ADD: added other eigen lib

This commit is contained in:
Henry Winkel
2022-12-21 16:19:04 +01:00
parent a570766dc6
commit 9e56c7f2c0
832 changed files with 36586 additions and 20006 deletions

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,163 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2022 Melven Roehrig-Zoellner <Melven.Roehrig-Zoellner@DLR.de>
// Copyright (c) 2011, Intel Corporation. All rights reserved.
//
// This file is based on the JacobiSVD_LAPACKE.h originally from Intel -
// see license notice below:
/*
Redistribution and use in source and binary forms, with or without modification,
are permitted provided that the following conditions are met:
* Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.
* Neither the name of Intel Corporation nor the names of its contributors may
be used to endorse or promote products derived from this software without
specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
********************************************************************************
* Content : Eigen bindings to LAPACKe
* Singular Value Decomposition - SVD (divide and conquer variant)
********************************************************************************
*/
#ifndef EIGEN_BDCSVD_LAPACKE_H
#define EIGEN_BDCSVD_LAPACKE_H
namespace Eigen {
namespace internal {
namespace lapacke_helpers {
/** \internal Specialization for the data types supported by LAPACKe */
// defining a derived class to allow access to protected members
template <typename MatrixType_, int Options>
class BDCSVD_LAPACKE : public BDCSVD<MatrixType_, Options> {
typedef BDCSVD<MatrixType_, Options> SVD;
typedef typename SVD::MatrixType MatrixType;
typedef typename SVD::Scalar Scalar;
typedef typename SVD::RealScalar RealScalar;
public:
// construct this by moving from a parent object
BDCSVD_LAPACKE(SVD&& svd) : SVD(std::move(svd)) {}
void compute_impl_lapacke(const MatrixType& matrix, unsigned int computationOptions) {
SVD::allocate(matrix.rows(), matrix.cols(), computationOptions);
SVD::m_nonzeroSingularValues = SVD::m_diagSize;
// prepare arguments to ?gesdd
const lapack_int matrix_order = lapack_storage_of(matrix);
const char jobz = (SVD::m_computeFullU || SVD::m_computeFullV) ? 'A' : (SVD::m_computeThinU || SVD::m_computeThinV) ? 'S' : 'N';
const lapack_int u_cols = (jobz == 'A') ? to_lapack(SVD::m_rows) : (jobz == 'S') ? to_lapack(SVD::m_diagSize) : 1;
const lapack_int vt_rows = (jobz == 'A') ? to_lapack(SVD::m_cols) : (jobz == 'S') ? to_lapack(SVD::m_diagSize) : 1;
lapack_int ldu, ldvt;
Scalar *u, *vt, dummy;
MatrixType localU;
if (SVD::computeU() && !(SVD::m_computeThinU && SVD::m_computeFullV) ) {
ldu = to_lapack(SVD::m_matrixU.outerStride());
u = SVD::m_matrixU.data();
} else if (SVD::computeV()) {
localU.resize(SVD::m_rows, u_cols);
ldu = to_lapack(localU.outerStride());
u = localU.data();
} else { ldu=1; u=&dummy; }
MatrixType localV;
if (SVD::computeU() || SVD::computeV()) {
localV.resize(vt_rows, SVD::m_cols);
ldvt = to_lapack(localV.outerStride());
vt = localV.data();
} else { ldvt=1; vt=&dummy; }
MatrixType temp; temp = matrix;
// actual call to ?gesdd
lapack_int info = gesdd( matrix_order, jobz, to_lapack(SVD::m_rows), to_lapack(SVD::m_cols),
to_lapack(temp.data()), to_lapack(temp.outerStride()), (RealScalar*)SVD::m_singularValues.data(),
to_lapack(u), ldu, to_lapack(vt), ldvt);
// Check the result of the LAPACK call
if (info < 0 || !SVD::m_singularValues.allFinite()) {
// this includes info == -4 => NaN entry in A
SVD::m_info = InvalidInput;
} else if (info > 0 ) {
SVD::m_info = NoConvergence;
} else {
SVD::m_info = Success;
if (SVD::m_computeThinU && SVD::m_computeFullV) {
SVD::m_matrixU = localU.leftCols(SVD::m_matrixU.cols());
}
if (SVD::computeV()) {
SVD::m_matrixV = localV.adjoint().leftCols(SVD::m_matrixV.cols());
}
}
SVD::m_isInitialized = true;
}
};
template<typename MatrixType_, int Options>
BDCSVD<MatrixType_, Options>& BDCSVD_wrapper(BDCSVD<MatrixType_, Options>& svd, const MatrixType_& matrix, int computationOptions)
{
// we need to move to the wrapper type and back
BDCSVD_LAPACKE<MatrixType_, Options> tmpSvd(std::move(svd));
tmpSvd.compute_impl_lapacke(matrix, computationOptions);
svd = std::move(tmpSvd);
return svd;
}
} // end namespace lapacke_helpers
} // end namespace internal
#define EIGEN_LAPACKE_SDD(EIGTYPE, EIGCOLROW, OPTIONS) \
template<> inline \
BDCSVD<Matrix<EIGTYPE, Dynamic, Dynamic, EIGCOLROW, Dynamic, Dynamic>, OPTIONS>& \
BDCSVD<Matrix<EIGTYPE, Dynamic, Dynamic, EIGCOLROW, Dynamic, Dynamic>, OPTIONS>::compute_impl(const Matrix<EIGTYPE, Dynamic, Dynamic, EIGCOLROW, Dynamic, Dynamic>& matrix, unsigned int computationOptions) {\
return internal::lapacke_helpers::BDCSVD_wrapper(*this, matrix, computationOptions); \
}
#define EIGEN_LAPACK_SDD_OPTIONS(OPTIONS) \
EIGEN_LAPACKE_SDD(double, ColMajor, OPTIONS) \
EIGEN_LAPACKE_SDD(float, ColMajor, OPTIONS) \
EIGEN_LAPACKE_SDD(dcomplex, ColMajor, OPTIONS) \
EIGEN_LAPACKE_SDD(scomplex, ColMajor, OPTIONS) \
\
EIGEN_LAPACKE_SDD(double, RowMajor, OPTIONS) \
EIGEN_LAPACKE_SDD(float, RowMajor, OPTIONS) \
EIGEN_LAPACKE_SDD(dcomplex, RowMajor, OPTIONS) \
EIGEN_LAPACKE_SDD(scomplex, RowMajor, OPTIONS)
EIGEN_LAPACK_SDD_OPTIONS(0)
EIGEN_LAPACK_SDD_OPTIONS(ComputeThinU)
EIGEN_LAPACK_SDD_OPTIONS(ComputeThinV)
EIGEN_LAPACK_SDD_OPTIONS(ComputeFullU)
EIGEN_LAPACK_SDD_OPTIONS(ComputeFullV)
EIGEN_LAPACK_SDD_OPTIONS(ComputeThinU | ComputeThinV)
EIGEN_LAPACK_SDD_OPTIONS(ComputeFullU | ComputeFullV)
EIGEN_LAPACK_SDD_OPTIONS(ComputeThinU | ComputeFullV)
EIGEN_LAPACK_SDD_OPTIONS(ComputeFullU | ComputeThinV)
#undef EIGEN_LAPACK_SDD_OPTIONS
#undef EIGEN_LAPACKE_SDD
} // end namespace Eigen
#endif // EIGEN_BDCSVD_LAPACKE_H

View File

@@ -0,0 +1,3 @@
#ifndef EIGEN_SVD_MODULE_H
#error "Please include Eigen/SVD instead of including headers inside the src directory directly."
