType, FullSvdType, QRPreconditioner | ComputeFullU | ComputeFullV>(m, fullSvd);
// Deprecated behavior.
typedef SVD_STATIC_OPTIONS(MatrixType, QRPreconditioner) DynamicSvd;
svd_check_runtime_options<DynamicSvd>(m, 0);
svd_check_runtime_options<DynamicSvd>(m, ComputeThinU);
svd_check_runtime_options<DynamicSvd>(m, ComputeThinV);
svd_check_runtime_options<DynamicSvd>(m, ComputeThinU | ComputeThinV);
svd_check_runtime_options<DynamicSvd>(m, ComputeFullU);
svd_check_runtime_options<DynamicSvd>(m, ComputeFullV);
svd_check_runtime_options<DynamicSvd>(m, ComputeFullU | ComputeFullV);
svd_check_runtime_options<DynamicSvd>(m, ComputeThinU | ComputeFullV);
svd_check_runtime_options<DynamicSvd>(m, ComputeFullU | ComputeThinV);
}
template <typename MatrixType, int QRPreconditioner = 0>
void svd_option_checks_full_only(const MatrixType& m) {
svd_compute_checks<MatrixType, QRPreconditioner | ComputeFullU>(m);
svd_compute_checks<MatrixType, QRPreconditioner | ComputeFullV>(m);
svd_compute_checks<MatrixType, QRPreconditioner | ComputeFullU | ComputeFullV>(m);
SVD_STATIC_OPTIONS(MatrixType, QRPreconditioner | ComputeFullU | ComputeFullV) fullSvd(m);
svd_check_full(m, fullSvd);
}
template <typename MatrixType, int QRPreconditioner = 0>
void svd_check_max_size_matrix(int initialRows, int initialCols) {
enum {
MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime
};
int rows = MaxRowsAtCompileTime == Dynamic ? initialRows : (std::min)(initialRows, (int)MaxRowsAtCompileTime);
int cols = MaxColsAtCompileTime == Dynamic ? initialCols : (std::min)(initialCols, (int)MaxColsAtCompileTime);
MatrixType m(rows, cols);
SVD_STATIC_OPTIONS(MatrixType, QRPreconditioner | ComputeThinU | ComputeThinV) thinSvd(m);
SVD_STATIC_OPTIONS(MatrixType, QRPreconditioner | ComputeThinU | ComputeFullV) mixedSvd1(m);
SVD_STATIC_OPTIONS(MatrixType, QRPreconditioner | ComputeFullU | ComputeThinV) mixedSvd2(m);
SVD_STATIC_OPTIONS(MatrixType, QRPreconditioner | ComputeFullU | ComputeFullV) fullSvd(m);
MatrixType n(MaxRowsAtCompileTime, MaxColsAtCompileTime);
thinSvd.compute(n);
mixedSvd1.compute(n);
mixedSvd2.compute(n);
fullSvd.compute(n);
MatrixX<typename MatrixType::Scalar> dynamicMatrix(MaxRowsAtCompileTime + 1, MaxColsAtCompileTime + 1);
VERIFY_RAISES_ASSERT(thinSvd.compute(dynamicMatrix));
VERIFY_RAISES_ASSERT(mixedSvd1.compute(dynamicMatrix));
VERIFY_RAISES_ASSERT(mixedSvd2.compute(dynamicMatrix));
VERIFY_RAISES_ASSERT(fullSvd.compute(dynamicMatrix));
}
template <typename SvdType, typename MatrixType>
void svd_verify_constructor_options_assert(const MatrixType& m, bool fullOnly = false) {
typedef typename MatrixType::Scalar Scalar;
Index rows = m.rows();
Index cols = m.cols();
@@ -482,40 +602,39 @@ void svd_verify_assert(const MatrixType& m, bool fullOnly = false)
VERIFY_RAISES_ASSERT(svd.solve(rhs))
VERIFY_RAISES_ASSERT(svd.transpose().solve(rhs))
VERIFY_RAISES_ASSERT(svd.adjoint().solve(rhs))
MatrixType a = MatrixType::Zero(rows, cols);
a.setZero();
svd.compute(a, 0);
VERIFY_RAISES_ASSERT(svd.matrixU())
VERIFY_RAISES_ASSERT(svd.matrixV())
svd.singularValues();
VERIFY_RAISES_ASSERT(svd.solve(rhs))
svd.compute(a, ComputeFullU);
svd.matrixU();
VERIFY_RAISES_ASSERT(svd.matrixV())
VERIFY_RAISES_ASSERT(svd.solve(rhs))
svd.compute(a, ComputeFullV);
svd.matrixV();
VERIFY_RAISES_ASSERT(svd.matrixU())
VERIFY_RAISES_ASSERT(svd.solve(rhs))
MatrixType a = MatrixType::Zero(rows, cols);
SvdType svd2(a, 0);
VERIFY_RAISES_ASSERT(svd2.matrixU())
VERIFY_RAISES_ASSERT(svd2.matrixV())
svd2.singularValues();
VERIFY_RAISES_ASSERT(svd2.solve(rhs))
// Deprecated behavior.
SvdType svd3(a, ComputeFullU);
svd3.matrixU();
VERIFY_RAISES_ASSERT(svd3.matrixV())
VERIFY_RAISES_ASSERT(svd3.solve(rhs))
SvdType svd4(a, ComputeFullV);
svd4.matrixV();
VERIFY_RAISES_ASSERT(svd4.matrixU())
VERIFY_RAISES_ASSERT(svd4.solve(rhs))
if (!fullOnly && ColsAtCompileTime == Dynamic)
{
svd.compute(a, ComputeThinU);
svd.matrixU();
VERIFY_RAISES_ASSERT(svd.matrixV())
VERIFY_RAISES_ASSERT(svd.solve(rhs))
svd.compute(a, ComputeThinV);
svd.matrixV();
VERIFY_RAISES_ASSERT(svd.matrixU())
VERIFY_RAISES_ASSERT(svd.solve(rhs))
}
else
{
VERIFY_RAISES_ASSERT(svd.compute(a, ComputeThinU))
VERIFY_RAISES_ASSERT(svd.compute(a, ComputeThinV))
SvdType svd5(a, ComputeThinU);
svd5.matrixU();
VERIFY_RAISES_ASSERT(svd5.matrixV())
VERIFY_RAISES_ASSERT(svd5.solve(rhs))
SvdType svd6(a, ComputeThinV);
svd6.matrixV();
VERIFY_RAISES_ASSERT(svd6.matrixU())
VERIFY_RAISES_ASSERT(svd6.solve(rhs))
}
}
#undef SVD_DEFAULT
#undef SVD_FOR_MIN_NORM
#undef SVD_STATIC_OPTIONS