ADD: added other eigen lib
This commit is contained in:
50
libs/eigen/Eigen/AccelerateSupport
Normal file
50
libs/eigen/Eigen/AccelerateSupport
Normal file
@@ -0,0 +1,50 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra.
|
||||
//
|
||||
// This Source Code Form is subject to the terms of the Mozilla
|
||||
// Public License v. 2.0. If a copy of the MPL was not distributed
|
||||
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
||||
|
||||
#ifndef EIGEN_ACCELERATESUPPORT_MODULE_H
|
||||
#define EIGEN_ACCELERATESUPPORT_MODULE_H
|
||||
|
||||
#include "SparseCore"
|
||||
|
||||
#include "src/Core/util/DisableStupidWarnings.h"
|
||||
|
||||
/** \ingroup Support_modules
|
||||
* \defgroup AccelerateSupport_Module AccelerateSupport module
|
||||
*
|
||||
* This module provides an interface to the Apple Accelerate library.
|
||||
* It provides the seven following main factorization classes:
|
||||
* - class AccelerateLLT: a Cholesky (LL^T) factorization.
|
||||
* - class AccelerateLDLT: the default LDL^T factorization.
|
||||
* - class AccelerateLDLTUnpivoted: a Cholesky-like LDL^T factorization with only 1x1 pivots and no pivoting
|
||||
* - class AccelerateLDLTSBK: an LDL^T factorization with Supernode Bunch-Kaufman and static pivoting
|
||||
* - class AccelerateLDLTTPP: an LDL^T factorization with full threshold partial pivoting
|
||||
* - class AccelerateQR: a QR factorization
|
||||
* - class AccelerateCholeskyAtA: a QR factorization without storing Q (equivalent to A^TA = R^T R)
|
||||
*
|
||||
* \code
|
||||
* #include <Eigen/AccelerateSupport>
|
||||
* \endcode
|
||||
*
|
||||
* In order to use this module, the Accelerate headers must be accessible from
|
||||
* the include paths, and your binary must be linked to the Accelerate framework.
|
||||
* The Accelerate library is only available on Apple hardware.
|
||||
*
|
||||
* Note that many of the algorithms can be influenced by the UpLo template
|
||||
* argument. All matrices are assumed to be symmetric. For example, the following
|
||||
* creates an LDLT factorization where your matrix is symmetric (implicit) and
|
||||
* uses the lower triangle:
|
||||
*
|
||||
* \code
|
||||
* AccelerateLDLT<SparseMatrix<float>, Lower> ldlt;
|
||||
* \endcode
|
||||
*/
|
||||
|
||||
#include "src/AccelerateSupport/AccelerateSupport.h"
|
||||
|
||||
#include "src/Core/util/ReenableStupidWarnings.h"
|
||||
|
||||
#endif // EIGEN_ACCELERATESUPPORT_MODULE_H
|
||||
@@ -32,11 +32,7 @@
|
||||
#include "src/Cholesky/LLT.h"
|
||||
#include "src/Cholesky/LDLT.h"
|
||||
#ifdef EIGEN_USE_LAPACKE
|
||||
#ifdef EIGEN_USE_MKL
|
||||
#include "mkl_lapacke.h"
|
||||
#else
|
||||
#include "src/misc/lapacke.h"
|
||||
#endif
|
||||
#include "src/misc/lapacke_helpers.h"
|
||||
#include "src/Cholesky/LLT_LAPACKE.h"
|
||||
#endif
|
||||
|
||||
|
||||
@@ -22,7 +22,7 @@ extern "C" {
|
||||
* This module provides an interface to the Cholmod library which is part of the <a href="http://www.suitesparse.com">suitesparse</a> package.
|
||||
* It provides the two following main factorization classes:
|
||||
* - class CholmodSupernodalLLT: a supernodal LLT Cholesky factorization.
|
||||
* - class CholmodDecomposiiton: a general L(D)LT Cholesky factorization with automatic or explicit runtime selection of the underlying factorization method (supernodal or simplicial).
|
||||
* - class CholmodDecomposition: a general L(D)LT Cholesky factorization with automatic or explicit runtime selection of the underlying factorization method (supernodal or simplicial).