#endif

View File

@@ -11,13 +11,15 @@
#ifndef EIGEN_JACOBISVD_H
#define EIGEN_JACOBISVD_H
namespace Eigen {
#include "./InternalHeaderCheck.h"
namespace Eigen {
namespace internal {
// forward declaration (needed by ICC)
// the empty body is required by MSVC
template<typename MatrixType, int QRPreconditioner,
bool IsComplex = NumTraits<typename MatrixType::Scalar>::IsComplex>
template <typename MatrixType, int Options, bool IsComplex = NumTraits<typename MatrixType::Scalar>::IsComplex>
struct svd_precondition_2x2_block_to_be_real {};
/*** QR preconditioners (R-SVD)
@@ -44,47 +46,40 @@ struct qr_preconditioner_should_do_anything
};
};
template<typename MatrixType, int QRPreconditioner, int Case,
bool DoAnything = qr_preconditioner_should_do_anything<MatrixType, QRPreconditioner, Case>::ret
> struct qr_preconditioner_impl {};
template <typename MatrixType, int Options, int QRPreconditioner, int Case,
bool DoAnything = qr_preconditioner_should_do_anything<MatrixType, QRPreconditioner, Case>::ret>
struct qr_preconditioner_impl {};
template<typename MatrixType, int QRPreconditioner, int Case>
class qr_preconditioner_impl<MatrixType, QRPreconditioner, Case, false>
{
public:
void allocate(const JacobiSVD<MatrixType, QRPreconditioner>&) {}
bool run(JacobiSVD<MatrixType, QRPreconditioner>&, const MatrixType&)
{
return false;
}
template <typename MatrixType, int Options, int QRPreconditioner, int Case>
class qr_preconditioner_impl<MatrixType, Options, QRPreconditioner, Case, false> {
public:
void allocate(const JacobiSVD<MatrixType, Options>&) {}
bool run(JacobiSVD<MatrixType, Options>&, const MatrixType&) { return false; }
};
/*** preconditioner using FullPivHouseholderQR ***/
template<typename MatrixType>
class qr_preconditioner_impl<MatrixType, FullPivHouseholderQRPreconditioner, PreconditionIfMoreRowsThanCols, true>
{
public:
template <typename MatrixType, int Options>
class qr_preconditioner_impl<MatrixType, Options, FullPivHouseholderQRPreconditioner, PreconditionIfMoreRowsThanCols,
true> {
public:
typedef typename MatrixType::Scalar Scalar;
enum
{
RowsAtCompileTime = MatrixType::RowsAtCompileTime,
MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime
};
typedef Matrix<Scalar, 1, RowsAtCompileTime, RowMajor, 1, MaxRowsAtCompileTime> WorkspaceType;
typedef JacobiSVD<MatrixType, Options> SVDType;
void allocate(const JacobiSVD<MatrixType, FullPivHouseholderQRPreconditioner>& svd)
{
enum { WorkspaceSize = MatrixType::RowsAtCompileTime, MaxWorkspaceSize = MatrixType::MaxRowsAtCompileTime };
typedef Matrix<Scalar, 1, WorkspaceSize, RowMajor, 1, MaxWorkspaceSize> WorkspaceType;
void allocate(const SVDType& svd) {
if (svd.rows() != m_qr.rows() || svd.cols() != m_qr.cols())
{
m_qr.~QRType();
::new (&m_qr) QRType(svd.rows(), svd.cols());
internal::destroy_at(&m_qr);
internal::construct_at(&m_qr, svd.rows(), svd.cols());
}
if (svd.m_computeFullU) m_workspace.resize(svd.rows());
}
bool run(JacobiSVD<MatrixType, FullPivHouseholderQRPreconditioner>& svd, const MatrixType& matrix)
{
bool run(SVDType& svd, const MatrixType& matrix) {
if(matrix.rows() > matrix.cols())
{
m_qr.compute(matrix);
@@ -95,43 +90,43 @@ public:
}
return false;
}
private:
typedef FullPivHouseholderQR<MatrixType> QRType;
QRType m_qr;
WorkspaceType m_workspace;
};
template<typename MatrixType>
class qr_preconditioner_impl<MatrixType, FullPivHouseholderQRPreconditioner, PreconditionIfMoreColsThanRows, true>
{
public:
template <typename MatrixType, int Options>
class qr_preconditioner_impl<MatrixType, Options, FullPivHouseholderQRPreconditioner, PreconditionIfMoreColsThanRows,
true> {
public:
typedef typename MatrixType::Scalar Scalar;
enum
{
typedef JacobiSVD<MatrixType, Options> SVDType;
enum {
RowsAtCompileTime = MatrixType::RowsAtCompileTime,
ColsAtCompileTime = MatrixType::ColsAtCompileTime,
MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime,
Options = MatrixType::Options
MatrixOptions = MatrixType::Options
};
typedef typename internal::make_proper_matrix_type<
Scalar, ColsAtCompileTime, RowsAtCompileTime, Options, MaxColsAtCompileTime, MaxRowsAtCompileTime
>::type TransposeTypeWithSameStorageOrder;
typedef typename internal::make_proper_matrix_type<Scalar, ColsAtCompileTime, RowsAtCompileTime, MatrixOptions,
MaxColsAtCompileTime, MaxRowsAtCompileTime>::type
TransposeTypeWithSameStorageOrder;
void allocate(const JacobiSVD<MatrixType, FullPivHouseholderQRPreconditioner>& svd)
{
void allocate(const SVDType& svd) {
if (svd.cols() != m_qr.rows() || svd.rows() != m_qr.cols())
{
m_qr.~QRType();
::new (&m_qr) QRType(svd.cols(), svd.rows());
internal::destroy_at(&m_qr);
internal::construct_at(&m_qr, svd.cols(), svd.rows());
}
m_adjoint.resize(svd.cols(), svd.rows());
if (svd.m_computeFullV) m_workspace.resize(svd.cols());
}
bool run(JacobiSVD<MatrixType, FullPivHouseholderQRPreconditioner>& svd, const MatrixType& matrix)
{
bool run(SVDType& svd, const MatrixType& matrix) {
if(matrix.cols() > matrix.rows())
{
m_adjoint = matrix.adjoint();
@@ -143,32 +138,41 @@ public:
}
else return false;
}
private:
typedef FullPivHouseholderQR<TransposeTypeWithSameStorageOrder> QRType;
QRType m_qr;
TransposeTypeWithSameStorageOrder m_adjoint;
typename internal::plain_row_type<MatrixType>::type m_workspace;
typename plain_row_type<MatrixType>::type m_workspace;
};
/*** preconditioner using ColPivHouseholderQR ***/
template<typename MatrixType>
class qr_preconditioner_impl<MatrixType, ColPivHouseholderQRPreconditioner, PreconditionIfMoreRowsThanCols, true>
{
public:
void allocate(const JacobiSVD<MatrixType, ColPivHouseholderQRPreconditioner>& svd)
{
template <typename MatrixType, int Options>
class qr_preconditioner_impl<MatrixType, Options, ColPivHouseholderQRPreconditioner, PreconditionIfMoreRowsThanCols,
true> {
public:
typedef typename MatrixType::Scalar Scalar;
typedef JacobiSVD<MatrixType, Options> SVDType;
enum {
WorkspaceSize = internal::traits<SVDType>::MatrixUColsAtCompileTime,
MaxWorkspaceSize = internal::traits<SVDType>::MatrixUMaxColsAtCompileTime
};
typedef Matrix<Scalar, 1, WorkspaceSize, RowMajor, 1, MaxWorkspaceSize> WorkspaceType;
void allocate(const SVDType& svd) {
if (svd.rows() != m_qr.rows() || svd.cols() != m_qr.cols())
{
m_qr.~QRType();
::new (&m_qr) QRType(svd.rows(), svd.cols());
internal::destroy_at(&m_qr);
internal::construct_at(&m_qr, svd.rows(), svd.cols());
}
if (svd.m_computeFullU) m_workspace.resize(svd.rows());
else if (svd.m_computeThinU) m_workspace.resize(svd.cols());
}
bool run(JacobiSVD<MatrixType, ColPivHouseholderQRPreconditioner>& svd, const MatrixType& matrix)
{
bool run(SVDType& svd, const MatrixType& matrix) {
if(matrix.rows() > matrix.cols())
{
m_qr.compute(matrix);
@@ -188,41 +192,44 @@ public:
private:
typedef ColPivHouseholderQR<MatrixType> QRType;
QRType m_qr;
typename internal::plain_col_type<MatrixType>::type m_workspace;
WorkspaceType m_workspace;
};
template<typename MatrixType>
class qr_preconditioner_impl<MatrixType, ColPivHouseholderQRPreconditioner, PreconditionIfMoreColsThanRows, true>
{
public:
template <typename MatrixType, int Options>
class qr_preconditioner_impl<MatrixType, Options, ColPivHouseholderQRPreconditioner, PreconditionIfMoreColsThanRows,
true> {
public:
typedef typename MatrixType::Scalar Scalar;
enum
{
typedef JacobiSVD<MatrixType, Options> SVDType;
enum {
RowsAtCompileTime = MatrixType::RowsAtCompileTime,
ColsAtCompileTime = MatrixType::ColsAtCompileTime,
MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime,
Options = MatrixType::Options
MatrixOptions = MatrixType::Options,
WorkspaceSize = internal::traits<SVDType>::MatrixVColsAtCompileTime,
MaxWorkspaceSize = internal::traits<SVDType>::MatrixVMaxColsAtCompileTime
};
typedef typename internal::make_proper_matrix_type<
Scalar, ColsAtCompileTime, RowsAtCompileTime, Options, MaxColsAtCompileTime, MaxRowsAtCompileTime
>::type TransposeTypeWithSameStorageOrder;
typedef Matrix<Scalar, WorkspaceSize, 1, ColMajor, MaxWorkspaceSize, 1> WorkspaceType;
void allocate(const JacobiSVD<MatrixType, ColPivHouseholderQRPreconditioner>& svd)
{
typedef typename internal::make_proper_matrix_type<Scalar, ColsAtCompileTime, RowsAtCompileTime, MatrixOptions,
MaxColsAtCompileTime, MaxRowsAtCompileTime>::type
TransposeTypeWithSameStorageOrder;
void allocate(const SVDType& svd) {
if (svd.cols() != m_qr.rows() || svd.rows() != m_qr.cols())
{
m_qr.~QRType();
::new (&m_qr) QRType(svd.cols(), svd.rows());
internal::destroy_at(&m_qr);
internal::construct_at(&m_qr, svd.cols(), svd.rows());
}
if (svd.m_computeFullV) m_workspace.resize(svd.cols());
else if (svd.m_computeThinV) m_workspace.resize(svd.rows());
