ADD: added other eigen lib
This commit is contained in:
File diff suppressed because it is too large
Load Diff
163
libs/eigen/Eigen/src/SVD/BDCSVD_LAPACKE.h
Normal file
163
libs/eigen/Eigen/src/SVD/BDCSVD_LAPACKE.h
Normal file
@@ -0,0 +1,163 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra.
|
||||
//
|
||||
// Copyright (C) 2022 Melven Roehrig-Zoellner <Melven.Roehrig-Zoellner@DLR.de>
|
||||
// Copyright (c) 2011, Intel Corporation. All rights reserved.
|
||||
//
|
||||
// This file is based on the JacobiSVD_LAPACKE.h originally from Intel -
|
||||
// see license notice below:
|
||||
/*
|
||||
Redistribution and use in source and binary forms, with or without modification,
|
||||
are permitted provided that the following conditions are met:
|
||||
|
||||
* Redistributions of source code must retain the above copyright notice, this
|
||||
list of conditions and the following disclaimer.
|
||||
* Redistributions in binary form must reproduce the above copyright notice,
|
||||
this list of conditions and the following disclaimer in the documentation
|
||||
and/or other materials provided with the distribution.
|
||||
* Neither the name of Intel Corporation nor the names of its contributors may
|
||||
be used to endorse or promote products derived from this software without
|
||||
specific prior written permission.
|
||||
|
||||
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
|
||||
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
|
||||
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
||||
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
|
||||
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
|
||||
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
|
||||
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
|
||||
ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
||||
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
|
||||
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
|
||||
********************************************************************************
|
||||
* Content : Eigen bindings to LAPACKe
|
||||
* Singular Value Decomposition - SVD (divide and conquer variant)
|
||||
********************************************************************************
|
||||
*/
|
||||
#ifndef EIGEN_BDCSVD_LAPACKE_H
|
||||
#define EIGEN_BDCSVD_LAPACKE_H
|
||||
|
||||
namespace Eigen {
|
||||
|
||||
namespace internal {
|
||||
|
||||
namespace lapacke_helpers {
|
||||
|
||||
/** \internal Specialization for the data types supported by LAPACKe */
|
||||
|
||||
// defining a derived class to allow access to protected members
|
||||
template <typename MatrixType_, int Options>
|
||||
class BDCSVD_LAPACKE : public BDCSVD<MatrixType_, Options> {
|
||||
typedef BDCSVD<MatrixType_, Options> SVD;
|
||||
typedef typename SVD::MatrixType MatrixType;
|
||||
typedef typename SVD::Scalar Scalar;
|
||||
typedef typename SVD::RealScalar RealScalar;
|
||||
|
||||
public:
|
||||
// construct this by moving from a parent object
|
||||
BDCSVD_LAPACKE(SVD&& svd) : SVD(std::move(svd)) {}
|
||||
|
||||
void compute_impl_lapacke(const MatrixType& matrix, unsigned int computationOptions) {
|
||||
|
||||
SVD::allocate(matrix.rows(), matrix.cols(), computationOptions);
|
||||
|
||||
SVD::m_nonzeroSingularValues = SVD::m_diagSize;
|
||||
|
||||
// prepare arguments to ?gesdd
|
||||
const lapack_int matrix_order = lapack_storage_of(matrix);
|
||||
const char jobz = (SVD::m_computeFullU || SVD::m_computeFullV) ? 'A' : (SVD::m_computeThinU || SVD::m_computeThinV) ? 'S' : 'N';
|
||||
const lapack_int u_cols = (jobz == 'A') ? to_lapack(SVD::m_rows) : (jobz == 'S') ? to_lapack(SVD::m_diagSize) : 1;
|
||||
const lapack_int vt_rows = (jobz == 'A') ? to_lapack(SVD::m_cols) : (jobz == 'S') ? to_lapack(SVD::m_diagSize) : 1;
|
||||
lapack_int ldu, ldvt;
|
||||
Scalar *u, *vt, dummy;
|
||||
MatrixType localU;
|
||||
if (SVD::computeU() && !(SVD::m_computeThinU && SVD::m_computeFullV) ) {
|
||||
ldu = to_lapack(SVD::m_matrixU.outerStride());
|
||||
u = SVD::m_matrixU.data();
|
||||
} else if (SVD::computeV()) {
|
||||
localU.resize(SVD::m_rows, u_cols);
|
||||
ldu = to_lapack(localU.outerStride());
|
||||
u = localU.data();
|
||||
} else { ldu=1; u=&dummy; }
|
||||
MatrixType localV;
|
||||
if (SVD::computeU() || SVD::computeV()) {
|
||||
localV.resize(vt_rows, SVD::m_cols);
|
||||
ldvt = to_lapack(localV.outerStride());
|
||||
vt = localV.data();
|
||||
} else { ldvt=1; vt=&dummy; }
|
||||
MatrixType temp; temp = matrix;
|
||||
|
||||
// actual call to ?gesdd
|
||||
lapack_int info = gesdd( matrix_order, jobz, to_lapack(SVD::m_rows), to_lapack(SVD::m_cols),
|
||||
to_lapack(temp.data()), to_lapack(temp.outerStride()), (RealScalar*)SVD::m_singularValues.data(),
|
||||
to_lapack(u), ldu, to_lapack(vt), ldvt);
|
||||
|
||||
// Check the result of the LAPACK call
|
||||
if (info < 0 || !SVD::m_singularValues.allFinite()) {
|
||||
// this includes info == -4 => NaN entry in A
|
||||
SVD::m_info = InvalidInput;
|
||||
} else if (info > 0 ) {
|
||||
SVD::m_info = NoConvergence;
|
||||
} else {
|
||||
SVD::m_info = Success;
|
||||
if (SVD::m_computeThinU && SVD::m_computeFullV) {
|
||||
SVD::m_matrixU = localU.leftCols(SVD::m_matrixU.cols());
|
||||
}
|
||||
if (SVD::computeV()) {
|
||||
SVD::m_matrixV = localV.adjoint().leftCols(SVD::m_matrixV.cols());
|
||||
}
|
||||
}
|
||||
SVD::m_isInitialized = true;
|
||||
}
|
||||
};
|
||||
|
||||
template<typename MatrixType_, int Options>
|
||||
BDCSVD<MatrixType_, Options>& BDCSVD_wrapper(BDCSVD<MatrixType_, Options>& svd, const MatrixType_& matrix, int computationOptions)
|
||||
{
|
||||
// we need to move to the wrapper type and back
|
||||
BDCSVD_LAPACKE<MatrixType_, Options> tmpSvd(std::move(svd));
|
||||
tmpSvd.compute_impl_lapacke(matrix, computationOptions);
|
||||
svd = std::move(tmpSvd);
|
||||
return svd;
|
||||
}
|
||||
|
||||
} // end namespace lapacke_helpers
|
||||
|
||||
} // end namespace internal
|
||||
|
||||
#define EIGEN_LAPACKE_SDD(EIGTYPE, EIGCOLROW, OPTIONS) \
|
||||
template<> inline \
|
||||
BDCSVD<Matrix<EIGTYPE, Dynamic, Dynamic, EIGCOLROW, Dynamic, Dynamic>, OPTIONS>& \
|
||||
BDCSVD<Matrix<EIGTYPE, Dynamic, Dynamic, EIGCOLROW, Dynamic, Dynamic>, OPTIONS>::compute_impl(const Matrix<EIGTYPE, Dynamic, Dynamic, EIGCOLROW, Dynamic, Dynamic>& matrix, unsigned int computationOptions) {\
|
||||
return internal::lapacke_helpers::BDCSVD_wrapper(*this, matrix, computationOptions); \
|
||||
}
|
||||
|
||||
#define EIGEN_LAPACK_SDD_OPTIONS(OPTIONS) \
|
||||
EIGEN_LAPACKE_SDD(double, ColMajor, OPTIONS) \
|
||||
EIGEN_LAPACKE_SDD(float, ColMajor, OPTIONS) \
|
||||
EIGEN_LAPACKE_SDD(dcomplex, ColMajor, OPTIONS) \
|
||||
EIGEN_LAPACKE_SDD(scomplex, ColMajor, OPTIONS) \
|
||||
\
|
||||
EIGEN_LAPACKE_SDD(double, RowMajor, OPTIONS) \
|
||||
EIGEN_LAPACKE_SDD(float, RowMajor, OPTIONS) \
|
||||
EIGEN_LAPACKE_SDD(dcomplex, RowMajor, OPTIONS) \
|
||||
EIGEN_LAPACKE_SDD(scomplex, RowMajor, OPTIONS)
|
||||
|
||||
EIGEN_LAPACK_SDD_OPTIONS(0)
|
||||
EIGEN_LAPACK_SDD_OPTIONS(ComputeThinU)
|
||||
EIGEN_LAPACK_SDD_OPTIONS(ComputeThinV)
|
||||
EIGEN_LAPACK_SDD_OPTIONS(ComputeFullU)
|
||||
EIGEN_LAPACK_SDD_OPTIONS(ComputeFullV)
|
||||
EIGEN_LAPACK_SDD_OPTIONS(ComputeThinU | ComputeThinV)
|
||||
EIGEN_LAPACK_SDD_OPTIONS(ComputeFullU | ComputeFullV)
|
||||
EIGEN_LAPACK_SDD_OPTIONS(ComputeThinU | ComputeFullV)
|
||||
EIGEN_LAPACK_SDD_OPTIONS(ComputeFullU | ComputeThinV)
|
||||
|
||||
#undef EIGEN_LAPACK_SDD_OPTIONS
|
||||
|
||||
#undef EIGEN_LAPACKE_SDD
|
||||
|
||||
} // end namespace Eigen
|
||||
|
||||
#endif // EIGEN_BDCSVD_LAPACKE_H
|
||||
3
libs/eigen/Eigen/src/SVD/InternalHeaderCheck.h
Normal file
3
libs/eigen/Eigen/src/SVD/InternalHeaderCheck.h
Normal file
@@ -0,0 +1,3 @@
|
||||
#ifndef EIGEN_SVD_MODULE_H
|
||||
#error "Please include Eigen/SVD instead of including headers inside the src directory directly."
