ADD: added other eigen lib
This commit is contained in:
176
libs/eigen/test/accelerate_support.cpp
Normal file
176
libs/eigen/test/accelerate_support.cpp
Normal file
@@ -0,0 +1,176 @@
|
||||
#define EIGEN_NO_DEBUG_SMALL_PRODUCT_BLOCKS
|
||||
#include "sparse_solver.h"
|
||||
|
||||
#if defined(DEBUG)
|
||||
#undef DEBUG
|
||||
#endif
|
||||
|
||||
#include <Eigen/AccelerateSupport>
|
||||
|
||||
template<typename MatrixType,typename DenseMat>
|
||||
int generate_sparse_rectangular_problem(MatrixType& A, DenseMat& dA, int maxRows = 300, int maxCols = 300)
|
||||
{
|
||||
typedef typename MatrixType::Scalar Scalar;
|
||||
int rows = internal::random<int>(1, maxRows);
|
||||
int cols = internal::random<int>(1, maxCols);
|
||||
double density = (std::max)(8.0 / (rows * cols), 0.01);
|
||||
|
||||
A.resize(rows,cols);
|
||||
dA.resize(rows,cols);
|
||||
initSparse<Scalar>(density, dA, A, ForceNonZeroDiag);
|
||||
A.makeCompressed();
|
||||
return rows;
|
||||
}
|
||||
|
||||
template<typename MatrixType,typename DenseMat>
|
||||
int generate_sparse_square_symmetric_problem(MatrixType& A, DenseMat& dA, int maxSize = 300)
|
||||
{
|
||||
typedef typename MatrixType::Scalar Scalar;
|
||||
int rows = internal::random<int>(1, maxSize);
|
||||
int cols = rows;
|
||||
double density = (std::max)(8.0 / (rows * cols), 0.01);
|
||||
|
||||
A.resize(rows,cols);
|
||||
dA.resize(rows,cols);
|
||||
initSparse<Scalar>(density, dA, A, ForceNonZeroDiag);
|
||||
dA = dA * dA.transpose();
|
||||
A = A * A.transpose();
|
||||
A.makeCompressed();
|
||||
return rows;
|
||||
}
|
||||
|
||||
template<typename Scalar, typename Solver> void test_accelerate_ldlt()
|
||||
{
|
||||
typedef SparseMatrix<Scalar> MatrixType;
|
||||
typedef Matrix<Scalar,Dynamic,1> DenseVector;
|
||||
|
||||
MatrixType A;
|
||||
Matrix<Scalar,Dynamic,Dynamic> dA;
|
||||
|
||||
generate_sparse_square_symmetric_problem(A, dA);
|
||||
|
||||
DenseVector b = DenseVector::Random(A.rows());
|
||||
|
||||
Solver solver;
|
||||
solver.compute(A);
|
||||
|
||||
if (solver.info() != Success)
|
||||
{
|
||||
std::cerr << "sparse LDLT factorization failed\n";
|
||||
exit(0);
|
||||
return;
|
||||
}
|
||||
|
||||
DenseVector x = solver.solve(b);
|
||||
|
||||
if (solver.info() != Success)
|
||||
{
|
||||
std::cerr << "sparse LDLT factorization failed\n";
|
||||
exit(0);
|
||||
return;
|
||||
}
|
||||
|
||||
//Compare with a dense solver
|
||||
DenseVector refX = dA.ldlt().solve(b);
|
||||
VERIFY((A * x).isApprox(A * refX, test_precision<Scalar>()));
|
||||
}
|
||||
|
||||
template<typename Scalar, typename Solver> void test_accelerate_llt()
|
||||
{
|
||||
typedef SparseMatrix<Scalar> MatrixType;
|
||||
typedef Matrix<Scalar,Dynamic,1> DenseVector;
|
||||
|
||||
MatrixType A;
|
||||
Matrix<Scalar,Dynamic,Dynamic> dA;
|
||||
|
||||