m_adjoint.resize(svd.cols(), svd.rows());
}
bool run(JacobiSVD<MatrixType, ColPivHouseholderQRPreconditioner>& svd, const MatrixType& matrix)
{
bool run(SVDType& svd, const MatrixType& matrix) {
if(matrix.cols() > matrix.rows())
{
m_adjoint = matrix.adjoint();
@@ -245,28 +252,35 @@ private:
typedef ColPivHouseholderQR<TransposeTypeWithSameStorageOrder> QRType;
QRType m_qr;
TransposeTypeWithSameStorageOrder m_adjoint;
typename internal::plain_row_type<MatrixType>::type m_workspace;
WorkspaceType m_workspace;
};
/*** preconditioner using HouseholderQR ***/
template<typename MatrixType>
class qr_preconditioner_impl<MatrixType, HouseholderQRPreconditioner, PreconditionIfMoreRowsThanCols, true>
{
public:
void allocate(const JacobiSVD<MatrixType, HouseholderQRPreconditioner>& svd)
{
template <typename MatrixType, int Options>
class qr_preconditioner_impl<MatrixType, Options, HouseholderQRPreconditioner, PreconditionIfMoreRowsThanCols, true> {
public:
typedef typename MatrixType::Scalar Scalar;
typedef JacobiSVD<MatrixType, Options> SVDType;
enum {
WorkspaceSize = internal::traits<SVDType>::MatrixUColsAtCompileTime,
MaxWorkspaceSize = internal::traits<SVDType>::MatrixUMaxColsAtCompileTime
};
typedef Matrix<Scalar, 1, WorkspaceSize, RowMajor, 1, MaxWorkspaceSize> WorkspaceType;
void allocate(const SVDType& svd) {
if (svd.rows() != m_qr.rows() || svd.cols() != m_qr.cols())
{
m_qr.~QRType();
::new (&m_qr) QRType(svd.rows(), svd.cols());
internal::destroy_at(&m_qr);
internal::construct_at(&m_qr, svd.rows(), svd.cols());
}
if (svd.m_computeFullU) m_workspace.resize(svd.rows());
else if (svd.m_computeThinU) m_workspace.resize(svd.cols());
}
bool run(JacobiSVD<MatrixType, HouseholderQRPreconditioner>& svd, const MatrixType& matrix)
{
bool run(SVDType& svd, const MatrixType& matrix) {
if(matrix.rows() > matrix.cols())
{
m_qr.compute(matrix);
@@ -282,44 +296,47 @@ public:
}
return false;
}
private:
typedef HouseholderQR<MatrixType> QRType;
QRType m_qr;
typename internal::plain_col_type<MatrixType>::type m_workspace;
WorkspaceType m_workspace;
};
template<typename MatrixType>
class qr_preconditioner_impl<MatrixType, HouseholderQRPreconditioner, PreconditionIfMoreColsThanRows, true>
{
public:
template <typename MatrixType, int Options>
class qr_preconditioner_impl<MatrixType, Options, HouseholderQRPreconditioner, PreconditionIfMoreColsThanRows, true> {
public:
typedef typename MatrixType::Scalar Scalar;
enum
{
typedef JacobiSVD<MatrixType, Options> SVDType;
enum {
RowsAtCompileTime = MatrixType::RowsAtCompileTime,
ColsAtCompileTime = MatrixType::ColsAtCompileTime,
MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime,
Options = MatrixType::Options
MatrixOptions = MatrixType::Options,
WorkspaceSize = internal::traits<SVDType>::MatrixVColsAtCompileTime,
MaxWorkspaceSize = internal::traits<SVDType>::MatrixVMaxColsAtCompileTime
};
typedef typename internal::make_proper_matrix_type<
Scalar, ColsAtCompileTime, RowsAtCompileTime, Options, MaxColsAtCompileTime, MaxRowsAtCompileTime
>::type TransposeTypeWithSameStorageOrder;
typedef Matrix<Scalar, WorkspaceSize, 1, ColMajor, MaxWorkspaceSize, 1> WorkspaceType;
void allocate(const JacobiSVD<MatrixType, HouseholderQRPreconditioner>& svd)
{
typedef typename internal::make_proper_matrix_type<Scalar, ColsAtCompileTime, RowsAtCompileTime, MatrixOptions,
MaxColsAtCompileTime, MaxRowsAtCompileTime>::type
TransposeTypeWithSameStorageOrder;
void allocate(const SVDType& svd) {
if (svd.cols() != m_qr.rows() || svd.rows() != m_qr.cols())
{
m_qr.~QRType();
::new (&m_qr) QRType(svd.cols(), svd.rows());
internal::destroy_at(&m_qr);
internal::construct_at(&m_qr, svd.cols(), svd.rows());
}
if (svd.m_computeFullV) m_workspace.resize(svd.cols());
else if (svd.m_computeThinV) m_workspace.resize(svd.rows());
m_adjoint.resize(svd.cols(), svd.rows());
}
bool run(JacobiSVD<MatrixType, HouseholderQRPreconditioner>& svd, const MatrixType& matrix)
{
bool run(SVDType& svd, const MatrixType& matrix) {
if(matrix.cols() > matrix.rows())
{
m_adjoint = matrix.adjoint();
@@ -342,7 +359,7 @@ private:
typedef HouseholderQR<TransposeTypeWithSameStorageOrder> QRType;
QRType m_qr;
TransposeTypeWithSameStorageOrder m_adjoint;
typename internal::plain_row_type<MatrixType>::type m_workspace;
WorkspaceType m_workspace;
};
/*** 2x2 SVD implementation
@@ -350,18 +367,16 @@ private:
*** JacobiSVD consists in performing a series of 2x2 SVD subproblems
***/
template<typename MatrixType, int QRPreconditioner>
struct svd_precondition_2x2_block_to_be_real<MatrixType, QRPreconditioner, false>
{
typedef JacobiSVD<MatrixType, QRPreconditioner> SVD;
template <typename MatrixType, int Options>
struct svd_precondition_2x2_block_to_be_real<MatrixType, Options, false> {
typedef JacobiSVD<MatrixType, Options> SVD;
typedef typename MatrixType::RealScalar RealScalar;
static bool run(typename SVD::WorkMatrixType&, SVD&, Index, Index, RealScalar&) { return true; }
};
template<typename MatrixType, int QRPreconditioner>
struct svd_precondition_2x2_block_to_be_real<MatrixType, QRPreconditioner, true>
{
typedef JacobiSVD<MatrixType, QRPreconditioner> SVD;
template <typename MatrixType, int Options>
struct svd_precondition_2x2_block_to_be_real<MatrixType, Options, true> {
typedef JacobiSVD<MatrixType, Options> SVD;
typedef typename MatrixType::Scalar Scalar;
typedef typename MatrixType::RealScalar RealScalar;
static bool run(typename SVD::WorkMatrixType& work_matrix, SVD& svd, Index p, Index q, RealScalar& maxDiagEntry)
@@ -375,7 +390,7 @@ struct svd_precondition_2x2_block_to_be_real<MatrixType, QRPreconditioner, true>
const RealScalar considerAsZero = (std::numeric_limits<RealScalar>::min)();
const RealScalar precision = NumTraits<Scalar>::epsilon();
if(n==0)
if(numext::is_exactly_zero(n))
{
// make sure first column is zero
work_matrix.coeffRef(p,p) = work_matrix.coeffRef(q,p) = Scalar(0);
@@ -423,249 +438,258 @@ struct svd_precondition_2x2_block_to_be_real<MatrixType, QRPreconditioner, true>
}
};
template<typename _MatrixType, int QRPreconditioner>
struct traits<JacobiSVD<_MatrixType,QRPreconditioner> >
: traits<_MatrixType>
{
typedef _MatrixType MatrixType;
template <typename MatrixType_, int Options>
struct traits<JacobiSVD<MatrixType_, Options> > : svd_traits<MatrixType_, Options> {
typedef MatrixType_ MatrixType;
};
} // end namespace internal
/** \ingroup SVD_Module
*
*
* \class JacobiSVD
*
* \brief Two-sided Jacobi SVD decomposition of a rectangular matrix
*
* \tparam _MatrixType the type of the matrix of which we are computing the SVD decomposition
* \tparam QRPreconditioner this optional parameter allows to specify the type of QR decomposition that will be used internally
* for the R-SVD step for non-square matrices. See discussion of possible values below.
*
* SVD decomposition consists in decomposing any n-by-p matrix \a A as a product
* \f[ A = U S V^* \f]
* where \a U is a n-by-n unitary, \a V is a p-by-p unitary, and \a S is a n-by-p real positive matrix which is zero outside of its main diagonal;
* the diagonal entries of S are known as the \em singular \em values of \a A and the columns of \a U and \a V are known as the left
* and right \em singular \em vectors of \a A respectively.
*
* Singular values are always sorted in decreasing order.
*
* This JacobiSVD decomposition computes only the singular values by default. If you want \a U or \a V, you need to ask for them explicitly.
*
* You can ask for only \em thin \a U or \a V to be computed, meaning the following. In case of a rectangular n-by-p matrix, letting \a m be the
* smaller value among \a n and \a p, there are only \a m singular vectors; the remaining columns of \a U and \a V do not correspond to actual
* singular vectors. Asking for \em thin \a U or \a V means asking for only their \a m first columns to be formed. So \a U is then a n-by-m matrix,
* and \a V is then a p-by-m matrix. Notice that thin \a U and \a V are all you need for (least squares) solving.
*
* Here's an example demonstrating basic usage:
* \include JacobiSVD_basic.cpp
* Output: \verbinclude JacobiSVD_basic.out
*
* This JacobiSVD class is a two-sided Jacobi R-SVD decomposition, ensuring optimal reliability and accuracy. The downside is that it's slower than
* bidiagonalizing SVD algorithms for large square matrices; however its complexity is still \f$ O(n^2p) \f$ where \a n is the smaller dimension and
* \a p is the greater dimension, meaning that it is still of the same order of complexity as the faster bidiagonalizing R-SVD algorithms.
* In particular, like any R-SVD, it takes advantage of non-squareness in that its complexity is only linear in the greater dimension.