|
||||
#endif
|
||||
@@ -11,13 +11,15 @@
|
||||
#ifndef EIGEN_JACOBISVD_H
|
||||
#define EIGEN_JACOBISVD_H
|
||||
|
||||
namespace Eigen {
|
||||
#include "./InternalHeaderCheck.h"
|
||||
|
||||
namespace Eigen {
|
||||
|
||||
namespace internal {
|
||||
|
||||
// forward declaration (needed by ICC)
|
||||
// the empty body is required by MSVC
|
||||
template<typename MatrixType, int QRPreconditioner,
|
||||
bool IsComplex = NumTraits<typename MatrixType::Scalar>::IsComplex>
|
||||
template <typename MatrixType, int Options, bool IsComplex = NumTraits<typename MatrixType::Scalar>::IsComplex>
|
||||
struct svd_precondition_2x2_block_to_be_real {};
|
||||
|
||||
/*** QR preconditioners (R-SVD)
|
||||
@@ -44,47 +46,40 @@ struct qr_preconditioner_should_do_anything
|
||||
};
|
||||
};
|
||||
|
||||
template<typename MatrixType, int QRPreconditioner, int Case,
|
||||
bool DoAnything = qr_preconditioner_should_do_anything<MatrixType, QRPreconditioner, Case>::ret
|
||||
> struct qr_preconditioner_impl {};
|
||||
template <typename MatrixType, int Options, int QRPreconditioner, int Case,
|
||||
bool DoAnything = qr_preconditioner_should_do_anything<MatrixType, QRPreconditioner, Case>::ret>
|
||||
struct qr_preconditioner_impl {};
|
||||
|
||||
template<typename MatrixType, int QRPreconditioner, int Case>
|
||||
class qr_preconditioner_impl<MatrixType, QRPreconditioner, Case, false>
|
||||
{
|
||||
public:
|
||||
void allocate(const JacobiSVD<MatrixType, QRPreconditioner>&) {}
|
||||
bool run(JacobiSVD<MatrixType, QRPreconditioner>&, const MatrixType&)
|
||||
{
|
||||
return false;
|
||||
}
|
||||
template <typename MatrixType, int Options, int QRPreconditioner, int Case>
|
||||
class qr_preconditioner_impl<MatrixType, Options, QRPreconditioner, Case, false> {
|
||||
public:
|
||||
void allocate(const JacobiSVD<MatrixType, Options>&) {}
|
||||
bool run(JacobiSVD<MatrixType, Options>&, const MatrixType&) { return false; }
|
||||
};
|
||||
|
||||
/*** preconditioner using FullPivHouseholderQR ***/
|
||||
|
||||
template<typename MatrixType>
|
||||
class qr_preconditioner_impl<MatrixType, FullPivHouseholderQRPreconditioner, PreconditionIfMoreRowsThanCols, true>
|
||||
{
|
||||
public:
|
||||
template <typename MatrixType, int Options>
|
||||
class qr_preconditioner_impl<MatrixType, Options, FullPivHouseholderQRPreconditioner, PreconditionIfMoreRowsThanCols,
|
||||
true> {
|
||||
public:
|
||||
typedef typename MatrixType::Scalar Scalar;
|
||||
enum
|
||||
{
|
||||
RowsAtCompileTime = MatrixType::RowsAtCompileTime,
|
||||
MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime
|
||||
};
|
||||
typedef Matrix<Scalar, 1, RowsAtCompileTime, RowMajor, 1, MaxRowsAtCompileTime> WorkspaceType;
|
||||
typedef JacobiSVD<MatrixType, Options> SVDType;
|
||||
|
||||
void allocate(const JacobiSVD<MatrixType, FullPivHouseholderQRPreconditioner>& svd)
|
||||
{
|
||||
enum { WorkspaceSize = MatrixType::RowsAtCompileTime, MaxWorkspaceSize = MatrixType::MaxRowsAtCompileTime };
|
||||
|
||||
typedef Matrix<Scalar, 1, WorkspaceSize, RowMajor, 1, MaxWorkspaceSize> WorkspaceType;
|
||||
|
||||
void allocate(const SVDType& svd) {
|
||||
if (svd.rows() != m_qr.rows() || svd.cols() != m_qr.cols())
|
||||
{
|
||||
m_qr.~QRType();
|
||||
::new (&m_qr) QRType(svd.rows(), svd.cols());
|
||||
internal::destroy_at(&m_qr);
|
||||
internal::construct_at(&m_qr, svd.rows(), svd.cols());
|
||||
}
|
||||
if (svd.m_computeFullU) m_workspace.resize(svd.rows());
|
||||
}
|
||||
|
||||
bool run(JacobiSVD<MatrixType, FullPivHouseholderQRPreconditioner>& svd, const MatrixType& matrix)
|
||||
{
|
||||
bool run(SVDType& svd, const MatrixType& matrix) {
|
||||
if(matrix.rows() > matrix.cols())
|
||||
{
|
||||
m_qr.compute(matrix);
|
||||
@@ -95,43 +90,43 @@ public:
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
private:
|
||||
typedef FullPivHouseholderQR<MatrixType> QRType;
|
||||
QRType m_qr;
|
||||
WorkspaceType m_workspace;
|
||||
};
|
||||
|
||||
template<typename MatrixType>
|
||||
class qr_preconditioner_impl<MatrixType, FullPivHouseholderQRPreconditioner, PreconditionIfMoreColsThanRows, true>
|
||||
{
|
||||
public:
|
||||
template <typename MatrixType, int Options>
|
||||
class qr_preconditioner_impl<MatrixType, Options, FullPivHouseholderQRPreconditioner, PreconditionIfMoreColsThanRows,
|
||||
true> {
|
||||
public:
|
||||
typedef typename MatrixType::Scalar Scalar;
|
||||
enum
|
||||
{
|
||||
typedef JacobiSVD<MatrixType, Options> SVDType;
|
||||
|
||||
enum {
|
||||
RowsAtCompileTime = MatrixType::RowsAtCompileTime,
|
||||
ColsAtCompileTime = MatrixType::ColsAtCompileTime,
|
||||
MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
|
||||
MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime,
|
||||
Options = MatrixType::Options
|
||||
MatrixOptions = MatrixType::Options
|
||||
};
|
||||
|
||||
typedef typename internal::make_proper_matrix_type<
|
||||
Scalar, ColsAtCompileTime, RowsAtCompileTime, Options, MaxColsAtCompileTime, MaxRowsAtCompileTime
|
||||
>::type TransposeTypeWithSameStorageOrder;
|
||||
typedef typename internal::make_proper_matrix_type<Scalar, ColsAtCompileTime, RowsAtCompileTime, MatrixOptions,
|
||||
MaxColsAtCompileTime, MaxRowsAtCompileTime>::type
|
||||
TransposeTypeWithSameStorageOrder;
|
||||
|
||||
void allocate(const JacobiSVD<MatrixType, FullPivHouseholderQRPreconditioner>& svd)
|
||||
{
|
||||
void allocate(const SVDType& svd) {
|
||||
if (svd.cols() != m_qr.rows() || svd.rows() != m_qr.cols())
|
||||
{
|
||||
m_qr.~QRType();
|
||||
::new (&m_qr) QRType(svd.cols(), svd.rows());
|
||||
internal::destroy_at(&m_qr);
|
||||
internal::construct_at(&m_qr, svd.cols(), svd.rows());
|
||||
}
|
||||
m_adjoint.resize(svd.cols(), svd.rows());
|
||||
if (svd.m_computeFullV) m_workspace.resize(svd.cols());
|
||||
}
|
||||
|
||||
bool run(JacobiSVD<MatrixType, FullPivHouseholderQRPreconditioner>& svd, const MatrixType& matrix)
|
||||
{
|
||||
bool run(SVDType& svd, const MatrixType& matrix) {
|
||||
if(matrix.cols() > matrix.rows())
|
||||
{
|
||||
m_adjoint = matrix.adjoint();
|
||||
@@ -143,32 +138,41 @@ public:
|
||||
}
|
||||
else return false;
|
||||
}
|
||||
|
||||
private:
|
||||
typedef FullPivHouseholderQR<TransposeTypeWithSameStorageOrder> QRType;
|
||||
QRType m_qr;
|
||||
TransposeTypeWithSameStorageOrder m_adjoint;
|
||||
typename internal::plain_row_type<MatrixType>::type m_workspace;
|
||||
typename plain_row_type<MatrixType>::type m_workspace;
|
||||
};
|
||||
|
||||
/*** preconditioner using ColPivHouseholderQR ***/
|
||||
|
||||
template<typename MatrixType>
|
||||
class qr_preconditioner_impl<MatrixType, ColPivHouseholderQRPreconditioner, PreconditionIfMoreRowsThanCols, true>
|
||||
{
|
||||
public:
|
||||
void allocate(const JacobiSVD<MatrixType, ColPivHouseholderQRPreconditioner>& svd)
|
||||
{
|
||||
template <typename MatrixType, int Options>
|
||||
class qr_preconditioner_impl<MatrixType, Options, ColPivHouseholderQRPreconditioner, PreconditionIfMoreRowsThanCols,
|
||||
true> {
|
||||
public:
|
||||
typedef typename MatrixType::Scalar Scalar;
|
||||
typedef JacobiSVD<MatrixType, Options> SVDType;
|
||||
|
||||
enum {
|
||||
WorkspaceSize = internal::traits<SVDType>::MatrixUColsAtCompileTime,
|
||||
MaxWorkspaceSize = internal::traits<SVDType>::MatrixUMaxColsAtCompileTime
|
||||
};
|
||||
|
||||
typedef Matrix<Scalar, 1, WorkspaceSize, RowMajor, 1, MaxWorkspaceSize> WorkspaceType;
|
||||
|
||||
void allocate(const SVDType& svd) {
|
||||
if (svd.rows() != m_qr.rows() || svd.cols() != m_qr.cols())
|
||||
{
|
||||
m_qr.~QRType();
|
||||
::new (&m_qr) QRType(svd.rows(), svd.cols());
|
||||
internal::destroy_at(&m_qr);
|
||||
internal::construct_at(&m_qr, svd.rows(), svd.cols());
|
||||
}
|
||||
if (svd.m_computeFullU) m_workspace.resize(svd.rows());
|
||||
else if (svd.m_computeThinU) m_workspace.resize(svd.cols());
|
||||
}
|
||||
|
||||
bool run(JacobiSVD<MatrixType, ColPivHouseholderQRPreconditioner>& svd, const MatrixType& matrix)
|
||||
{
|
||||
bool run(SVDType& svd, const MatrixType& matrix) {
|
||||
if(matrix.rows() > matrix.cols())
|
||||
{
|
||||
m_qr.compute(matrix);
|
||||
@@ -188,41 +192,44 @@ public:
|
||||
private:
|
||||
typedef ColPivHouseholderQR<MatrixType> QRType;
|
||||
QRType m_qr;
|
||||
typename internal::plain_col_type<MatrixType>::type m_workspace;
|
||||
WorkspaceType m_workspace;
|
||||
};
|
||||
|
||||
template<typename MatrixType>
|
||||
class qr_preconditioner_impl<MatrixType, ColPivHouseholderQRPreconditioner, PreconditionIfMoreColsThanRows, true>
|
||||
{
|
||||
public:
|
||||
template <typename MatrixType, int Options>
|
||||
class qr_preconditioner_impl<MatrixType, Options, ColPivHouseholderQRPreconditioner, PreconditionIfMoreColsThanRows,
|
||||
true> {
|
||||
public:
|
||||
typedef typename MatrixType::Scalar Scalar;
|
||||
enum
|
||||
{
|
||||
typedef JacobiSVD<MatrixType, Options> SVDType;
|
||||
|
||||
enum {
|
||||
RowsAtCompileTime = MatrixType::RowsAtCompileTime,
|
||||
ColsAtCompileTime = MatrixType::ColsAtCompileTime,
|
||||
MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
|
||||
MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime,
|
||||
Options = MatrixType::Options
|
||||
MatrixOptions = MatrixType::Options,
|
||||
WorkspaceSize = internal::traits<SVDType>::MatrixVColsAtCompileTime,
|
||||
MaxWorkspaceSize = internal::traits<SVDType>::MatrixVMaxColsAtCompileTime
|
||||
};
|
||||
|
||||
typedef typename internal::make_proper_matrix_type<
|
||||
Scalar, ColsAtCompileTime, RowsAtCompileTime, Options, MaxColsAtCompileTime, MaxRowsAtCompileTime
|
||||
>::type TransposeTypeWithSameStorageOrder;
|
||||