generate_sparse_square_symmetric_problem(A, dA);
|
||||
|
||||
DenseVector b = DenseVector::Random(A.rows());
|
||||
|
||||
Solver solver;
|
||||
solver.compute(A);
|
||||
|
||||
if (solver.info() != Success)
|
||||
{
|
||||
std::cerr << "sparse LLT factorization failed\n";
|
||||
exit(0);
|
||||
return;
|
||||
}
|
||||
|
||||
DenseVector x = solver.solve(b);
|
||||
|
||||
if (solver.info() != Success)
|
||||
{
|
||||
std::cerr << "sparse LLT factorization failed\n";
|
||||
exit(0);
|
||||
return;
|
||||
}
|
||||
|
||||
//Compare with a dense solver
|
||||
DenseVector refX = dA.llt().solve(b);
|
||||
VERIFY((A * x).isApprox(A * refX, test_precision<Scalar>()));
|
||||
}
|
||||
|
||||
template<typename Scalar, typename Solver> void test_accelerate_qr()
|
||||
{
|
||||
typedef SparseMatrix<Scalar> MatrixType;
|
||||
typedef Matrix<Scalar,Dynamic,1> DenseVector;
|
||||
|
||||
MatrixType A;
|
||||
Matrix<Scalar,Dynamic,Dynamic> dA;
|
||||
|
||||
generate_sparse_rectangular_problem(A, dA);
|
||||
|
||||
DenseVector b = DenseVector::Random(A.rows());
|
||||
|
||||
Solver solver;
|
||||
solver.compute(A);
|
||||
|
||||
if (solver.info() != Success)
|
||||
{
|
||||
std::cerr << "sparse QR factorization failed\n";
|
||||
exit(0);
|
||||
return;
|
||||
}
|
||||
|
||||
DenseVector x = solver.solve(b);
|
||||
|
||||
if (solver.info() != Success)
|
||||
{
|
||||
std::cerr << "sparse QR factorization failed\n";
|
||||
exit(0);
|
||||
return;
|
||||
}
|
||||
|
||||
//Compare with a dense solver
|
||||
DenseVector refX = dA.colPivHouseholderQr().solve(b);
|
||||
VERIFY((A * x).isApprox(A * refX, test_precision<Scalar>()));
|
||||
}
|
||||
|
||||
template<typename Scalar>
|
||||
void run_tests()
|
||||
{
|
||||
typedef SparseMatrix<Scalar> MatrixType;
|
||||
|
||||
test_accelerate_ldlt<Scalar, AccelerateLDLT<MatrixType, Lower> >();
|
||||
test_accelerate_ldlt<Scalar, AccelerateLDLTUnpivoted<MatrixType, Lower> >();
|
||||
test_accelerate_ldlt<Scalar, AccelerateLDLTSBK<MatrixType, Lower> >();
|
||||
test_accelerate_ldlt<Scalar, AccelerateLDLTTPP<MatrixType, Lower> >();
|
||||
|
||||
test_accelerate_ldlt<Scalar, AccelerateLDLT<MatrixType, Upper> >();
|
||||
test_accelerate_ldlt<Scalar, AccelerateLDLTUnpivoted<MatrixType, Upper> >();
|
||||
test_accelerate_ldlt<Scalar, AccelerateLDLTSBK<MatrixType, Upper> >();
|
||||
test_accelerate_ldlt<Scalar, AccelerateLDLTTPP<MatrixType, Upper> >();
|
||||
|
||||
test_accelerate_llt<Scalar, AccelerateLLT<MatrixType, Lower> >();
|
||||
|
||||
test_accelerate_llt<Scalar, AccelerateLLT<MatrixType, Upper> >();
|
||||
|
||||
test_accelerate_qr<Scalar, AccelerateQR<MatrixType> >();
|
||||
}
|
||||
|
||||
EIGEN_DECLARE_TEST(accelerate_support)
|
||||
{
|
||||
CALL_SUBTEST_1(run_tests<float>());
|
||||
CALL_SUBTEST_2(run_tests<double>());
|
||||
}
|
||||
Reference in New Issue
Block a user