*
* If the input matrix has inf or nan coefficients, the result of the computation is undefined, but the computation is guaranteed to
* terminate in finite (and reasonable) time.
*
* The possible values for QRPreconditioner are:
* \li ColPivHouseholderQRPreconditioner is the default. In practice it's very safe. It uses column-pivoting QR.
* \li FullPivHouseholderQRPreconditioner, is the safest and slowest. It uses full-pivoting QR.
* Contrary to other QRs, it doesn't allow computing thin unitaries.
* \li HouseholderQRPreconditioner is the fastest, and less safe and accurate than the pivoting variants. It uses non-pivoting QR.
* This is very similar in safety and accuracy to the bidiagonalization process used by bidiagonalizing SVD algorithms (since bidiagonalization
* is inherently non-pivoting). However the resulting SVD is still more reliable than bidiagonalizing SVDs because the Jacobi-based iterarive
* process is more reliable than the optimized bidiagonal SVD iterations.
* \li NoQRPreconditioner allows not to use a QR preconditioner at all. This is useful if you know that you will only be computing
* JacobiSVD decompositions of square matrices. Non-square matrices require a QR preconditioner. Using this option will result in
* faster compilation and smaller executable code. It won't significantly speed up computation, since JacobiSVD is always checking
* if QR preconditioning is needed before applying it anyway.
*
* \sa MatrixBase::jacobiSvd()
*/
template<typename _MatrixType, int QRPreconditioner> class JacobiSVD
: public SVDBase<JacobiSVD<_MatrixType,QRPreconditioner> >
{
typedef SVDBase<JacobiSVD> Base;
public:
*
*
* \class JacobiSVD
*
* \brief Two-sided Jacobi SVD decomposition of a rectangular matrix
*
* \tparam MatrixType_ the type of the matrix of which we are computing the SVD decomposition
* \tparam Options this optional parameter allows one to specify the type of QR decomposition that will be used
* internally for the R-SVD step for non-square matrices. Additionally, it allows one to specify whether to compute thin
* or full unitaries \a U and \a V. See discussion of possible values below.
*
* SVD decomposition consists in decomposing any n-by-p matrix \a A as a product
* \f[ A = U S V^* \f]
* where \a U is a n-by-n unitary, \a V is a p-by-p unitary, and \a S is a n-by-p real positive matrix which is zero
* outside of its main diagonal; the diagonal entries of S are known as the \em singular \em values of \a A and the
* columns of \a U and \a V are known as the left and right \em singular \em vectors of \a A respectively.
*
* Singular values are always sorted in decreasing order.
*
* This JacobiSVD decomposition computes only the singular values by default. If you want \a U or \a V, you need to ask
* for them explicitly.
*
* You can ask for only \em thin \a U or \a V to be computed, meaning the following. In case of a rectangular n-by-p
* matrix, letting \a m be the smaller value among \a n and \a p, there are only \a m singular vectors; the remaining
* columns of \a U and \a V do not correspond to actual singular vectors. Asking for \em thin \a U or \a V means asking
* for only their \a m first columns to be formed. So \a U is then a n-by-m matrix, and \a V is then a p-by-m matrix.
* Notice that thin \a U and \a V are all you need for (least squares) solving.
*
* Here's an example demonstrating basic usage:
* \include JacobiSVD_basic.cpp
* Output: \verbinclude JacobiSVD_basic.out
*
* This JacobiSVD class is a two-sided Jacobi R-SVD decomposition, ensuring optimal reliability and accuracy. The
* downside is that it's slower than bidiagonalizing SVD algorithms for large square matrices; however its complexity is
* still \f$ O(n^2p) \f$ where \a n is the smaller dimension and \a p is the greater dimension, meaning that it is still
* of the same order of complexity as the faster bidiagonalizing R-SVD algorithms. In particular, like any R-SVD, it
* takes advantage of non-squareness in that its complexity is only linear in the greater dimension.
*
* If the input matrix has inf or nan coefficients, the result of the computation is undefined, but the computation is
* guaranteed to terminate in finite (and reasonable) time.
*
* The possible QR preconditioners that can be set with Options template parameter are:
* \li ColPivHouseholderQRPreconditioner is the default. In practice it's very safe. It uses column-pivoting QR.
* \li FullPivHouseholderQRPreconditioner, is the safest and slowest. It uses full-pivoting QR.
* Contrary to other QRs, it doesn't allow computing thin unitaries.
* \li HouseholderQRPreconditioner is the fastest, and less safe and accurate than the pivoting variants. It uses
* non-pivoting QR. This is very similar in safety and accuracy to the bidiagonalization process used by bidiagonalizing
* SVD algorithms (since bidiagonalization is inherently non-pivoting). However the resulting SVD is still more reliable
* than bidiagonalizing SVDs because the Jacobi-based iterarive process is more reliable than the optimized bidiagonal
* SVD iterations. \li NoQRPreconditioner allows not to use a QR preconditioner at all. This is useful if you know that
* you will only be computing JacobiSVD decompositions of square matrices. Non-square matrices require a QR
* preconditioner. Using this option will result in faster compilation and smaller executable code. It won't
* significantly speed up computation, since JacobiSVD is always checking if QR preconditioning is needed before
* applying it anyway.
*
* One may also use the Options template parameter to specify how the unitaries should be computed. The options are
* #ComputeThinU, #ComputeThinV, #ComputeFullU, #ComputeFullV. It is not possible to request both the thin and full
* versions of a unitary. By default, unitaries will not be computed.
*
* You can set the QRPreconditioner and unitary options together: JacobiSVD<MatrixType,
* ColPivHouseholderQRPreconditioner | ComputeThinU | ComputeFullV>
*
* \sa MatrixBase::jacobiSvd()
*/
template <typename MatrixType_, int Options_>
class JacobiSVD : public SVDBase<JacobiSVD<MatrixType_, Options_> > {
typedef SVDBase<JacobiSVD> Base;
typedef _MatrixType MatrixType;
typedef typename MatrixType::Scalar Scalar;
typedef typename NumTraits<typename MatrixType::Scalar>::Real RealScalar;
enum {
RowsAtCompileTime = MatrixType::RowsAtCompileTime,
ColsAtCompileTime = MatrixType::ColsAtCompileTime,
DiagSizeAtCompileTime = EIGEN_SIZE_MIN_PREFER_DYNAMIC(RowsAtCompileTime,ColsAtCompileTime),
MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime,
MaxDiagSizeAtCompileTime = EIGEN_SIZE_MIN_PREFER_FIXED(MaxRowsAtCompileTime,MaxColsAtCompileTime),
MatrixOptions = MatrixType::Options
};
public:
typedef MatrixType_ MatrixType;
typedef typename Base::Scalar Scalar;
typedef typename Base::RealScalar RealScalar;
typedef typename Base::Index Index;
enum {
Options = Options_,
QRPreconditioner = internal::get_qr_preconditioner(Options),
RowsAtCompileTime = Base::RowsAtCompileTime,
ColsAtCompileTime = Base::ColsAtCompileTime,
DiagSizeAtCompileTime = Base::DiagSizeAtCompileTime,
MaxRowsAtCompileTime = Base::MaxRowsAtCompileTime,
MaxColsAtCompileTime = Base::MaxColsAtCompileTime,
MaxDiagSizeAtCompileTime = Base::MaxDiagSizeAtCompileTime,
MatrixOptions = Base::MatrixOptions
};
typedef typename Base::MatrixUType MatrixUType;
typedef typename Base::MatrixVType MatrixVType;
typedef typename Base::SingularValuesType SingularValuesType;
typedef typename internal::plain_row_type<MatrixType>::type RowType;
typedef typename internal::plain_col_type<MatrixType>::type ColType;
typedef Matrix<Scalar, DiagSizeAtCompileTime, DiagSizeAtCompileTime,
MatrixOptions, MaxDiagSizeAtCompileTime, MaxDiagSizeAtCompileTime>
WorkMatrixType;
typedef typename Base::MatrixUType MatrixUType;
typedef typename Base::MatrixVType MatrixVType;
typedef typename Base::SingularValuesType SingularValuesType;
typedef Matrix<Scalar, DiagSizeAtCompileTime, DiagSizeAtCompileTime, MatrixOptions, MaxDiagSizeAtCompileTime,
MaxDiagSizeAtCompileTime>
WorkMatrixType;
/** \brief Default Constructor.
*
* The default constructor is useful in cases in which the user intends to
* perform decompositions via JacobiSVD::compute(const MatrixType&).
*/
JacobiSVD()
{}
/** \brief Default Constructor.
*
* The default constructor is useful in cases in which the user intends to
* perform decompositions via JacobiSVD::compute(const MatrixType&).
*/
JacobiSVD() {}
/** \brief Default Constructor with memory preallocation
*
* Like the default constructor but with preallocation of the internal data
* according to the specified problem size and \a Options template parameter.
*
* \sa JacobiSVD()
*/
JacobiSVD(Index rows, Index cols) { allocate(rows, cols, internal::get_computation_options(Options)); }
/** \brief Default Constructor with memory preallocation
*
* Like the default constructor but with preallocation of the internal data
* according to the specified problem size.
* \sa JacobiSVD()
*/
JacobiSVD(Index rows, Index cols, unsigned int computationOptions = 0)
{
allocate(rows, cols, computationOptions);
}
/** \brief Default Constructor with memory preallocation
*
* Like the default constructor but with preallocation of the internal data
* according to the specified problem size.
*
* One \b cannot request unitaries using both the \a Options template parameter
* and the constructor. If possible, prefer using the \a Options template parameter.