typedef Matrix<Scalar, WorkspaceSize, 1, ColMajor, MaxWorkspaceSize, 1> WorkspaceType;
|
||||
|
||||
void allocate(const JacobiSVD<MatrixType, ColPivHouseholderQRPreconditioner>& svd)
|
||||
{
|
||||
typedef typename internal::make_proper_matrix_type<Scalar, ColsAtCompileTime, RowsAtCompileTime, MatrixOptions,
|
||||
MaxColsAtCompileTime, MaxRowsAtCompileTime>::type
|
||||
TransposeTypeWithSameStorageOrder;
|
||||
|
||||
void allocate(const SVDType& svd) {
|
||||
if (svd.cols() != m_qr.rows() || svd.rows() != m_qr.cols())
|
||||
{
|
||||
m_qr.~QRType();
|
||||
::new (&m_qr) QRType(svd.cols(), svd.rows());
|
||||
internal::destroy_at(&m_qr);
|
||||
internal::construct_at(&m_qr, svd.cols(), svd.rows());
|
||||
}
|
||||
if (svd.m_computeFullV) m_workspace.resize(svd.cols());
|
||||
else if (svd.m_computeThinV) m_workspace.resize(svd.rows());
|
||||
m_adjoint.resize(svd.cols(), svd.rows());
|
||||
}
|
||||
|
||||
bool run(JacobiSVD<MatrixType, ColPivHouseholderQRPreconditioner>& svd, const MatrixType& matrix)
|
||||
{
|
||||
bool run(SVDType& svd, const MatrixType& matrix) {
|
||||
if(matrix.cols() > matrix.rows())
|
||||
{
|
||||
m_adjoint = matrix.adjoint();
|
||||
@@ -245,28 +252,35 @@ private:
|
||||
typedef ColPivHouseholderQR<TransposeTypeWithSameStorageOrder> QRType;
|
||||
QRType m_qr;
|
||||
TransposeTypeWithSameStorageOrder m_adjoint;
|
||||
typename internal::plain_row_type<MatrixType>::type m_workspace;
|
||||
WorkspaceType m_workspace;
|
||||
};
|
||||
|
||||
/*** preconditioner using HouseholderQR ***/
|
||||
|
||||
template<typename MatrixType>
|
||||
class qr_preconditioner_impl<MatrixType, HouseholderQRPreconditioner, PreconditionIfMoreRowsThanCols, true>
|
||||
{
|
||||
public:
|
||||
void allocate(const JacobiSVD<MatrixType, HouseholderQRPreconditioner>& svd)
|
||||
{
|
||||
template <typename MatrixType, int Options>
|
||||
class qr_preconditioner_impl<MatrixType, Options, HouseholderQRPreconditioner, PreconditionIfMoreRowsThanCols, true> {
|
||||
public:
|
||||
typedef typename MatrixType::Scalar Scalar;
|
||||
typedef JacobiSVD<MatrixType, Options> SVDType;
|
||||
|
||||
enum {
|
||||
WorkspaceSize = internal::traits<SVDType>::MatrixUColsAtCompileTime,
|
||||
MaxWorkspaceSize = internal::traits<SVDType>::MatrixUMaxColsAtCompileTime
|
||||
};
|
||||
|
||||
typedef Matrix<Scalar, 1, WorkspaceSize, RowMajor, 1, MaxWorkspaceSize> WorkspaceType;
|
||||
|
||||
void allocate(const SVDType& svd) {
|
||||
if (svd.rows() != m_qr.rows() || svd.cols() != m_qr.cols())
|
||||
{
|
||||
m_qr.~QRType();
|
||||
::new (&m_qr) QRType(svd.rows(), svd.cols());
|
||||
internal::destroy_at(&m_qr);
|
||||
internal::construct_at(&m_qr, svd.rows(), svd.cols());
|
||||
}
|
||||
if (svd.m_computeFullU) m_workspace.resize(svd.rows());
|
||||
else if (svd.m_computeThinU) m_workspace.resize(svd.cols());
|
||||
}
|
||||
|
||||
bool run(JacobiSVD<MatrixType, HouseholderQRPreconditioner>& svd, const MatrixType& matrix)
|
||||
{
|
||||
bool run(SVDType& svd, const MatrixType& matrix) {
|
||||
if(matrix.rows() > matrix.cols())
|
||||
{
|
||||
m_qr.compute(matrix);
|
||||
@@ -282,44 +296,47 @@ public:
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
private:
|
||||
typedef HouseholderQR<MatrixType> QRType;
|
||||
QRType m_qr;
|
||||
typename internal::plain_col_type<MatrixType>::type m_workspace;
|
||||
WorkspaceType m_workspace;
|
||||
};
|
||||
|
||||
template<typename MatrixType>
|
||||
class qr_preconditioner_impl<MatrixType, HouseholderQRPreconditioner, PreconditionIfMoreColsThanRows, true>
|
||||
{
|
||||
public:
|
||||
template <typename MatrixType, int Options>
|
||||
class qr_preconditioner_impl<MatrixType, Options, HouseholderQRPreconditioner, PreconditionIfMoreColsThanRows, true> {
|
||||
public:
|
||||
typedef typename MatrixType::Scalar Scalar;
|
||||
enum
|
||||
{
|
||||
typedef JacobiSVD<MatrixType, Options> SVDType;
|
||||
|
||||
enum {
|
||||
RowsAtCompileTime = MatrixType::RowsAtCompileTime,
|
||||
ColsAtCompileTime = MatrixType::ColsAtCompileTime,
|
||||
MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
|
||||
MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime,
|
||||
Options = MatrixType::Options
|
||||
MatrixOptions = MatrixType::Options,
|
||||
WorkspaceSize = internal::traits<SVDType>::MatrixVColsAtCompileTime,
|
||||
MaxWorkspaceSize = internal::traits<SVDType>::MatrixVMaxColsAtCompileTime
|
||||
};
|
||||
|
||||
typedef typename internal::make_proper_matrix_type<
|
||||
Scalar, ColsAtCompileTime, RowsAtCompileTime, Options, MaxColsAtCompileTime, MaxRowsAtCompileTime
|
||||
>::type TransposeTypeWithSameStorageOrder;
|
||||
typedef Matrix<Scalar, WorkspaceSize, 1, ColMajor, MaxWorkspaceSize, 1> WorkspaceType;
|
||||
|
||||
void allocate(const JacobiSVD<MatrixType, HouseholderQRPreconditioner>& svd)
|
||||
{
|
||||
typedef typename internal::make_proper_matrix_type<Scalar, ColsAtCompileTime, RowsAtCompileTime, MatrixOptions,
|
||||
MaxColsAtCompileTime, MaxRowsAtCompileTime>::type
|
||||
TransposeTypeWithSameStorageOrder;
|
||||
|
||||
void allocate(const SVDType& svd) {
|
||||
if (svd.cols() != m_qr.rows() || svd.rows() != m_qr.cols())
|
||||
{
|
||||
m_qr.~QRType();
|
||||
::new (&m_qr) QRType(svd.cols(), svd.rows());
|
||||
internal::destroy_at(&m_qr);
|
||||
internal::construct_at(&m_qr, svd.cols(), svd.rows());
|
||||
}
|
||||
if (svd.m_computeFullV) m_workspace.resize(svd.cols());
|
||||
else if (svd.m_computeThinV) m_workspace.resize(svd.rows());
|
||||
m_adjoint.resize(svd.cols(), svd.rows());
|
||||
}
|
||||
|
||||
bool run(JacobiSVD<MatrixType, HouseholderQRPreconditioner>& svd, const MatrixType& matrix)
|
||||
{
|
||||
bool run(SVDType& svd, const MatrixType& matrix) {
|
||||
if(matrix.cols() > matrix.rows())
|
||||
{
|
||||
m_adjoint = matrix.adjoint();
|
||||
@@ -342,7 +359,7 @@ private:
|
||||
typedef HouseholderQR<TransposeTypeWithSameStorageOrder> QRType;
|
||||
QRType m_qr;
|
||||
TransposeTypeWithSameStorageOrder m_adjoint;
|
||||
typename internal::plain_row_type<MatrixType>::type m_workspace;
|
||||
WorkspaceType m_workspace;
|
||||
};
|
||||
|
||||
/*** 2x2 SVD implementation
|
||||
@@ -350,18 +367,16 @@ private:
|
||||
*** JacobiSVD consists in performing a series of 2x2 SVD subproblems
|
||||
***/
|
||||
|
||||
template<typename MatrixType, int QRPreconditioner>
|
||||
struct svd_precondition_2x2_block_to_be_real<MatrixType, QRPreconditioner, false>
|
||||
{
|
||||
typedef JacobiSVD<MatrixType, QRPreconditioner> SVD;
|
||||
template <typename MatrixType, int Options>
|
||||
struct svd_precondition_2x2_block_to_be_real<MatrixType, Options, false> {
|
||||
typedef JacobiSVD<MatrixType, Options> SVD;
|
||||
typedef typename MatrixType::RealScalar RealScalar;
|
||||
static bool run(typename SVD::WorkMatrixType&, SVD&, Index, Index, RealScalar&) { return true; }
|
||||
};
|
||||
|
||||
template<typename MatrixType, int QRPreconditioner>
|
||||
struct svd_precondition_2x2_block_to_be_real<MatrixType, QRPreconditioner, true>
|
||||
{
|
||||
typedef JacobiSVD<MatrixType, QRPreconditioner> SVD;
|
||||
template <typename MatrixType, int Options>
|
||||
struct svd_precondition_2x2_block_to_be_real<MatrixType, Options, true> {
|
||||
typedef JacobiSVD<MatrixType, Options> SVD;
|
||||
typedef typename MatrixType::Scalar Scalar;
|
||||
typedef typename MatrixType::RealScalar RealScalar;
|
||||
static bool run(typename SVD::WorkMatrixType& work_matrix, SVD& svd, Index p, Index q, RealScalar& maxDiagEntry)
|
||||
@@ -375,7 +390,7 @@ struct svd_precondition_2x2_block_to_be_real<MatrixType, QRPreconditioner, true>
|
||||
const RealScalar considerAsZero = (std::numeric_limits<RealScalar>::min)();
|
||||
const RealScalar precision = NumTraits<Scalar>::epsilon();
|
||||
|
||||
if(n==0)
|
||||
if(numext::is_exactly_zero(n))
|
||||
{
|
||||
// make sure first column is zero
|
||||
work_matrix.coeffRef(p,p) = work_matrix.coeffRef(q,p) = Scalar(0);
|
||||
@@ -423,249 +438,258 @@ struct svd_precondition_2x2_block_to_be_real<MatrixType, QRPreconditioner, true>
|
||||
}
|
||||
};
|
||||
|
||||
template<typename _MatrixType, int QRPreconditioner>
|
||||
struct traits<JacobiSVD<_MatrixType,QRPreconditioner> >
|
||||
: traits<_MatrixType>
|
||||
{
|
||||
typedef _MatrixType MatrixType;
|
||||
template <typename MatrixType_, int Options>
|
||||
struct traits<JacobiSVD<MatrixType_, Options> > : svd_traits<MatrixType_, Options> {
|
||||
typedef MatrixType_ MatrixType;
|
||||
};
|
||||
|
||||
} // end namespace internal
|
||||
|
||||
/** \ingroup SVD_Module
|
||||
*
|
||||
*
|
||||
* \class JacobiSVD
|
||||
*
|
||||
* \brief Two-sided Jacobi SVD decomposition of a rectangular matrix
|
||||
*
|
||||
* \tparam _MatrixType the type of the matrix of which we are computing the SVD decomposition
|
||||
* \tparam QRPreconditioner this optional parameter allows to specify the type of QR decomposition that will be used internally
|
||||
* for the R-SVD step for non-square matrices. See discussion of possible values below.
|
||||
*
|
||||
* SVD decomposition consists in decomposing any n-by-p matrix \a A as a product
|
||||
* \f[ A = U S V^* \f]
|
||||
* where \a U is a n-by-n unitary, \a V is a p-by-p unitary, and \a S is a n-by-p real positive matrix which is zero outside of its main diagonal;
|
||||
* the diagonal entries of S are known as the \em singular \em values of \a A and the columns of \a U and \a V are known as the left
|
||||
* and right \em singular \em vectors of \a A respectively.
|
||||
*
|
||||
* Singular values are always sorted in decreasing order.
|
||||
*
|
||||
* This JacobiSVD decomposition computes only the singular values by default. If you want \a U or \a V, you need to ask for them explicitly.