*
* \param computationOptions specify whether to compute Thin/Full unitaries U/V
* \sa JacobiSVD()
*
* \deprecated Will be removed in the next major Eigen version. Options should
* be specified in the \a Options template parameter.
*/
EIGEN_DEPRECATED
JacobiSVD(Index rows, Index cols, unsigned int computationOptions) {
internal::check_svd_options_assertions<MatrixType, Options>(computationOptions, rows, cols);
allocate(rows, cols, computationOptions);
}
/** \brief Constructor performing the decomposition of given matrix.
*
* \param matrix the matrix to decompose
* \param computationOptions optional parameter allowing to specify if you want full or thin U or V unitaries to be computed.
* By default, none is computed. This is a bit-field, the possible bits are #ComputeFullU, #ComputeThinU,
* #ComputeFullV, #ComputeThinV.
*
* Thin unitaries are only available if your matrix type has a Dynamic number of columns (for example MatrixXf). They also are not
* available with the (non-default) FullPivHouseholderQR preconditioner.
*/
explicit JacobiSVD(const MatrixType& matrix, unsigned int computationOptions = 0)
{
compute(matrix, computationOptions);
}
/** \brief Constructor performing the decomposition of given matrix, using the custom options specified
* with the \a Options template paramter.
*
* \param matrix the matrix to decompose
*/
explicit JacobiSVD(const MatrixType& matrix) { compute_impl(matrix, internal::get_computation_options(Options)); }
/** \brief Method performing the decomposition of given matrix using custom options.
*
* \param matrix the matrix to decompose
* \param computationOptions optional parameter allowing to specify if you want full or thin U or V unitaries to be computed.
* By default, none is computed. This is a bit-field, the possible bits are #ComputeFullU, #ComputeThinU,
* #ComputeFullV, #ComputeThinV.
*
* Thin unitaries are only available if your matrix type has a Dynamic number of columns (for example MatrixXf). They also are not
* available with the (non-default) FullPivHouseholderQR preconditioner.
*/
JacobiSVD& compute(const MatrixType& matrix, unsigned int computationOptions);
/** \brief Constructor performing the decomposition of given matrix using specified options
* for computing unitaries.
*
* One \b cannot request unitiaries using both the \a Options template parameter
* and the constructor. If possible, prefer using the \a Options template parameter.
*
* \param matrix the matrix to decompose
* \param computationOptions specify whether to compute Thin/Full unitaries U/V
*
* \deprecated Will be removed in the next major Eigen version. Options should
* be specified in the \a Options template parameter.
*/
// EIGEN_DEPRECATED // TODO(cantonios): re-enable after fixing a few 3p libraries that error on deprecation warnings.
JacobiSVD(const MatrixType& matrix, unsigned int computationOptions) {
internal::check_svd_options_assertions<MatrixType, Options>(computationOptions, matrix.rows(), matrix.cols());
compute_impl(matrix, computationOptions);
}
/** \brief Method performing the decomposition of given matrix using current options.
*
* \param matrix the matrix to decompose
*
* This method uses the current \a computationOptions, as already passed to the constructor or to compute(const MatrixType&, unsigned int).
*/
JacobiSVD& compute(const MatrixType& matrix)
{
return compute(matrix, m_computationOptions);
}
/** \brief Method performing the decomposition of given matrix. Computes Thin/Full unitaries U/V if specified
* using the \a Options template parameter or the class constructor.
*
* \param matrix the matrix to decompose
*/
JacobiSVD& compute(const MatrixType& matrix) { return compute_impl(matrix, m_computationOptions); }
using Base::computeU;
using Base::computeV;
using Base::rows;
using Base::cols;
using Base::rank;
/** \brief Method performing the decomposition of given matrix, as specified by
* the `computationOptions` parameter.
*
* \param matrix the matrix to decompose
* \param computationOptions specify whether to compute Thin/Full unitaries U/V
*
* \deprecated Will be removed in the next major Eigen version. Options should
* be specified in the \a Options template parameter.
*/
EIGEN_DEPRECATED
JacobiSVD& compute(const MatrixType& matrix, unsigned int computationOptions) {
internal::check_svd_options_assertions<MatrixType, Options>(m_computationOptions, matrix.rows(), matrix.cols());
return compute_impl(matrix, computationOptions);
}
private:
void allocate(Index rows, Index cols, unsigned int computationOptions);
using Base::computeU;
using Base::computeV;
using Base::rows;
using Base::cols;
using Base::rank;
protected:
using Base::m_matrixU;
using Base::m_matrixV;
using Base::m_singularValues;
using Base::m_info;
using Base::m_isInitialized;
using Base::m_isAllocated;
using Base::m_usePrescribedThreshold;
using Base::m_computeFullU;
using Base::m_computeThinU;
using Base::m_computeFullV;
using Base::m_computeThinV;
using Base::m_computationOptions;
using Base::m_nonzeroSingularValues;
using Base::m_rows;
using Base::m_cols;
using Base::m_diagSize;
using Base::m_prescribedThreshold;
WorkMatrixType m_workMatrix;
private:
void allocate(Index rows, Index cols, unsigned int computationOptions);
JacobiSVD& compute_impl(const MatrixType& matrix, unsigned int computationOptions);
template<typename __MatrixType, int _QRPreconditioner, bool _IsComplex>
friend struct internal::svd_precondition_2x2_block_to_be_real;
template<typename __MatrixType, int _QRPreconditioner, int _Case, bool _DoAnything>
friend struct internal::qr_preconditioner_impl;
protected:
using Base::m_cols;
using Base::m_computationOptions;
using Base::m_computeFullU;
using Base::m_computeFullV;
using Base::m_computeThinU;
using Base::m_computeThinV;
using Base::m_diagSize;
using Base::m_info;
using Base::m_isAllocated;
using Base::m_isInitialized;
using Base::m_matrixU;
using Base::m_matrixV;
using Base::m_nonzeroSingularValues;
using Base::m_prescribedThreshold;
using Base::m_rows;
using Base::m_singularValues;
using Base::m_usePrescribedThreshold;
using Base::ShouldComputeThinU;
using Base::ShouldComputeThinV;
internal::qr_preconditioner_impl<MatrixType, QRPreconditioner, internal::PreconditionIfMoreColsThanRows> m_qr_precond_morecols;
internal::qr_preconditioner_impl<MatrixType, QRPreconditioner, internal::PreconditionIfMoreRowsThanCols> m_qr_precond_morerows;
MatrixType m_scaledMatrix;
EIGEN_STATIC_ASSERT(!(ShouldComputeThinU && int(QRPreconditioner) == int(FullPivHouseholderQRPreconditioner)) &&
!(ShouldComputeThinU && int(QRPreconditioner) == int(FullPivHouseholderQRPreconditioner)),
"JacobiSVD: can't compute thin U or thin V with the FullPivHouseholderQR preconditioner. "
"Use the ColPivHouseholderQR preconditioner instead.")
template <typename MatrixType__, int Options__, bool IsComplex_>
friend struct internal::svd_precondition_2x2_block_to_be_real;
template <typename MatrixType__, int Options__, int QRPreconditioner_, int Case_, bool DoAnything_>
friend struct internal::qr_preconditioner_impl;
internal::qr_preconditioner_impl<MatrixType, Options, QRPreconditioner, internal::PreconditionIfMoreColsThanRows>
m_qr_precond_morecols;
internal::qr_preconditioner_impl<MatrixType, Options, QRPreconditioner, internal::PreconditionIfMoreRowsThanCols>
m_qr_precond_morerows;
WorkMatrixType m_workMatrix;
MatrixType m_scaledMatrix;
};
template<typename MatrixType, int QRPreconditioner>
void JacobiSVD<MatrixType, QRPreconditioner>::allocate(Eigen::Index rows, Eigen::Index cols, unsigned int computationOptions)
{
eigen_assert(rows >= 0 && cols >= 0);
template <typename MatrixType, int Options>
void JacobiSVD<MatrixType, Options>::allocate(Index rows, Index cols, unsigned int computationOptions) {
if (Base::allocate(rows, cols, computationOptions)) return;
if (m_isAllocated &&
rows == m_rows &&
cols == m_cols &&
computationOptions == m_computationOptions)
{
return;
}
eigen_assert(!(ShouldComputeThinU && int(QRPreconditioner) == int(FullPivHouseholderQRPreconditioner)) &&
!(ShouldComputeThinU && int(QRPreconditioner) == int(FullPivHouseholderQRPreconditioner)) &&
"JacobiSVD: can't compute thin U or thin V with the FullPivHouseholderQR preconditioner. "
"Use the ColPivHouseholderQR preconditioner instead.");
m_rows = rows;
m_cols = cols;
m_info = Success;
m_isInitialized = false;
m_isAllocated = true;
m_computationOptions = computationOptions;
m_computeFullU = (computationOptions & ComputeFullU) != 0;
m_computeThinU = (computationOptions & ComputeThinU) != 0;
m_computeFullV = (computationOptions & ComputeFullV) != 0;
m_computeThinV = (computationOptions & ComputeThinV) != 0;
eigen_assert(!(m_computeFullU && m_computeThinU) && "JacobiSVD: you can't ask for both full and thin U");
eigen_assert(!(m_computeFullV && m_computeThinV) && "JacobiSVD: you can't ask for both full and thin V");
eigen_assert(EIGEN_IMPLIES(m_computeThinU || m_computeThinV, MatrixType::ColsAtCompileTime==Dynamic) &&
"JacobiSVD: thin U and V are only available when your matrix has a dynamic number of columns.");
if (QRPreconditioner == FullPivHouseholderQRPreconditioner)
{
eigen_assert(!(m_computeThinU || m_computeThinV) &&
"JacobiSVD: can't compute thin U or thin V with the FullPivHouseholderQR preconditioner. "
"Use the ColPivHouseholderQR preconditioner instead.");
}
m_diagSize = (std::min)(m_rows, m_cols);
m_singularValues.resize(m_diagSize);
if(RowsAtCompileTime==Dynamic)
m_matrixU.resize(m_rows, m_computeFullU ? m_rows
: m_computeThinU ? m_diagSize
: 0);
if(ColsAtCompileTime==Dynamic)
m_matrixV.resize(m_cols, m_computeFullV ? m_cols
: m_computeThinV ? m_diagSize
: 0);
m_workMatrix.resize(m_diagSize, m_diagSize);
if(m_cols>m_rows) m_qr_precond_morecols.allocate(*this);
if(m_rows>m_cols) m_qr_precond_morerows.allocate(*this);
if(m_rows!=m_cols) m_scaledMatrix.resize(rows,cols);
}
template<typename MatrixType, int QRPreconditioner>
JacobiSVD<MatrixType, QRPreconditioner>&
JacobiSVD<MatrixType, QRPreconditioner>::compute(const MatrixType& matrix, unsigned int computationOptions)
{
template <typename MatrixType, int Options>
JacobiSVD<MatrixType, Options>& JacobiSVD<MatrixType, Options>::compute_impl(const MatrixType& matrix,
unsigned int computationOptions) {
using std::abs;
allocate(matrix.rows(), matrix.cols(), computationOptions);
// currently we stop when we reach precision 2*epsilon as the last bit of precision can require an unreasonable number of iterations,
@@ -682,7 +706,7 @@ JacobiSVD<MatrixType, QRPreconditioner>::compute(const MatrixType& matrix, unsig
m_info = InvalidInput;
return *this;
}
if(scale==RealScalar(0)) scale = RealScalar(1);
if(numext::is_exactly_zero(scale)) scale = RealScalar(1);
/*** step 1. The R-SVD step: we use a QR decomposition to reduce to the case of a square matrix */
@@ -724,8 +748,8 @@ JacobiSVD<MatrixType, QRPreconditioner>::compute(const MatrixType& matrix, unsig
finished = false;
// perform SVD decomposition of 2x2 sub-matrix corresponding to indices p,q to make it diagonal
// the complex to real operation returns true if the updated 2x2 block is not already diagonal
if(internal::svd_precondition_2x2_block_to_be_real<MatrixType, QRPreconditioner>::run(m_workMatrix, *this, p, q, maxDiagEntry))
{
if (internal::svd_precondition_2x2_block_to_be_real<MatrixType, Options>::run(m_workMatrix, *this, p, q,
maxDiagEntry)) {
JacobiRotation<RealScalar> j_left, j_right;
internal::real_2x2_jacobi_svd(m_workMatrix, p, q, &j_left, &j_right);
@@ -775,7 +799,7 @@ JacobiSVD<MatrixType, QRPreconditioner>::compute(const MatrixType& matrix, unsig
{
Index pos;
RealScalar maxRemainingSingularValue = m_singularValues.tail(m_diagSize-i).maxCoeff(&pos);
if(maxRemainingSingularValue == RealScalar(0))
if(numext::is_exactly_zero(maxRemainingSingularValue))
{
m_nonzeroSingularValues = i;
break;
@@ -800,13 +824,19 @@ JacobiSVD<MatrixType, QRPreconditioner>::compute(const MatrixType& matrix, unsig
*
* \sa class JacobiSVD
*/
template<typename Derived>
JacobiSVD<typename MatrixBase<Derived>::PlainObject>
MatrixBase<Derived>::jacobiSvd(unsigned int computationOptions) const
{
return JacobiSVD<PlainObject>(*this, computationOptions);
template <typename Derived>
template <int Options>
JacobiSVD<typename MatrixBase<Derived>::PlainObject, Options> MatrixBase<Derived>::jacobiSvd() const {
return JacobiSVD<PlainObject, Options>(*this);
}
} // end namespace Eigen
template <typename Derived>
template <int Options>
JacobiSVD<typename MatrixBase<Derived>::PlainObject, Options> MatrixBase<Derived>::jacobiSvd(
unsigned int computationOptions) const {
return JacobiSVD<PlainObject, Options>(*this, computationOptions);
}
} // end namespace Eigen
#endif // EIGEN_JACOBISVD_H

View File

@@ -33,14 +33,17 @@
#ifndef EIGEN_JACOBISVD_LAPACKE_H
#define EIGEN_JACOBISVD_LAPACKE_H
#include "./InternalHeaderCheck.h"
namespace Eigen {
/** \internal Specialization for the data types supported by LAPACKe */
#define EIGEN_LAPACKE_SVD(EIGTYPE, LAPACKE_TYPE, LAPACKE_RTYPE, LAPACKE_PREFIX, EIGCOLROW, LAPACKE_COLROW) \
#define EIGEN_LAPACKE_SVD(EIGTYPE, LAPACKE_TYPE, LAPACKE_RTYPE, LAPACKE_PREFIX, EIGCOLROW, LAPACKE_COLROW, OPTIONS) \
template<> inline \
JacobiSVD<Matrix<EIGTYPE, Dynamic, Dynamic, EIGCOLROW, Dynamic, Dynamic>, ColPivHouseholderQRPreconditioner>& \
JacobiSVD<Matrix<EIGTYPE, Dynamic, Dynamic, EIGCOLROW, Dynamic, Dynamic>, ColPivHouseholderQRPreconditioner>::compute(const Matrix<EIGTYPE, Dynamic, Dynamic, EIGCOLROW, Dynamic, Dynamic>& matrix, unsigned int computationOptions) \
JacobiSVD<Matrix<EIGTYPE, Dynamic, Dynamic, EIGCOLROW, Dynamic, Dynamic>, OPTIONS>& \
JacobiSVD<Matrix<EIGTYPE, Dynamic, Dynamic, EIGCOLROW, Dynamic, Dynamic>, OPTIONS>::compute_impl(const Matrix<EIGTYPE, Dynamic, Dynamic, EIGCOLROW, Dynamic, Dynamic>& matrix, \
unsigned int computationOptions) \
{ \
typedef Matrix<EIGTYPE, Dynamic, Dynamic, EIGCOLROW, Dynamic, Dynamic> MatrixType; \
/*typedef MatrixType::Scalar Scalar;*/ \
@@ -69,22 +72,41 @@ JacobiSVD<Matrix<EIGTYPE, Dynamic, Dynamic, EIGCOLROW, Dynamic, Dynamic>, ColPiv
} else { ldvt=1; vt=&dummy; }\
Matrix<LAPACKE_RTYPE, Dynamic, Dynamic> superb; superb.resize(m_diagSize, 1); \
MatrixType m_temp; m_temp = matrix; \
LAPACKE_##LAPACKE_PREFIX##gesvd( matrix_order, jobu, jobvt, internal::convert_index<lapack_int>(m_rows), internal::convert_index<lapack_int>(m_cols), (LAPACKE_TYPE*)m_temp.data(), lda, (LAPACKE_RTYPE*)m_singularValues.data(), u, ldu, vt, ldvt, superb.data()); \
if (computeV()) m_matrixV = localV.adjoint(); \
lapack_int info = LAPACKE_##LAPACKE_PREFIX##gesvd( matrix_order, jobu, jobvt, internal::convert_index<lapack_int>(m_rows), internal::convert_index<lapack_int>(m_cols), (LAPACKE_TYPE*)m_temp.data(), lda, (LAPACKE_RTYPE*)m_singularValues.data(), u, ldu, vt, ldvt, superb.data()); \
/* Check the result of the LAPACK call */ \
if (info < 0 || !m_singularValues.allFinite()) { \
m_info = InvalidInput; \
} else if (info > 0 ) { \
m_info = NoConvergence; \
} else { \
m_info = Success; \