|
||||
*
|
||||
* You can ask for only \em thin \a U or \a V to be computed, meaning the following. In case of a rectangular n-by-p matrix, letting \a m be the
|
||||
* smaller value among \a n and \a p, there are only \a m singular vectors; the remaining columns of \a U and \a V do not correspond to actual
|
||||
* singular vectors. Asking for \em thin \a U or \a V means asking for only their \a m first columns to be formed. So \a U is then a n-by-m matrix,
|
||||
* and \a V is then a p-by-m matrix. Notice that thin \a U and \a V are all you need for (least squares) solving.
|
||||
*
|
||||
* Here's an example demonstrating basic usage:
|
||||
* \include JacobiSVD_basic.cpp
|
||||
* Output: \verbinclude JacobiSVD_basic.out
|
||||
*
|
||||
* This JacobiSVD class is a two-sided Jacobi R-SVD decomposition, ensuring optimal reliability and accuracy. The downside is that it's slower than
|
||||
* bidiagonalizing SVD algorithms for large square matrices; however its complexity is still \f$ O(n^2p) \f$ where \a n is the smaller dimension and
|
||||
* \a p is the greater dimension, meaning that it is still of the same order of complexity as the faster bidiagonalizing R-SVD algorithms.
|
||||
* In particular, like any R-SVD, it takes advantage of non-squareness in that its complexity is only linear in the greater dimension.
|
||||
*
|
||||
* If the input matrix has inf or nan coefficients, the result of the computation is undefined, but the computation is guaranteed to
|
||||
* terminate in finite (and reasonable) time.
|
||||
*
|
||||
* The possible values for QRPreconditioner are:
|
||||
* \li ColPivHouseholderQRPreconditioner is the default. In practice it's very safe. It uses column-pivoting QR.
|
||||
* \li FullPivHouseholderQRPreconditioner, is the safest and slowest. It uses full-pivoting QR.
|
||||
* Contrary to other QRs, it doesn't allow computing thin unitaries.
|
||||
* \li HouseholderQRPreconditioner is the fastest, and less safe and accurate than the pivoting variants. It uses non-pivoting QR.
|
||||
* This is very similar in safety and accuracy to the bidiagonalization process used by bidiagonalizing SVD algorithms (since bidiagonalization
|
||||
* is inherently non-pivoting). However the resulting SVD is still more reliable than bidiagonalizing SVDs because the Jacobi-based iterarive
|
||||
* process is more reliable than the optimized bidiagonal SVD iterations.
|
||||
* \li NoQRPreconditioner allows not to use a QR preconditioner at all. This is useful if you know that you will only be computing
|
||||
* JacobiSVD decompositions of square matrices. Non-square matrices require a QR preconditioner. Using this option will result in
|
||||
* faster compilation and smaller executable code. It won't significantly speed up computation, since JacobiSVD is always checking
|
||||
* if QR preconditioning is needed before applying it anyway.
|
||||
*
|
||||
* \sa MatrixBase::jacobiSvd()
|
||||
*/
|
||||
template<typename _MatrixType, int QRPreconditioner> class JacobiSVD
|
||||
: public SVDBase<JacobiSVD<_MatrixType,QRPreconditioner> >
|
||||
{
|
||||
typedef SVDBase<JacobiSVD> Base;
|
||||
public:
|
||||
*
|
||||
*
|
||||
* \class JacobiSVD
|
||||
*
|
||||
* \brief Two-sided Jacobi SVD decomposition of a rectangular matrix
|
||||
*
|
||||
* \tparam MatrixType_ the type of the matrix of which we are computing the SVD decomposition
|
||||
* \tparam Options this optional parameter allows one to specify the type of QR decomposition that will be used
|
||||
* internally for the R-SVD step for non-square matrices. Additionally, it allows one to specify whether to compute thin
|
||||
* or full unitaries \a U and \a V. See discussion of possible values below.
|
||||
*
|
||||
* SVD decomposition consists in decomposing any n-by-p matrix \a A as a product
|
||||
* \f[ A = U S V^* \f]
|
||||
* where \a U is a n-by-n unitary, \a V is a p-by-p unitary, and \a S is a n-by-p real positive matrix which is zero
|
||||
* outside of its main diagonal; the diagonal entries of S are known as the \em singular \em values of \a A and the
|
||||
* columns of \a U and \a V are known as the left and right \em singular \em vectors of \a A respectively.
|
||||
*
|
||||
* Singular values are always sorted in decreasing order.
|
||||
*
|
||||
* This JacobiSVD decomposition computes only the singular values by default. If you want \a U or \a V, you need to ask
|
||||
* for them explicitly.
|
||||
*
|
||||
* You can ask for only \em thin \a U or \a V to be computed, meaning the following. In case of a rectangular n-by-p
|
||||
* matrix, letting \a m be the smaller value among \a n and \a p, there are only \a m singular vectors; the remaining
|
||||
* columns of \a U and \a V do not correspond to actual singular vectors. Asking for \em thin \a U or \a V means asking
|
||||
* for only their \a m first columns to be formed. So \a U is then a n-by-m matrix, and \a V is then a p-by-m matrix.
|
||||
* Notice that thin \a U and \a V are all you need for (least squares) solving.
|
||||
*
|
||||
* Here's an example demonstrating basic usage:
|
||||
* \include JacobiSVD_basic.cpp
|
||||
* Output: \verbinclude JacobiSVD_basic.out
|
||||
*
|
||||
* This JacobiSVD class is a two-sided Jacobi R-SVD decomposition, ensuring optimal reliability and accuracy. The
|
||||
* downside is that it's slower than bidiagonalizing SVD algorithms for large square matrices; however its complexity is
|
||||
* still \f$ O(n^2p) \f$ where \a n is the smaller dimension and \a p is the greater dimension, meaning that it is still
|
||||
* of the same order of complexity as the faster bidiagonalizing R-SVD algorithms. In particular, like any R-SVD, it
|
||||
* takes advantage of non-squareness in that its complexity is only linear in the greater dimension.
|
||||
*
|
||||
* If the input matrix has inf or nan coefficients, the result of the computation is undefined, but the computation is
|
||||
* guaranteed to terminate in finite (and reasonable) time.
|
||||
*
|
||||
* The possible QR preconditioners that can be set with Options template parameter are:
|
||||
* \li ColPivHouseholderQRPreconditioner is the default. In practice it's very safe. It uses column-pivoting QR.
|
||||
* \li FullPivHouseholderQRPreconditioner, is the safest and slowest. It uses full-pivoting QR.
|
||||
* Contrary to other QRs, it doesn't allow computing thin unitaries.
|
||||
* \li HouseholderQRPreconditioner is the fastest, and less safe and accurate than the pivoting variants. It uses
|
||||
* non-pivoting QR. This is very similar in safety and accuracy to the bidiagonalization process used by bidiagonalizing
|
||||
* SVD algorithms (since bidiagonalization is inherently non-pivoting). However the resulting SVD is still more reliable
|
||||
* than bidiagonalizing SVDs because the Jacobi-based iterarive process is more reliable than the optimized bidiagonal
|
||||
* SVD iterations. \li NoQRPreconditioner allows not to use a QR preconditioner at all. This is useful if you know that
|
||||
* you will only be computing JacobiSVD decompositions of square matrices. Non-square matrices require a QR
|
||||
* preconditioner. Using this option will result in faster compilation and smaller executable code. It won't
|
||||
* significantly speed up computation, since JacobiSVD is always checking if QR preconditioning is needed before
|
||||
* applying it anyway.
|
||||
*
|
||||
* One may also use the Options template parameter to specify how the unitaries should be computed. The options are
|
||||
* #ComputeThinU, #ComputeThinV, #ComputeFullU, #ComputeFullV. It is not possible to request both the thin and full
|
||||
* versions of a unitary. By default, unitaries will not be computed.
|
||||
*
|
||||
* You can set the QRPreconditioner and unitary options together: JacobiSVD<MatrixType,
|
||||
* ColPivHouseholderQRPreconditioner | ComputeThinU | ComputeFullV>
|
||||
*
|
||||
* \sa MatrixBase::jacobiSvd()
|
||||
*/
|
||||
template <typename MatrixType_, int Options_>
|
||||
class JacobiSVD : public SVDBase<JacobiSVD<MatrixType_, Options_> > {
|
||||
typedef SVDBase<JacobiSVD> Base;
|
||||
|
||||
typedef _MatrixType MatrixType;
|
||||
typedef typename MatrixType::Scalar Scalar;
|
||||
typedef typename NumTraits<typename MatrixType::Scalar>::Real RealScalar;
|
||||
enum {
|
||||
RowsAtCompileTime = MatrixType::RowsAtCompileTime,
|
||||
ColsAtCompileTime = MatrixType::ColsAtCompileTime,
|
||||
DiagSizeAtCompileTime = EIGEN_SIZE_MIN_PREFER_DYNAMIC(RowsAtCompileTime,ColsAtCompileTime),
|
||||
MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
|
||||
MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime,
|
||||
MaxDiagSizeAtCompileTime = EIGEN_SIZE_MIN_PREFER_FIXED(MaxRowsAtCompileTime,MaxColsAtCompileTime),
|
||||
MatrixOptions = MatrixType::Options
|
||||
};
|
||||
public:
|
||||
typedef MatrixType_ MatrixType;
|
||||
typedef typename Base::Scalar Scalar;
|
||||
typedef typename Base::RealScalar RealScalar;
|
||||
typedef typename Base::Index Index;
|
||||
enum {
|
||||
Options = Options_,
|
||||
QRPreconditioner = internal::get_qr_preconditioner(Options),
|
||||
RowsAtCompileTime = Base::RowsAtCompileTime,
|
||||
ColsAtCompileTime = Base::ColsAtCompileTime,
|
||||
DiagSizeAtCompileTime = Base::DiagSizeAtCompileTime,
|
||||
MaxRowsAtCompileTime = Base::MaxRowsAtCompileTime,
|
||||
MaxColsAtCompileTime = Base::MaxColsAtCompileTime,
|
||||
MaxDiagSizeAtCompileTime = Base::MaxDiagSizeAtCompileTime,
|
||||
MatrixOptions = Base::MatrixOptions
|
||||
};
|
||||
|
||||
typedef typename Base::MatrixUType MatrixUType;
|
||||
typedef typename Base::MatrixVType MatrixVType;
|
||||
typedef typename Base::SingularValuesType SingularValuesType;
|
||||
|
||||
typedef typename internal::plain_row_type<MatrixType>::type RowType;
|
||||
typedef typename internal::plain_col_type<MatrixType>::type ColType;
|
||||
typedef Matrix<Scalar, DiagSizeAtCompileTime, DiagSizeAtCompileTime,
|
||||
MatrixOptions, MaxDiagSizeAtCompileTime, MaxDiagSizeAtCompileTime>
|
||||
WorkMatrixType;
|
||||
typedef typename Base::MatrixUType MatrixUType;
|
||||
typedef typename Base::MatrixVType MatrixVType;
|
||||
typedef typename Base::SingularValuesType SingularValuesType;
|
||||
typedef Matrix<Scalar, DiagSizeAtCompileTime, DiagSizeAtCompileTime, MatrixOptions, MaxDiagSizeAtCompileTime,
|
||||
MaxDiagSizeAtCompileTime>
|
||||
WorkMatrixType;
|
||||
|
||||
/** \brief Default Constructor.
|
||||
*
|
||||
* The default constructor is useful in cases in which the user intends to
|
||||
* perform decompositions via JacobiSVD::compute(const MatrixType&).
|
||||
*/
|
||||
JacobiSVD()
|
||||
{}
|
||||
/** \brief Default Constructor.
|
||||
*
|
||||
* The default constructor is useful in cases in which the user intends to
|
||||
* perform decompositions via JacobiSVD::compute(const MatrixType&).
|
||||
*/
|
||||
JacobiSVD() {}
|
||||
|
||||
/** \brief Default Constructor with memory preallocation
|
||||
*
|
||||
* Like the default constructor but with preallocation of the internal data
|
||||
* according to the specified problem size and \a Options template parameter.