if (computeV()) m_matrixV = localV.adjoint(); \
} \
/* for(int i=0;i<m_diagSize;i++) if (m_singularValues.coeffRef(i) < precision) { m_nonzeroSingularValues--; m_singularValues.coeffRef(i)=RealScalar(0);}*/ \
m_isInitialized = true; \
return *this; \
}
EIGEN_LAPACKE_SVD(double, double, double, d, ColMajor, LAPACK_COL_MAJOR)
EIGEN_LAPACKE_SVD(float, float, float , s, ColMajor, LAPACK_COL_MAJOR)
EIGEN_LAPACKE_SVD(dcomplex, lapack_complex_double, double, z, ColMajor, LAPACK_COL_MAJOR)
EIGEN_LAPACKE_SVD(scomplex, lapack_complex_float, float , c, ColMajor, LAPACK_COL_MAJOR)
#define EIGEN_LAPACK_SVD_OPTIONS(OPTIONS) \
EIGEN_LAPACKE_SVD(double, double, double, d, ColMajor, LAPACK_COL_MAJOR, OPTIONS) \
EIGEN_LAPACKE_SVD(float, float, float , s, ColMajor, LAPACK_COL_MAJOR, OPTIONS) \
EIGEN_LAPACKE_SVD(dcomplex, lapack_complex_double, double, z, ColMajor, LAPACK_COL_MAJOR, OPTIONS) \
EIGEN_LAPACKE_SVD(scomplex, lapack_complex_float, float , c, ColMajor, LAPACK_COL_MAJOR, OPTIONS) \
\
EIGEN_LAPACKE_SVD(double, double, double, d, RowMajor, LAPACK_ROW_MAJOR, OPTIONS) \
EIGEN_LAPACKE_SVD(float, float, float , s, RowMajor, LAPACK_ROW_MAJOR, OPTIONS) \
EIGEN_LAPACKE_SVD(dcomplex, lapack_complex_double, double, z, RowMajor, LAPACK_ROW_MAJOR, OPTIONS) \
EIGEN_LAPACKE_SVD(scomplex, lapack_complex_float, float , c, RowMajor, LAPACK_ROW_MAJOR, OPTIONS)
EIGEN_LAPACKE_SVD(double, double, double, d, RowMajor, LAPACK_ROW_MAJOR)
EIGEN_LAPACKE_SVD(float, float, float , s, RowMajor, LAPACK_ROW_MAJOR)
EIGEN_LAPACKE_SVD(dcomplex, lapack_complex_double, double, z, RowMajor, LAPACK_ROW_MAJOR)
EIGEN_LAPACKE_SVD(scomplex, lapack_complex_float, float , c, RowMajor, LAPACK_ROW_MAJOR)
EIGEN_LAPACK_SVD_OPTIONS(0)
EIGEN_LAPACK_SVD_OPTIONS(ComputeThinU)
EIGEN_LAPACK_SVD_OPTIONS(ComputeThinV)
EIGEN_LAPACK_SVD_OPTIONS(ComputeFullU)
EIGEN_LAPACK_SVD_OPTIONS(ComputeFullV)
EIGEN_LAPACK_SVD_OPTIONS(ComputeThinU | ComputeThinV)
EIGEN_LAPACK_SVD_OPTIONS(ComputeFullU | ComputeFullV)
EIGEN_LAPACK_SVD_OPTIONS(ComputeThinU | ComputeFullV)
EIGEN_LAPACK_SVD_OPTIONS(ComputeFullU | ComputeThinV)
} // end namespace Eigen

View File

@@ -16,9 +16,42 @@
#ifndef EIGEN_SVDBASE_H
#define EIGEN_SVDBASE_H
#include "./InternalHeaderCheck.h"
namespace Eigen {
namespace internal {
enum OptionsMasks {
QRPreconditionerBits = NoQRPreconditioner | HouseholderQRPreconditioner | ColPivHouseholderQRPreconditioner |
FullPivHouseholderQRPreconditioner,
ComputationOptionsBits = ComputeThinU | ComputeFullU | ComputeThinV | ComputeFullV
};
constexpr int get_qr_preconditioner(int options) { return options & QRPreconditionerBits; }
constexpr int get_computation_options(int options) { return options & ComputationOptionsBits; }
constexpr bool should_svd_compute_thin_u(int options) { return (options & ComputeThinU) != 0; }
constexpr bool should_svd_compute_full_u(int options) { return (options & ComputeFullU) != 0; }
constexpr bool should_svd_compute_thin_v(int options) { return (options & ComputeThinV) != 0; }
constexpr bool should_svd_compute_full_v(int options) { return (options & ComputeFullV) != 0; }
template<typename MatrixType, int Options>
void check_svd_options_assertions(unsigned int computationOptions, Index rows, Index cols) {
EIGEN_STATIC_ASSERT((Options & ComputationOptionsBits) == 0,
"SVDBase: Cannot request U or V using both static and runtime options, even if they match. "
"Requesting unitaries at runtime is DEPRECATED: "
"Prefer requesting unitaries statically, using the Options template parameter.");
eigen_assert(!(should_svd_compute_thin_u(computationOptions) && cols < rows && MatrixType::RowsAtCompileTime != Dynamic) &&
!(should_svd_compute_thin_v(computationOptions) && rows < cols && MatrixType::ColsAtCompileTime != Dynamic) &&
"SVDBase: If thin U is requested at runtime, your matrix must have more rows than columns or a dynamic number of rows."
"Similarly, if thin V is requested at runtime, you matrix must have more columns than rows or a dynamic number of columns.");
(void)computationOptions;
(void)rows;
(void)cols;
}
template<typename Derived> struct traits<SVDBase<Derived> >
: traits<Derived>
{
@@ -27,6 +60,29 @@ template<typename Derived> struct traits<SVDBase<Derived> >
typedef int StorageIndex;
enum { Flags = 0 };
};
template <typename MatrixType, int Options_>
struct svd_traits : traits<MatrixType> {
static constexpr int Options = Options_;
static constexpr bool ShouldComputeFullU = internal::should_svd_compute_full_u(Options);
static constexpr bool ShouldComputeThinU = internal::should_svd_compute_thin_u(Options);
static constexpr bool ShouldComputeFullV = internal::should_svd_compute_full_v(Options);
static constexpr bool ShouldComputeThinV = internal::should_svd_compute_thin_v(Options);
enum {
DiagSizeAtCompileTime =
internal::min_size_prefer_dynamic(MatrixType::RowsAtCompileTime, MatrixType::ColsAtCompileTime),
MaxDiagSizeAtCompileTime =
internal::min_size_prefer_dynamic(MatrixType::MaxRowsAtCompileTime, MatrixType::MaxColsAtCompileTime),
MatrixUColsAtCompileTime = ShouldComputeThinU ? DiagSizeAtCompileTime
: MatrixType::RowsAtCompileTime,
MatrixVColsAtCompileTime = ShouldComputeThinV ? DiagSizeAtCompileTime
: MatrixType::ColsAtCompileTime,
MatrixUMaxColsAtCompileTime = ShouldComputeThinU ? MaxDiagSizeAtCompileTime
: MatrixType::MaxRowsAtCompileTime,
MatrixVMaxColsAtCompileTime = ShouldComputeThinV ? MaxDiagSizeAtCompileTime
: MatrixType::MaxColsAtCompileTime
};
};
}
/** \ingroup SVD_Module
@@ -52,7 +108,7 @@ template<typename Derived> struct traits<SVDBase<Derived> >
* singular vectors. Asking for \em thin \a U or \a V means asking for only their \a m first columns to be formed. So \a U is then a n-by-m matrix,
* and \a V is then a p-by-m matrix. Notice that thin \a U and \a V are all you need for (least squares) solving.
*
* The status of the computation can be retrived using the \a info() method. Unless \a info() returns \a Success, the results should be not
* The status of the computation can be retrieved using the \a info() method. Unless \a info() returns \a Success, the results should be not
* considered well defined.
*
* If the input matrix has inf or nan coefficients, the result of the computation is undefined, and \a info() will return \a InvalidInput, but the computation is guaranteed to
@@ -72,20 +128,38 @@ public:
typedef typename NumTraits<typename MatrixType::Scalar>::Real RealScalar;
typedef typename Eigen::internal::traits<SVDBase>::StorageIndex StorageIndex;
typedef Eigen::Index Index; ///< \deprecated since Eigen 3.3
static constexpr bool ShouldComputeFullU = internal::traits<Derived>::ShouldComputeFullU;
static constexpr bool ShouldComputeThinU = internal::traits<Derived>::ShouldComputeThinU;
static constexpr bool ShouldComputeFullV = internal::traits<Derived>::ShouldComputeFullV;
static constexpr bool ShouldComputeThinV = internal::traits<Derived>::ShouldComputeThinV;
enum {
RowsAtCompileTime = MatrixType::RowsAtCompileTime,
ColsAtCompileTime = MatrixType::ColsAtCompileTime,
DiagSizeAtCompileTime = EIGEN_SIZE_MIN_PREFER_DYNAMIC(RowsAtCompileTime,ColsAtCompileTime),
DiagSizeAtCompileTime = internal::min_size_prefer_dynamic(RowsAtCompileTime, ColsAtCompileTime),
MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime,
MaxDiagSizeAtCompileTime = EIGEN_SIZE_MIN_PREFER_FIXED(MaxRowsAtCompileTime,MaxColsAtCompileTime),
MatrixOptions = MatrixType::Options
MaxDiagSizeAtCompileTime = internal::min_size_prefer_fixed(MaxRowsAtCompileTime, MaxColsAtCompileTime),
MatrixOptions = MatrixType::Options,
MatrixUColsAtCompileTime = internal::traits<Derived>::MatrixUColsAtCompileTime,
MatrixVColsAtCompileTime = internal::traits<Derived>::MatrixVColsAtCompileTime,
MatrixUMaxColsAtCompileTime = internal::traits<Derived>::MatrixUMaxColsAtCompileTime,
MatrixVMaxColsAtCompileTime = internal::traits<Derived>::MatrixVMaxColsAtCompileTime
};
typedef Matrix<Scalar, RowsAtCompileTime, RowsAtCompileTime, MatrixOptions, MaxRowsAtCompileTime, MaxRowsAtCompileTime> MatrixUType;
typedef Matrix<Scalar, ColsAtCompileTime, ColsAtCompileTime, MatrixOptions, MaxColsAtCompileTime, MaxColsAtCompileTime> MatrixVType;
EIGEN_STATIC_ASSERT(!(ShouldComputeFullU && ShouldComputeThinU), "SVDBase: Cannot request both full and thin U")
EIGEN_STATIC_ASSERT(!(ShouldComputeFullV && ShouldComputeThinV), "SVDBase: Cannot request both full and thin V")
typedef
typename internal::make_proper_matrix_type<Scalar, RowsAtCompileTime, MatrixUColsAtCompileTime, MatrixOptions,
MaxRowsAtCompileTime, MatrixUMaxColsAtCompileTime>::type MatrixUType;
typedef
typename internal::make_proper_matrix_type<Scalar, ColsAtCompileTime, MatrixVColsAtCompileTime, MatrixOptions,
MaxColsAtCompileTime, MatrixVMaxColsAtCompileTime>::type MatrixVType;
typedef typename internal::plain_diag_type<MatrixType, RealScalar>::type SingularValuesType;
Derived& derived() { return *static_cast<Derived*>(this); }
const Derived& derived() const { return *static_cast<const Derived*>(this); }
@@ -249,10 +323,7 @@ public:
protected:
static void check_template_parameters()
{
EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar);
}
EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar)
void _check_compute_assertions() const {
eigen_assert(m_isInitialized && "SVD is not initialized.");
@@ -267,7 +338,7 @@ protected:
}
// return true if already allocated
bool allocate(Index rows, Index cols, unsigned int computationOptions) ;
bool allocate(Index rows, Index cols, unsigned int computationOptions);
MatrixUType m_matrixU;
MatrixVType m_matrixV;
@@ -285,21 +356,18 @@ protected:
* Default constructor of SVDBase
*/
SVDBase()
: m_info(Success),
m_isInitialized(false),
m_isAllocated(false),
m_usePrescribedThreshold(false),
m_computeFullU(false),
m_computeThinU(false),
m_computeFullV(false),
m_computeThinV(false),
m_computationOptions(0),
m_rows(-1), m_cols(-1), m_diagSize(0)
{
check_template_parameters();
}
: m_info(Success),
m_isInitialized(false),
m_isAllocated(false),
m_usePrescribedThreshold(false),
m_computeFullU(false),
m_computeThinU(false),
m_computeFullV(false),
m_computeThinV(false),
m_computationOptions(0),
m_rows(-1),
m_cols(-1),
m_diagSize(0) {}
};
#ifndef EIGEN_PARSED_BY_DOXYGEN
@@ -333,9 +401,8 @@ void SVDBase<Derived>::_solve_impl_transposed(const RhsType &rhs, DstType &dst)
}
#endif
template<typename MatrixType>
bool SVDBase<MatrixType>::allocate(Index rows, Index cols, unsigned int computationOptions)
{
template <typename Derived>
bool SVDBase<Derived>::allocate(Index rows, Index cols, unsigned int computationOptions) {
eigen_assert(rows >= 0 && cols >= 0);
if (m_isAllocated &&
@@ -352,14 +419,13 @@ bool SVDBase<MatrixType>::allocate(Index rows, Index cols, unsigned int computat
m_isInitialized = false;
m_isAllocated = true;
m_computationOptions = computationOptions;
m_computeFullU = (computationOptions & ComputeFullU) != 0;
m_computeThinU = (computationOptions & ComputeThinU) != 0;
m_computeFullV = (computationOptions & ComputeFullV) != 0;
m_computeThinV = (computationOptions & ComputeThinV) != 0;
m_computeFullU = ShouldComputeFullU || internal::should_svd_compute_full_u(computationOptions);
m_computeThinU = ShouldComputeThinU || internal::should_svd_compute_thin_u(computationOptions);
m_computeFullV = ShouldComputeFullV || internal::should_svd_compute_full_v(computationOptions);
m_computeThinV = ShouldComputeThinV || internal::should_svd_compute_thin_v(computationOptions);
eigen_assert(!(m_computeFullU && m_computeThinU) && "SVDBase: you can't ask for both full and thin U");
eigen_assert(!(m_computeFullV && m_computeThinV) && "SVDBase: you can't ask for both full and thin V");
eigen_assert(EIGEN_IMPLIES(m_computeThinU || m_computeThinV, MatrixType::ColsAtCompileTime==Dynamic) &&
"SVDBase: thin U and V are only available when your matrix has a dynamic number of columns.");
m_diagSize = (std::min)(m_rows, m_cols);
m_singularValues.resize(m_diagSize);

View File

@@ -11,17 +11,19 @@
#ifndef EIGEN_BIDIAGONALIZATION_H
#define EIGEN_BIDIAGONALIZATION_H
#include "./InternalHeaderCheck.h"
namespace Eigen {
namespace internal {
// UpperBidiagonalization will probably be replaced by a Bidiagonalization class, don't want to make it stable API.
// At the same time, it's useful to keep for now as it's about the only thing that is testing the BandMatrix class.
template<typename _MatrixType> class UpperBidiagonalization
template<typename MatrixType_> class UpperBidiagonalization
{
public:
typedef _MatrixType MatrixType;
typedef MatrixType_ MatrixType;
enum {
RowsAtCompileTime = MatrixType::RowsAtCompileTime,
ColsAtCompileTime = MatrixType::ColsAtCompileTime,
@@ -37,10 +39,10 @@ template<typename _MatrixType> class UpperBidiagonalization
typedef Matrix<Scalar, ColsAtCompileTimeMinusOne, 1> SuperDiagVectorType;
typedef HouseholderSequence<
const MatrixType,
const typename internal::remove_all<typename Diagonal<const MatrixType,0>::ConjugateReturnType>::type
const internal::remove_all_t<typename Diagonal<const MatrixType,0>::ConjugateReturnType>
> HouseholderUSequenceType;
typedef HouseholderSequence<
const typename internal::remove_all<typename MatrixType::ConjugateReturnType>::type,
const internal::remove_all_t<typename MatrixType::ConjugateReturnType>,
Diagonal<const MatrixType,1>,
OnTheRight
> HouseholderVSequenceType;
@@ -51,7 +53,7 @@ template<typename _MatrixType> class UpperBidiagonalization
* The default constructor is useful in cases in which the user intends to
* perform decompositions via Bidiagonalization::compute(const MatrixType&).
*/
UpperBidiagonalization() : m_householder(), m_bidiagonal(), m_isInitialized(false) {}
UpperBidiagonalization() : m_householder(), m_bidiagonal(0, 0), m_isInitialized(false) {}
explicit UpperBidiagonalization(const MatrixType& matrix)
: m_householder(matrix.rows(), matrix.cols()),
@@ -60,7 +62,13 @@ template<typename _MatrixType> class UpperBidiagonalization
{
compute(matrix);
}
UpperBidiagonalization(Index rows, Index cols)
: m_householder(rows, cols),
m_bidiagonal(cols, cols),
m_isInitialized(false)
{}
UpperBidiagonalization& compute(const MatrixType& matrix);
UpperBidiagonalization& computeUnblocked(const MatrixType& matrix);
@@ -161,13 +169,13 @@ void upperbidiagonalization_blocked_helper(MatrixType& A,
typedef typename MatrixType::Scalar Scalar;
typedef typename MatrixType::RealScalar RealScalar;
typedef typename NumTraits<RealScalar>::Literal Literal;
enum { StorageOrder = traits<MatrixType>::Flags & RowMajorBit };
typedef InnerStride<int(StorageOrder) == int(ColMajor) ? 1 : Dynamic> ColInnerStride;
typedef InnerStride<int(StorageOrder) == int(ColMajor) ? Dynamic : 1> RowInnerStride;
static constexpr int StorageOrder = (traits<MatrixType>::Flags & RowMajorBit) ? RowMajor : ColMajor;
typedef InnerStride<StorageOrder == ColMajor ? 1 : Dynamic> ColInnerStride;
typedef InnerStride<StorageOrder == ColMajor ? Dynamic : 1> RowInnerStride;
typedef Ref<Matrix<Scalar, Dynamic, 1>, 0, ColInnerStride> SubColumnType;
typedef Ref<Matrix<Scalar, 1, Dynamic>, 0, RowInnerStride> SubRowType;
typedef Ref<Matrix<Scalar, Dynamic, Dynamic, StorageOrder > > SubMatType;
Index brows = A.rows();
Index bcols = A.cols();
@@ -293,7 +301,7 @@ void upperbidiagonalization_inplace_blocked(MatrixType& A, BidiagType& bidiagona
Index size = (std::min)(rows, cols);
// X and Y are work space
enum { StorageOrder = traits<MatrixType>::Flags & RowMajorBit };
static constexpr int StorageOrder = (traits<MatrixType>::Flags & RowMajorBit) ? RowMajor : ColMajor;
Matrix<Scalar,
MatrixType::RowsAtCompileTime,
Dynamic,
@@ -355,8 +363,8 @@ void upperbidiagonalization_inplace_blocked(MatrixType& A, BidiagType& bidiagona
}
}
template<typename _MatrixType>
UpperBidiagonalization<_MatrixType>& UpperBidiagonalization<_MatrixType>::computeUnblocked(const _MatrixType& matrix)
template<typename MatrixType_>
UpperBidiagonalization<MatrixType_>& UpperBidiagonalization<MatrixType_>::computeUnblocked(const MatrixType_& matrix)
{
Index rows = matrix.rows();
Index cols = matrix.cols();
@@ -377,8 +385,8 @@ UpperBidiagonalization<_MatrixType>& UpperBidiagonalization<_MatrixType>::comput
return *this;
}
template<typename _MatrixType>
UpperBidiagonalization<_MatrixType>& UpperBidiagonalization<_MatrixType>::compute(const _MatrixType& matrix)
template<typename MatrixType_>
UpperBidiagonalization<MatrixType_>& UpperBidiagonalization<MatrixType_>::compute(const MatrixType_& matrix)
{
Index rows = matrix.rows();
Index cols = matrix.cols();