|
||||
*
|
||||
* \sa JacobiSVD()
|
||||
*/
|
||||
JacobiSVD(Index rows, Index cols) { allocate(rows, cols, internal::get_computation_options(Options)); }
|
||||
|
||||
/** \brief Default Constructor with memory preallocation
|
||||
*
|
||||
* Like the default constructor but with preallocation of the internal data
|
||||
* according to the specified problem size.
|
||||
* \sa JacobiSVD()
|
||||
*/
|
||||
JacobiSVD(Index rows, Index cols, unsigned int computationOptions = 0)
|
||||
{
|
||||
allocate(rows, cols, computationOptions);
|
||||
}
|
||||
/** \brief Default Constructor with memory preallocation
|
||||
*
|
||||
* Like the default constructor but with preallocation of the internal data
|
||||
* according to the specified problem size.
|
||||
*
|
||||
* One \b cannot request unitaries using both the \a Options template parameter
|
||||
* and the constructor. If possible, prefer using the \a Options template parameter.
|
||||
*
|
||||
* \param computationOptions specify whether to compute Thin/Full unitaries U/V
|
||||
* \sa JacobiSVD()
|
||||
*
|
||||
* \deprecated Will be removed in the next major Eigen version. Options should
|
||||
* be specified in the \a Options template parameter.
|
||||
*/
|
||||
EIGEN_DEPRECATED
|
||||
JacobiSVD(Index rows, Index cols, unsigned int computationOptions) {
|
||||
internal::check_svd_options_assertions<MatrixType, Options>(computationOptions, rows, cols);
|
||||
allocate(rows, cols, computationOptions);
|
||||
}
|
||||
|
||||
/** \brief Constructor performing the decomposition of given matrix.
|
||||
*
|
||||
* \param matrix the matrix to decompose
|
||||
* \param computationOptions optional parameter allowing to specify if you want full or thin U or V unitaries to be computed.
|
||||
* By default, none is computed. This is a bit-field, the possible bits are #ComputeFullU, #ComputeThinU,
|
||||
* #ComputeFullV, #ComputeThinV.
|
||||
*
|
||||
* Thin unitaries are only available if your matrix type has a Dynamic number of columns (for example MatrixXf). They also are not
|
||||
* available with the (non-default) FullPivHouseholderQR preconditioner.
|
||||
*/
|
||||
explicit JacobiSVD(const MatrixType& matrix, unsigned int computationOptions = 0)
|
||||
{
|
||||
compute(matrix, computationOptions);
|
||||
}
|
||||
/** \brief Constructor performing the decomposition of given matrix, using the custom options specified
|
||||
* with the \a Options template paramter.
|
||||
*
|
||||
* \param matrix the matrix to decompose
|
||||
*/
|
||||
explicit JacobiSVD(const MatrixType& matrix) { compute_impl(matrix, internal::get_computation_options(Options)); }
|
||||
|
||||
/** \brief Method performing the decomposition of given matrix using custom options.
|
||||
*
|
||||
* \param matrix the matrix to decompose
|
||||
* \param computationOptions optional parameter allowing to specify if you want full or thin U or V unitaries to be computed.
|
||||
* By default, none is computed. This is a bit-field, the possible bits are #ComputeFullU, #ComputeThinU,
|
||||
* #ComputeFullV, #ComputeThinV.
|
||||
*
|
||||
* Thin unitaries are only available if your matrix type has a Dynamic number of columns (for example MatrixXf). They also are not
|
||||
* available with the (non-default) FullPivHouseholderQR preconditioner.
|
||||
*/
|
||||
JacobiSVD& compute(const MatrixType& matrix, unsigned int computationOptions);
|
||||
/** \brief Constructor performing the decomposition of given matrix using specified options
|
||||
* for computing unitaries.
|
||||
*
|
||||
* One \b cannot request unitiaries using both the \a Options template parameter
|
||||
* and the constructor. If possible, prefer using the \a Options template parameter.
|
||||
*
|
||||
* \param matrix the matrix to decompose
|
||||
* \param computationOptions specify whether to compute Thin/Full unitaries U/V
|
||||
*
|
||||
* \deprecated Will be removed in the next major Eigen version. Options should
|
||||
* be specified in the \a Options template parameter.
|
||||
*/
|
||||
// EIGEN_DEPRECATED // TODO(cantonios): re-enable after fixing a few 3p libraries that error on deprecation warnings.
|
||||
JacobiSVD(const MatrixType& matrix, unsigned int computationOptions) {
|
||||
internal::check_svd_options_assertions<MatrixType, Options>(computationOptions, matrix.rows(), matrix.cols());
|
||||
compute_impl(matrix, computationOptions);
|
||||
}
|
||||
|
||||
/** \brief Method performing the decomposition of given matrix using current options.
|
||||
*
|
||||
* \param matrix the matrix to decompose
|
||||
*
|
||||
* This method uses the current \a computationOptions, as already passed to the constructor or to compute(const MatrixType&, unsigned int).
|
||||
*/
|
||||
JacobiSVD& compute(const MatrixType& matrix)
|
||||
{
|
||||
return compute(matrix, m_computationOptions);
|
||||
}
|
||||
/** \brief Method performing the decomposition of given matrix. Computes Thin/Full unitaries U/V if specified
|
||||
* using the \a Options template parameter or the class constructor.
|
||||
*
|
||||
* \param matrix the matrix to decompose
|
||||
*/
|
||||
JacobiSVD& compute(const MatrixType& matrix) { return compute_impl(matrix, m_computationOptions); }
|
||||
|
||||
using Base::computeU;
|
||||
using Base::computeV;
|
||||
using Base::rows;
|
||||
using Base::cols;
|
||||
using Base::rank;
|
||||
/** \brief Method performing the decomposition of given matrix, as specified by
|
||||
* the `computationOptions` parameter.
|
||||
*
|
||||
* \param matrix the matrix to decompose
|
||||
* \param computationOptions specify whether to compute Thin/Full unitaries U/V
|
||||
*
|
||||
* \deprecated Will be removed in the next major Eigen version. Options should
|
||||
* be specified in the \a Options template parameter.
|
||||
*/
|
||||
EIGEN_DEPRECATED
|
||||
JacobiSVD& compute(const MatrixType& matrix, unsigned int computationOptions) {
|
||||
internal::check_svd_options_assertions<MatrixType, Options>(m_computationOptions, matrix.rows(), matrix.cols());
|
||||
return compute_impl(matrix, computationOptions);
|
||||
}
|
||||
|
||||
private:
|
||||
void allocate(Index rows, Index cols, unsigned int computationOptions);
|
||||
using Base::computeU;
|
||||
using Base::computeV;
|
||||
using Base::rows;
|
||||
using Base::cols;
|
||||
using Base::rank;
|
||||
|
||||
protected:
|
||||
using Base::m_matrixU;
|
||||
using Base::m_matrixV;
|
||||
using Base::m_singularValues;
|
||||
using Base::m_info;
|
||||
using Base::m_isInitialized;
|
||||
using Base::m_isAllocated;
|
||||
using Base::m_usePrescribedThreshold;
|
||||
using Base::m_computeFullU;
|
||||
using Base::m_computeThinU;
|
||||
using Base::m_computeFullV;
|
||||
using Base::m_computeThinV;
|
||||
using Base::m_computationOptions;
|
||||
using Base::m_nonzeroSingularValues;
|
||||
using Base::m_rows;
|
||||
using Base::m_cols;
|
||||
using Base::m_diagSize;
|
||||
using Base::m_prescribedThreshold;
|
||||
WorkMatrixType m_workMatrix;
|
||||
private:
|
||||
void allocate(Index rows, Index cols, unsigned int computationOptions);
|
||||
JacobiSVD& compute_impl(const MatrixType& matrix, unsigned int computationOptions);
|
||||
|
||||
template<typename __MatrixType, int _QRPreconditioner, bool _IsComplex>
|
||||
friend struct internal::svd_precondition_2x2_block_to_be_real;
|
||||
template<typename __MatrixType, int _QRPreconditioner, int _Case, bool _DoAnything>
|
||||
friend struct internal::qr_preconditioner_impl;
|
||||
protected:
|
||||
using Base::m_cols;
|
||||
using Base::m_computationOptions;
|
||||
using Base::m_computeFullU;
|
||||
using Base::m_computeFullV;
|
||||
using Base::m_computeThinU;
|
||||
using Base::m_computeThinV;
|
||||
using Base::m_diagSize;
|
||||
using Base::m_info;
|
||||
using Base::m_isAllocated;
|
||||
using Base::m_isInitialized;
|
||||
using Base::m_matrixU;
|
||||
using Base::m_matrixV;
|
||||
using Base::m_nonzeroSingularValues;
|
||||
using Base::m_prescribedThreshold;
|
||||
using Base::m_rows;
|
||||
using Base::m_singularValues;
|
||||
using Base::m_usePrescribedThreshold;
|
||||
using Base::ShouldComputeThinU;
|
||||
using Base::ShouldComputeThinV;
|
||||
|
||||
internal::qr_preconditioner_impl<MatrixType, QRPreconditioner, internal::PreconditionIfMoreColsThanRows> m_qr_precond_morecols;
|
||||
internal::qr_preconditioner_impl<MatrixType, QRPreconditioner, internal::PreconditionIfMoreRowsThanCols> m_qr_precond_morerows;
|
||||
MatrixType m_scaledMatrix;
|
||||
EIGEN_STATIC_ASSERT(!(ShouldComputeThinU && int(QRPreconditioner) == int(FullPivHouseholderQRPreconditioner)) &&
|
||||
!(ShouldComputeThinU && int(QRPreconditioner) == int(FullPivHouseholderQRPreconditioner)),
|
||||
"JacobiSVD: can't compute thin U or thin V with the FullPivHouseholderQR preconditioner. "
|
||||
"Use the ColPivHouseholderQR preconditioner instead.")
|
||||
|
||||
template <typename MatrixType__, int Options__, bool IsComplex_>
|
||||
friend struct internal::svd_precondition_2x2_block_to_be_real;
|
||||
template <typename MatrixType__, int Options__, int QRPreconditioner_, int Case_, bool DoAnything_>
|
||||
friend struct internal::qr_preconditioner_impl;
|
||||
|
||||
internal::qr_preconditioner_impl<MatrixType, Options, QRPreconditioner, internal::PreconditionIfMoreColsThanRows>
|
||||
m_qr_precond_morecols;
|
||||
internal::qr_preconditioner_impl<MatrixType, Options, QRPreconditioner, internal::PreconditionIfMoreRowsThanCols>
|
||||
m_qr_precond_morerows;
|
||||
WorkMatrixType m_workMatrix;
|
||||
MatrixType m_scaledMatrix;
|
||||
};
|
||||
|
||||
template<typename MatrixType, int QRPreconditioner>
|
||||
void JacobiSVD<MatrixType, QRPreconditioner>::allocate(Eigen::Index rows, Eigen::Index cols, unsigned int computationOptions)
|
||||
{
|
||||
eigen_assert(rows >= 0 && cols >= 0);
|
||||
template <typename MatrixType, int Options>
|
||||
void JacobiSVD<MatrixType, Options>::allocate(Index rows, Index cols, unsigned int computationOptions) {
|
||||
if (Base::allocate(rows, cols, computationOptions)) return;
|
||||
|
||||
if (m_isAllocated &&
|
||||
rows == m_rows &&
|
||||
cols == m_cols &&
|
||||
computationOptions == m_computationOptions)
|
||||
{
|
||||
return;
|
||||
}
|
||||
eigen_assert(!(ShouldComputeThinU && int(QRPreconditioner) == int(FullPivHouseholderQRPreconditioner)) &&
|
||||
!(ShouldComputeThinU && int(QRPreconditioner) == int(FullPivHouseholderQRPreconditioner)) &&
|
||||
"JacobiSVD: can't compute thin U or thin V with the FullPivHouseholderQR preconditioner. "
|
||||
"Use the ColPivHouseholderQR preconditioner instead.");
|
||||
|
||||
m_rows = rows;
|
||||
m_cols = cols;
|
||||
m_info = Success;
|
||||
m_isInitialized = false;
|
||||
m_isAllocated = true;
|
||||
m_computationOptions = computationOptions;
|
||||
m_computeFullU = (computationOptions & ComputeFullU) != 0;
|
||||
m_computeThinU = (computationOptions & ComputeThinU) != 0;
|
||||
m_computeFullV = (computationOptions & ComputeFullV) != 0;
|
||||
m_computeThinV = (computationOptions & ComputeThinV) != 0;
|
||||
eigen_assert(!(m_computeFullU && m_computeThinU) && "JacobiSVD: you can't ask for both full and thin U");
|
||||
eigen_assert(!(m_computeFullV && m_computeThinV) && "JacobiSVD: you can't ask for both full and thin V");
|
||||
eigen_assert(EIGEN_IMPLIES(m_computeThinU || m_computeThinV, MatrixType::ColsAtCompileTime==Dynamic) &&
|
||||
"JacobiSVD: thin U and V are only available when your matrix has a dynamic number of columns.");
|
||||
if (QRPreconditioner == FullPivHouseholderQRPreconditioner)
|
||||
{
|
||||
eigen_assert(!(m_computeThinU || m_computeThinV) &&
|
||||
"JacobiSVD: can't compute thin U or thin V with the FullPivHouseholderQR preconditioner. "
|
||||
"Use the ColPivHouseholderQR preconditioner instead.");
|
||||
}
|
||||
m_diagSize = (std::min)(m_rows, m_cols);
|
||||
m_singularValues.resize(m_diagSize);
|
||||
if(RowsAtCompileTime==Dynamic)
|
||||
m_matrixU.resize(m_rows, m_computeFullU ? m_rows
|
||||
: m_computeThinU ? m_diagSize
|
||||
: 0);
|
||||
if(ColsAtCompileTime==Dynamic)
|
||||
m_matrixV.resize(m_cols, m_computeFullV ? m_cols
|
||||
: m_computeThinV ? m_diagSize
|
||||
: 0);
|
||||
m_workMatrix.resize(m_diagSize, m_diagSize);
|
||||
|
||||
if(m_cols>m_rows) m_qr_precond_morecols.allocate(*this);
|
||||
if(m_rows>m_cols) m_qr_precond_morerows.allocate(*this);
|
||||
if(m_rows!=m_cols) m_scaledMatrix.resize(rows,cols);
|
||||
}
|
||||
|
||||
template<typename MatrixType, int QRPreconditioner>
|
||||
JacobiSVD<MatrixType, QRPreconditioner>&
|
||||
JacobiSVD<MatrixType, QRPreconditioner>::compute(const MatrixType& matrix, unsigned int computationOptions)
|
||||
{
|
||||
template <typename MatrixType, int Options>
|
||||
JacobiSVD<MatrixType, Options>& JacobiSVD<MatrixType, Options>::compute_impl(const MatrixType& matrix,
|
||||
unsigned int computationOptions) {
|
||||
using std::abs;
|
||||
|
||||
allocate(matrix.rows(), matrix.cols(), computationOptions);
|
||||
|
||||
// currently we stop when we reach precision 2*epsilon as the last bit of precision can require an unreasonable number of iterations,
|
||||
@@ -682,7 +706,7 @@ JacobiSVD<MatrixType, QRPreconditioner>::compute(const MatrixType& matrix, unsig
|
||||
m_info = InvalidInput;
|
||||
return *this;
|
||||
}
|
||||
if(scale==RealScalar(0)) scale = RealScalar(1);
|
||||
if(numext::is_exactly_zero(scale)) scale = RealScalar(1);
|
||||
|
||||
/*** step 1. The R-SVD step: we use a QR decomposition to reduce to the case of a square matrix */
|
||||
|
||||
@@ -724,8 +748,8 @@ JacobiSVD<MatrixType, QRPreconditioner>::compute(const MatrixType& matrix, unsig
|
||||
finished = false;
|
||||
// perform SVD decomposition of 2x2 sub-matrix corresponding to indices p,q to make it diagonal
|
||||
// the complex to real operation returns true if the updated 2x2 block is not already diagonal
|
||||
if(internal::svd_precondition_2x2_block_to_be_real<MatrixType, QRPreconditioner>::run(m_workMatrix, *this, p, q, maxDiagEntry))
|
||||
{
|
||||
if (internal::svd_precondition_2x2_block_to_be_real<MatrixType, Options>::run(m_workMatrix, *this, p, q,
|
||||
maxDiagEntry)) {
|
||||
JacobiRotation<RealScalar> j_left, j_right;
|
||||
internal::real_2x2_jacobi_svd(m_workMatrix, p, q, &j_left, &j_right);
|
||||
|
||||
@@ -775,7 +799,7 @@ JacobiSVD<MatrixType, QRPreconditioner>::compute(const MatrixType& matrix, unsig
|
||||
{
|
||||
Index pos;
|
||||
RealScalar maxRemainingSingularValue = m_singularValues.tail(m_diagSize-i).maxCoeff(&pos);
|
||||
if(maxRemainingSingularValue == RealScalar(0))
|
||||
if(numext::is_exactly_zero(maxRemainingSingularValue))
|
||||
{
|
||||
m_nonzeroSingularValues = i;
|
||||
break;
|
||||
@@ -800,13 +824,19 @@ JacobiSVD<MatrixType, QRPreconditioner>::compute(const MatrixType& matrix, unsig
|
||||
*
|
||||
* \sa class JacobiSVD
|
||||
*/
|
||||
template<typename Derived>
|
||||
JacobiSVD<typename MatrixBase<Derived>::PlainObject>
|
||||
MatrixBase<Derived>::jacobiSvd(unsigned int computationOptions) const
|
||||
{
|
||||
return JacobiSVD<PlainObject>(*this, computationOptions);
|
||||
template <typename Derived>
|
||||
template <int Options>
|
||||
JacobiSVD<typename MatrixBase<Derived>::PlainObject, Options> MatrixBase<Derived>::jacobiSvd() const {
|
||||
return JacobiSVD<PlainObject, Options>(*this);
|
||||
}
|
||||
|
||||
} // end namespace Eigen
|
||||
template <typename Derived>
|
||||
template <int Options>
|
||||
JacobiSVD<typename MatrixBase<Derived>::PlainObject, Options> MatrixBase<Derived>::jacobiSvd(
|
||||
unsigned int computationOptions) const {
|
||||
return JacobiSVD<PlainObject, Options>(*this, computationOptions);
|
||||
}
|
||||
|
||||
} // end namespace Eigen
|
||||
|
||||
#endif // EIGEN_JACOBISVD_H
|
||||
|
||||
@@ -33,14 +33,17 @@
|
||||
#ifndef EIGEN_JACOBISVD_LAPACKE_H
|
||||
#define EIGEN_JACOBISVD_LAPACKE_H
|
||||
|
||||
#include "./InternalHeaderCheck.h"
|
||||
|
||||
namespace Eigen {
|
||||
|
||||
/** \internal Specialization for the data types supported by LAPACKe */
|
||||
|
||||
#define EIGEN_LAPACKE_SVD(EIGTYPE, LAPACKE_TYPE, LAPACKE_RTYPE, LAPACKE_PREFIX, EIGCOLROW, LAPACKE_COLROW) \
|
||||
#define EIGEN_LAPACKE_SVD(EIGTYPE, LAPACKE_TYPE, LAPACKE_RTYPE, LAPACKE_PREFIX, EIGCOLROW, LAPACKE_COLROW, OPTIONS) \
|
||||
template<> inline \
|
||||
JacobiSVD<Matrix<EIGTYPE, Dynamic, Dynamic, EIGCOLROW, Dynamic, Dynamic>, ColPivHouseholderQRPreconditioner>& \
|
||||
JacobiSVD<Matrix<EIGTYPE, Dynamic, Dynamic, EIGCOLROW, Dynamic, Dynamic>, ColPivHouseholderQRPreconditioner>::compute(const Matrix<EIGTYPE, Dynamic, Dynamic, EIGCOLROW, Dynamic, Dynamic>& matrix, unsigned int computationOptions) \
|
||||
JacobiSVD<Matrix<EIGTYPE, Dynamic, Dynamic, EIGCOLROW, Dynamic, Dynamic>, OPTIONS>& \
|
||||
JacobiSVD<Matrix<EIGTYPE, Dynamic, Dynamic, EIGCOLROW, Dynamic, Dynamic>, OPTIONS>::compute_impl(const Matrix<EIGTYPE, Dynamic, Dynamic, EIGCOLROW, Dynamic, Dynamic>& matrix, \
|
||||
unsigned int computationOptions) \
|
||||
{ \
|
||||
typedef Matrix<EIGTYPE, Dynamic, Dynamic, EIGCOLROW, Dynamic, Dynamic> MatrixType; \
|
||||
/*typedef MatrixType::Scalar Scalar;*/ \
|
||||
@@ -69,22 +72,41 @@ JacobiSVD<Matrix<EIGTYPE, Dynamic, Dynamic, EIGCOLROW, Dynamic, Dynamic>, ColPiv
|
||||
} else { ldvt=1; vt=&dummy; }\
|
||||
Matrix<LAPACKE_RTYPE, Dynamic, Dynamic> superb; superb.resize(m_diagSize, 1); \
|
||||
MatrixType m_temp; m_temp = matrix; \
|
||||
LAPACKE_##LAPACKE_PREFIX##gesvd( matrix_order, jobu, jobvt, internal::convert_index<lapack_int>(m_rows), internal::convert_index<lapack_int>(m_cols), (LAPACKE_TYPE*)m_temp.data(), lda, (LAPACKE_RTYPE*)m_singularValues.data(), u, ldu, vt, ldvt, superb.data()); \
|
||||
if (computeV()) m_matrixV = localV.adjoint(); \
|
||||
lapack_int info = LAPACKE_##LAPACKE_PREFIX##gesvd( matrix_order, jobu, jobvt, internal::convert_index<lapack_int>(m_rows), internal::convert_index<lapack_int>(m_cols), (LAPACKE_TYPE*)m_temp.data(), lda, (LAPACKE_RTYPE*)m_singularValues.data(), u, ldu, vt, ldvt, superb.data()); \
|
||||
/* Check the result of the LAPACK call */ \
|
||||
if (info < 0 || !m_singularValues.allFinite()) { \
|
||||
m_info = InvalidInput; \
|
||||
} else if (info > 0 ) { \
|
||||
m_info = NoConvergence; \
|
||||
} else { \
|
||||
m_info = Success; \
|
||||
if (computeV()) m_matrixV = localV.adjoint(); \
|
||||
} \
|
||||
/* for(int i=0;i<m_diagSize;i++) if (m_singularValues.coeffRef(i) < precision) { m_nonzeroSingularValues--; m_singularValues.coeffRef(i)=RealScalar(0);}*/ \
|
||||
m_isInitialized = true; \
|
||||
return *this; \
|
||||
}
|
||||
|
||||
EIGEN_LAPACKE_SVD(double, double, double, d, ColMajor, LAPACK_COL_MAJOR)
|
||||
EIGEN_LAPACKE_SVD(float, float, float , s, ColMajor, LAPACK_COL_MAJOR)
|
||||
EIGEN_LAPACKE_SVD(dcomplex, lapack_complex_double, double, z, ColMajor, LAPACK_COL_MAJOR)
|
||||
EIGEN_LAPACKE_SVD(scomplex, lapack_complex_float, float , c, ColMajor, LAPACK_COL_MAJOR)
|
||||
#define EIGEN_LAPACK_SVD_OPTIONS(OPTIONS) \
|
||||
EIGEN_LAPACKE_SVD(double, double, double, d, ColMajor, LAPACK_COL_MAJOR, OPTIONS) \
|
||||
EIGEN_LAPACKE_SVD(float, float, float , s, ColMajor, LAPACK_COL_MAJOR, OPTIONS) \
|
||||
EIGEN_LAPACKE_SVD(dcomplex, lapack_complex_double, double, z, ColMajor, LAPACK_COL_MAJOR, OPTIONS) \
|
||||
EIGEN_LAPACKE_SVD(scomplex, lapack_complex_float, float , c, ColMajor, LAPACK_COL_MAJOR, OPTIONS) \
|
||||
\
|
||||
EIGEN_LAPACKE_SVD(double, double, double, d, RowMajor, LAPACK_ROW_MAJOR, OPTIONS) \
|
||||
EIGEN_LAPACKE_SVD(float, float, float , s, RowMajor, LAPACK_ROW_MAJOR, OPTIONS) \
|
||||
EIGEN_LAPACKE_SVD(dcomplex, lapack_complex_double, double, z, RowMajor, LAPACK_ROW_MAJOR, OPTIONS) \
|
||||
EIGEN_LAPACKE_SVD(scomplex, lapack_complex_float, float , c, RowMajor, LAPACK_ROW_MAJOR, OPTIONS)
|
||||
|
||||
EIGEN_LAPACKE_SVD(double, double, double, d, RowMajor, LAPACK_ROW_MAJOR)
|
||||
EIGEN_LAPACKE_SVD(float, float, float , s, RowMajor, LAPACK_ROW_MAJOR)
|
||||
EIGEN_LAPACKE_SVD(dcomplex, lapack_complex_double, double, z, RowMajor, LAPACK_ROW_MAJOR)
|
||||
EIGEN_LAPACKE_SVD(scomplex, lapack_complex_float, float , c, RowMajor, LAPACK_ROW_MAJOR)
|
||||
EIGEN_LAPACK_SVD_OPTIONS(0)
|
||||
EIGEN_LAPACK_SVD_OPTIONS(ComputeThinU)
|
||||
EIGEN_LAPACK_SVD_OPTIONS(ComputeThinV)
|
||||
EIGEN_LAPACK_SVD_OPTIONS(ComputeFullU)
|
||||
EIGEN_LAPACK_SVD_OPTIONS(ComputeFullV)
|
||||
EIGEN_LAPACK_SVD_OPTIONS(ComputeThinU | ComputeThinV)
|
||||
EIGEN_LAPACK_SVD_OPTIONS(ComputeFullU | ComputeFullV)
|
||||
EIGEN_LAPACK_SVD_OPTIONS(ComputeThinU | ComputeFullV)
|
||||
EIGEN_LAPACK_SVD_OPTIONS(ComputeFullU | ComputeThinV)
|
||||
|
||||
} // end namespace Eigen
|
||||
|
||||
|
||||
@@ -16,9 +16,42 @@
|
||||
#ifndef EIGEN_SVDBASE_H
|
||||
#define EIGEN_SVDBASE_H
|
||||
|
||||
#include "./InternalHeaderCheck.h"
|
||||
|
||||
namespace Eigen {
|
||||
|
||||
namespace internal {
|
||||
|
||||
enum OptionsMasks {
|
||||
QRPreconditionerBits = NoQRPreconditioner | HouseholderQRPreconditioner | ColPivHouseholderQRPreconditioner |
|
||||
FullPivHouseholderQRPreconditioner,
|
||||
ComputationOptionsBits = ComputeThinU | ComputeFullU | ComputeThinV | ComputeFullV
|
||||
};
|
||||
|
||||
constexpr int get_qr_preconditioner(int options) { return options & QRPreconditionerBits; }
|
||||
|
||||
constexpr int get_computation_options(int options) { return options & ComputationOptionsBits; }
|
||||
|
||||
constexpr bool should_svd_compute_thin_u(int options) { return (options & ComputeThinU) != 0; }
|
||||
constexpr bool should_svd_compute_full_u(int options) { return (options & ComputeFullU) != 0; }
|
||||
constexpr bool should_svd_compute_thin_v(int options) { return (options & ComputeThinV) != 0; }
|
||||
constexpr bool should_svd_compute_full_v(int options) { return (options & ComputeFullV) != 0; }
|
||||
|
||||
template<typename MatrixType, int Options>
|
||||
void check_svd_options_assertions(unsigned int computationOptions, Index rows, Index cols) {
|
||||
EIGEN_STATIC_ASSERT((Options & ComputationOptionsBits) == 0,
|
||||
"SVDBase: Cannot request U or V using both static and runtime options, even if they match. "
|
||||
"Requesting unitaries at runtime is DEPRECATED: "
|
||||
"Prefer requesting unitaries statically, using the Options template parameter.");
|
||||
eigen_assert(!(should_svd_compute_thin_u(computationOptions) && cols < rows && MatrixType::RowsAtCompileTime != Dynamic) &&
|
||||
!(should_svd_compute_thin_v(computationOptions) && rows < cols && MatrixType::ColsAtCompileTime != Dynamic) &&
|
||||
"SVDBase: If thin U is requested at runtime, your matrix must have more rows than columns or a dynamic number of rows."
|
||||
"Similarly, if thin V is requested at runtime, you matrix must have more columns than rows or a dynamic number of columns.");
|
||||
(void)computationOptions;
|
||||
(void)rows;
|
||||
(void)cols;
|
||||
}
|
||||
|
||||
template<typename Derived> struct traits<SVDBase<Derived> >
|
||||
: traits<Derived>
|
||||
{
|
||||
@@ -27,6 +60,29 @@ template<typename Derived> struct traits<SVDBase<Derived> >
|
||||
typedef int StorageIndex;
|
||||
enum { Flags = 0 };
|
||||
};
|
||||
|
||||
template <typename MatrixType, int Options_>
|
||||
struct svd_traits : traits<MatrixType> {
|
||||
static constexpr int Options = Options_;
|
||||
static constexpr bool ShouldComputeFullU = internal::should_svd_compute_full_u(Options);
|
||||
static constexpr bool ShouldComputeThinU = internal::should_svd_compute_thin_u(Options);
|
||||
static constexpr bool ShouldComputeFullV = internal::should_svd_compute_full_v(Options);
|
||||
static constexpr bool ShouldComputeThinV = internal::should_svd_compute_thin_v(Options);
|
||||
enum {
|
||||
DiagSizeAtCompileTime =
|
||||
internal::min_size_prefer_dynamic(MatrixType::RowsAtCompileTime, MatrixType::ColsAtCompileTime),
|
||||
MaxDiagSizeAtCompileTime =
|
||||
internal::min_size_prefer_dynamic(MatrixType::MaxRowsAtCompileTime, MatrixType::MaxColsAtCompileTime),
|
||||
MatrixUColsAtCompileTime = ShouldComputeThinU ? DiagSizeAtCompileTime
|
||||
: MatrixType::RowsAtCompileTime,
|
||||
MatrixVColsAtCompileTime = ShouldComputeThinV ? DiagSizeAtCompileTime
|
||||
: MatrixType::ColsAtCompileTime,
|
||||
MatrixUMaxColsAtCompileTime = ShouldComputeThinU ? MaxDiagSizeAtCompileTime
|
||||
: MatrixType::MaxRowsAtCompileTime,
|
||||
MatrixVMaxColsAtCompileTime = ShouldComputeThinV ? MaxDiagSizeAtCompileTime
|
||||
: MatrixType::MaxColsAtCompileTime
|
||||
};
|
||||
};
|
||||
}
|
||||
|
||||
/** \ingroup SVD_Module
|
||||
@@ -52,7 +108,7 @@ template<typename Derived> struct traits<SVDBase<Derived> >
|
||||
* singular vectors. Asking for \em thin \a U or \a V means asking for only their \a m first columns to be formed. So \a U is then a n-by-m matrix,
|
||||
* and \a V is then a p-by-m matrix. Notice that thin \a U and \a V are all you need for (least squares) solving.
|
||||
*
|
||||
* The status of the computation can be retrived using the \a info() method. Unless \a info() returns \a Success, the results should be not
|
||||
* The status of the computation can be retrieved using the \a info() method. Unless \a info() returns \a Success, the results should be not
|
||||
* considered well defined.
|
||||
*
|
||||
* If the input matrix has inf or nan coefficients, the result of the computation is undefined, and \a info() will return \a InvalidInput, but the computation is guaranteed to
|
||||
@@ -72,20 +128,38 @@ public:
|
||||
typedef typename NumTraits<typename MatrixType::Scalar>::Real RealScalar;
|
||||
typedef typename Eigen::internal::traits<SVDBase>::StorageIndex StorageIndex;
|
||||
typedef Eigen::Index Index; ///< \deprecated since Eigen 3.3
|
||||
|
||||
static constexpr bool ShouldComputeFullU = internal::traits<Derived>::ShouldComputeFullU;
|
||||
static constexpr bool ShouldComputeThinU = internal::traits<Derived>::ShouldComputeThinU;
|
||||
static constexpr bool ShouldComputeFullV = internal::traits<Derived>::ShouldComputeFullV;
|
||||
static constexpr bool ShouldComputeThinV = internal::traits<Derived>::ShouldComputeThinV;
|
||||
|
||||
enum {
|
||||
RowsAtCompileTime = MatrixType::RowsAtCompileTime,
|
||||
ColsAtCompileTime = MatrixType::ColsAtCompileTime,
|
||||
DiagSizeAtCompileTime = EIGEN_SIZE_MIN_PREFER_DYNAMIC(RowsAtCompileTime,ColsAtCompileTime),
|
||||
DiagSizeAtCompileTime = internal::min_size_prefer_dynamic(RowsAtCompileTime, ColsAtCompileTime),
|
||||
MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
|
||||
MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime,
|
||||
MaxDiagSizeAtCompileTime = EIGEN_SIZE_MIN_PREFER_FIXED(MaxRowsAtCompileTime,MaxColsAtCompileTime),
|
||||
MatrixOptions = MatrixType::Options
|
||||
MaxDiagSizeAtCompileTime = internal::min_size_prefer_fixed(MaxRowsAtCompileTime, MaxColsAtCompileTime),
|
||||
MatrixOptions = MatrixType::Options,
|
||||
MatrixUColsAtCompileTime = internal::traits<Derived>::MatrixUColsAtCompileTime,
|
||||
MatrixVColsAtCompileTime = internal::traits<Derived>::MatrixVColsAtCompileTime,
|
||||
MatrixUMaxColsAtCompileTime = internal::traits<Derived>::MatrixUMaxColsAtCompileTime,
|
||||
MatrixVMaxColsAtCompileTime = internal::traits<Derived>::MatrixVMaxColsAtCompileTime
|
||||
};
|
||||
|
||||
typedef Matrix<Scalar, RowsAtCompileTime, RowsAtCompileTime, MatrixOptions, MaxRowsAtCompileTime, MaxRowsAtCompileTime> MatrixUType;
|
||||
typedef Matrix<Scalar, ColsAtCompileTime, ColsAtCompileTime, MatrixOptions, MaxColsAtCompileTime, MaxColsAtCompileTime> MatrixVType;
|
||||
EIGEN_STATIC_ASSERT(!(ShouldComputeFullU && ShouldComputeThinU), "SVDBase: Cannot request both full and thin U")
|
||||
EIGEN_STATIC_ASSERT(!(ShouldComputeFullV && ShouldComputeThinV), "SVDBase: Cannot request both full and thin V")
|
||||
|
||||
typedef
|
||||
typename internal::make_proper_matrix_type<Scalar, RowsAtCompileTime, MatrixUColsAtCompileTime, MatrixOptions,
|
||||
MaxRowsAtCompileTime, MatrixUMaxColsAtCompileTime>::type MatrixUType;
|
||||
typedef
|
||||
typename internal::make_proper_matrix_type<Scalar, ColsAtCompileTime, MatrixVColsAtCompileTime, MatrixOptions,
|
||||
MaxColsAtCompileTime, MatrixVMaxColsAtCompileTime>::type MatrixVType;
|
||||
|
||||
typedef typename internal::plain_diag_type<MatrixType, RealScalar>::type SingularValuesType;
|
||||
|
||||
|
||||
Derived& derived() { return *static_cast<Derived*>(this); }
|
||||
const Derived& derived() const { return *static_cast<const Derived*>(this); }
|
||||
|
||||
@@ -249,10 +323,7 @@ public:
|
||||
|
||||
protected:
|
||||
|
||||
static void check_template_parameters()
|
||||
{
|
||||
EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar);
|
||||
}
|
||||
EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar)
|
||||
|
||||
void _check_compute_assertions() const {
|
||||
eigen_assert(m_isInitialized && "SVD is not initialized.");
|
||||
@@ -267,7 +338,7 @@ protected:
|
||||
}
|
||||
|
||||
// return true if already allocated
|
||||
bool allocate(Index rows, Index cols, unsigned int computationOptions) ;
|
||||
bool allocate(Index rows, Index cols, unsigned int computationOptions);
|
||||
|
||||
MatrixUType m_matrixU;
|
||||
MatrixVType m_matrixV;
|
||||
@@ -285,21 +356,18 @@ protected:
|
||||
* Default constructor of SVDBase
|
||||
*/
|
||||
SVDBase()
|
||||
: m_info(Success),
|
||||
m_isInitialized(false),
|
||||
m_isAllocated(false),
|
||||
m_usePrescribedThreshold(false),
|
||||
m_computeFullU(false),
|
||||
m_computeThinU(false),
|
||||
m_computeFullV(false),
|
||||
m_computeThinV(false),
|
||||
m_computationOptions(0),
|
||||
m_rows(-1), m_cols(-1), m_diagSize(0)
|
||||
{
|
||||
check_template_parameters();
|
||||
}
|
||||
|
||||
|
||||
: m_info(Success),
|
||||
m_isInitialized(false),
|
||||
m_isAllocated(false),
|
||||
m_usePrescribedThreshold(false),
|
||||
m_computeFullU(false),
|
||||
m_computeThinU(false),
|
||||
m_computeFullV(false),
|
||||
m_computeThinV(false),
|
||||
m_computationOptions(0),
|
||||
m_rows(-1),
|
||||
m_cols(-1),
|
||||
m_diagSize(0) {}
|
||||
};
|
||||
|
||||
#ifndef EIGEN_PARSED_BY_DOXYGEN
|
||||
@@ -333,9 +401,8 @@ void SVDBase<Derived>::_solve_impl_transposed(const RhsType &rhs, DstType &dst)
|
||||
}
|
||||
#endif
|
||||
|
||||
template<typename MatrixType>
|
||||
bool SVDBase<MatrixType>::allocate(Index rows, Index cols, unsigned int computationOptions)
|
||||
{
|
||||
template <typename Derived>
|
||||
bool SVDBase<Derived>::allocate(Index rows, Index cols, unsigned int computationOptions) {
|
||||
eigen_assert(rows >= 0 && cols >= 0);
|
||||
|
||||
if (m_isAllocated &&
|
||||
@@ -352,14 +419,13 @@ bool SVDBase<MatrixType>::allocate(Index rows, Index cols, unsigned int computat
|
||||
m_isInitialized = false;
|
||||
m_isAllocated = true;
|
||||
m_computationOptions = computationOptions;
|
||||
m_computeFullU = (computationOptions & ComputeFullU) != 0;
|
||||
m_computeThinU = (computationOptions & ComputeThinU) != 0;
|
||||
m_computeFullV = (computationOptions & ComputeFullV) != 0;
|
||||
m_computeThinV = (computationOptions & ComputeThinV) != 0;
|
||||
m_computeFullU = ShouldComputeFullU || internal::should_svd_compute_full_u(computationOptions);
|
||||
m_computeThinU = ShouldComputeThinU || internal::should_svd_compute_thin_u(computationOptions);
|
||||
m_computeFullV = ShouldComputeFullV || internal::should_svd_compute_full_v(computationOptions);
|
||||
m_computeThinV = ShouldComputeThinV || internal::should_svd_compute_thin_v(computationOptions);
|
||||
|
||||
eigen_assert(!(m_computeFullU && m_computeThinU) && "SVDBase: you can't ask for both full and thin U");
|
||||
eigen_assert(!(m_computeFullV && m_computeThinV) && "SVDBase: you can't ask for both full and thin V");
|
||||
eigen_assert(EIGEN_IMPLIES(m_computeThinU || m_computeThinV, MatrixType::ColsAtCompileTime==Dynamic) &&
|
||||
"SVDBase: thin U and V are only available when your matrix has a dynamic number of columns.");
|
||||
|
||||
m_diagSize = (std::min)(m_rows, m_cols);
|
||||
m_singularValues.resize(m_diagSize);
|
||||
|
||||
@@ -11,17 +11,19 @@
|
||||
#ifndef EIGEN_BIDIAGONALIZATION_H
|
||||
#define EIGEN_BIDIAGONALIZATION_H
|
||||
|
||||
#include "./InternalHeaderCheck.h"
|
||||
|
||||
namespace Eigen {
|
||||
|
||||
namespace internal {
|
||||
// UpperBidiagonalization will probably be replaced by a Bidiagonalization class, don't want to make it stable API.
|
||||
// At the same time, it's useful to keep for now as it's about the only thing that is testing the BandMatrix class.
|
||||
|
||||
template<typename _MatrixType> class UpperBidiagonalization
|
||||
template<typename MatrixType_> class UpperBidiagonalization
|
||||
{
|
||||
public:
|
||||
|
||||
typedef _MatrixType MatrixType;
|
||||
typedef MatrixType_ MatrixType;
|
||||
enum {
|
||||
RowsAtCompileTime = MatrixType::RowsAtCompileTime,
|
||||
ColsAtCompileTime = MatrixType::ColsAtCompileTime,
|
||||
@@ -37,10 +39,10 @@ template<typename _MatrixType> class UpperBidiagonalization
|
||||
typedef Matrix<Scalar, ColsAtCompileTimeMinusOne, 1> SuperDiagVectorType;
|
||||
typedef HouseholderSequence<
|
||||
const MatrixType,
|
||||
const typename internal::remove_all<typename Diagonal<const MatrixType,0>::ConjugateReturnType>::type
|
||||
const internal::remove_all_t<typename Diagonal<const MatrixType,0>::ConjugateReturnType>
|
||||
> HouseholderUSequenceType;
|
||||
typedef HouseholderSequence<
|
||||
const typename internal::remove_all<typename MatrixType::ConjugateReturnType>::type,
|
||||
const internal::remove_all_t<typename MatrixType::ConjugateReturnType>,
|
||||
Diagonal<const MatrixType,1>,
|
||||
OnTheRight
|
||||
> HouseholderVSequenceType;
|
||||
@@ -51,7 +53,7 @@ template<typename _MatrixType> class UpperBidiagonalization
|
||||
* The default constructor is useful in cases in which the user intends to
|
||||
* perform decompositions via Bidiagonalization::compute(const MatrixType&).
|
||||
*/
|
||||
UpperBidiagonalization() : m_householder(), m_bidiagonal(), m_isInitialized(false) {}
|
||||
UpperBidiagonalization() : m_householder(), m_bidiagonal(0, 0), m_isInitialized(false) {}
|
||||
|
||||
explicit UpperBidiagonalization(const MatrixType& matrix)
|
||||
: m_householder(matrix.rows(), matrix.cols()),
|
||||
@@ -60,7 +62,13 @@ template<typename _MatrixType> class UpperBidiagonalization
|
||||
{
|
||||
compute(matrix);
|
||||
}
|
||||
|
||||
|
||||
UpperBidiagonalization(Index rows, Index cols)
|
||||
: m_householder(rows, cols),
|
||||
m_bidiagonal(cols, cols),
|
||||
m_isInitialized(false)
|
||||
{}
|
||||
|
||||
UpperBidiagonalization& compute(const MatrixType& matrix);
|
||||
UpperBidiagonalization& computeUnblocked(const MatrixType& matrix);
|
||||
|
||||
@@ -161,13 +169,13 @@ void upperbidiagonalization_blocked_helper(MatrixType& A,
|
||||
typedef typename MatrixType::Scalar Scalar;
|
||||
typedef typename MatrixType::RealScalar RealScalar;
|
||||
typedef typename NumTraits<RealScalar>::Literal Literal;
|
||||
enum { StorageOrder = traits<MatrixType>::Flags & RowMajorBit };
|
||||
typedef InnerStride<int(StorageOrder) == int(ColMajor) ? 1 : Dynamic> ColInnerStride;
|
||||
typedef InnerStride<int(StorageOrder) == int(ColMajor) ? Dynamic : 1> RowInnerStride;
|
||||
static constexpr int StorageOrder = (traits<MatrixType>::Flags & RowMajorBit) ? RowMajor : ColMajor;
|
||||
typedef InnerStride<StorageOrder == ColMajor ? 1 : Dynamic> ColInnerStride;
|
||||
typedef InnerStride<StorageOrder == ColMajor ? Dynamic : 1> RowInnerStride;
|
||||
typedef Ref<Matrix<Scalar, Dynamic, 1>, 0, ColInnerStride> SubColumnType;
|
||||
typedef Ref<Matrix<Scalar, 1, Dynamic>, 0, RowInnerStride> SubRowType;
|
||||
typedef Ref<Matrix<Scalar, Dynamic, Dynamic, StorageOrder > > SubMatType;
|
||||
|
||||
|
||||
Index brows = A.rows();
|
||||
Index bcols = A.cols();
|
||||
|
||||
@@ -293,7 +301,7 @@ void upperbidiagonalization_inplace_blocked(MatrixType& A, BidiagType& bidiagona
|
||||
Index size = (std::min)(rows, cols);
|
||||
|
||||
// X and Y are work space
|
||||
enum { StorageOrder = traits<MatrixType>::Flags & RowMajorBit };
|
||||
static constexpr int StorageOrder = (traits<MatrixType>::Flags & RowMajorBit) ? RowMajor : ColMajor;
|
||||
Matrix<Scalar,
|
||||
MatrixType::RowsAtCompileTime,
|
||||
Dynamic,
|
||||
@@ -355,8 +363,8 @@ void upperbidiagonalization_inplace_blocked(MatrixType& A, BidiagType& bidiagona
|
||||
}
|
||||
}
|
||||
|
||||
template<typename _MatrixType>
|
||||
UpperBidiagonalization<_MatrixType>& UpperBidiagonalization<_MatrixType>::computeUnblocked(const _MatrixType& matrix)
|
||||
template<typename MatrixType_>
|
||||
UpperBidiagonalization<MatrixType_>& UpperBidiagonalization<MatrixType_>::computeUnblocked(const MatrixType_& matrix)
|
||||
{
|
||||
Index rows = matrix.rows();
|
||||
Index cols = matrix.cols();
|
||||
@@ -377,8 +385,8 @@ UpperBidiagonalization<_MatrixType>& UpperBidiagonalization<_MatrixType>::comput
|
||||
return *this;
|
||||
}
|
||||
|
||||
template<typename _MatrixType>
|
||||
UpperBidiagonalization<_MatrixType>& UpperBidiagonalization<_MatrixType>::compute(const _MatrixType& matrix)
|
||||
template<typename MatrixType_>
|
||||
UpperBidiagonalization<MatrixType_>& UpperBidiagonalization<MatrixType_>::compute(const MatrixType_& matrix)
|
||||
{
|
||||
Index rows = matrix.rows();
|
||||
Index cols = matrix.cols();
|
||||
|
||||
Reference in New Issue
Block a user