|
||||
*
|
||||
* For the sake of completeness, this module also propose the two following classes:
|
||||
* - class CholmodSimplicialLLT
|
||||
|
||||
@@ -8,8 +8,8 @@
|
||||
// Public License v. 2.0. If a copy of the MPL was not distributed
|
||||
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
||||
|
||||
#ifndef EIGEN_CORE_H
|
||||
#define EIGEN_CORE_H
|
||||
#ifndef EIGEN_CORE_MODULE_H
|
||||
#define EIGEN_CORE_MODULE_H
|
||||
|
||||
// first thing Eigen does: stop the compiler from reporting useless warnings.
|
||||
#include "src/Core/util/DisableStupidWarnings.h"
|
||||
@@ -36,7 +36,7 @@
|
||||
|
||||
// Disable the ipa-cp-clone optimization flag with MinGW 6.x or newer (enabled by default with -O3)
|
||||
// See http://eigen.tuxfamily.org/bz/show_bug.cgi?id=556 for details.
|
||||
#if EIGEN_COMP_MINGW && EIGEN_GNUC_AT_LEAST(4,6) && EIGEN_GNUC_AT_MOST(5,5)
|
||||
#if EIGEN_COMP_MINGW && EIGEN_GNUC_AT_MOST(5,5)
|
||||
#pragma GCC optimize ("-fno-ipa-cp-clone")
|
||||
#endif
|
||||
|
||||
@@ -67,6 +67,7 @@
|
||||
#endif
|
||||
|
||||
#ifdef EIGEN_HAS_OPENMP
|
||||
#include <atomic>
|
||||
#include <omp.h>
|
||||
#endif
|
||||
|
||||
@@ -83,8 +84,8 @@
|
||||
#include <cmath>
|
||||
#include <cassert>
|
||||
#include <functional>
|
||||
#include <sstream>
|
||||
#ifndef EIGEN_NO_IO
|
||||
#include <sstream>
|
||||
#include <iosfwd>
|
||||
#endif
|
||||
#include <cstring>
|
||||
@@ -94,14 +95,10 @@
|
||||
// for min/max:
|
||||
#include <algorithm>
|
||||
|
||||
#if EIGEN_HAS_CXX11
|
||||
#include <array>
|
||||
#endif
|
||||
|
||||
// for std::is_nothrow_move_assignable
|
||||
#ifdef EIGEN_INCLUDE_TYPE_TRAITS
|
||||
#include <type_traits>
|
||||
#endif
|
||||
|
||||
// for outputting debug info
|
||||
#ifdef EIGEN_DEBUG_ASSIGN
|
||||
@@ -109,7 +106,8 @@
|
||||
#endif
|
||||
|
||||
// required for __cpuid, needs to be included after cmath
|
||||
#if EIGEN_COMP_MSVC && EIGEN_ARCH_i386_OR_x86_64 && !EIGEN_OS_WINCE
|
||||
// also required for _BitScanReverse on Windows on ARM
|
||||
#if EIGEN_COMP_MSVC && (EIGEN_ARCH_i386_OR_x86_64 || EIGEN_ARCH_ARM64) && !EIGEN_OS_WINCE
|
||||
#include <intrin.h>
|
||||
#endif
|
||||
|
||||
@@ -165,6 +163,7 @@ using std::ptrdiff_t;
|
||||
#include "src/Core/util/XprHelper.h"
|
||||
#include "src/Core/util/Memory.h"
|
||||
#include "src/Core/util/IntegralConstant.h"
|
||||
#include "src/Core/util/Serializer.h"
|
||||
#include "src/Core/util/SymbolicIndex.h"
|
||||
|
||||
#include "src/Core/NumTraits.h"
|
||||
@@ -179,6 +178,9 @@ using std::ptrdiff_t;
|
||||
#include "src/Core/arch/Default/GenericPacketMathFunctionsFwd.h"
|
||||
|
||||
#if defined EIGEN_VECTORIZE_AVX512
|
||||
#if defined EIGEN_VECTORIZE_AVX512FP16
|
||||
#include "src/Core/arch/AVX512/PacketMathFP16.h"
|
||||
#endif
|
||||
#include "src/Core/arch/SSE/PacketMath.h"
|
||||
#include "src/Core/arch/SSE/TypeCasting.h"
|
||||
#include "src/Core/arch/SSE/Complex.h"
|
||||
@@ -191,6 +193,7 @@ using std::ptrdiff_t;
|
||||
#include "src/Core/arch/SSE/MathFunctions.h"
|
||||
#include "src/Core/arch/AVX/MathFunctions.h"
|
||||
#include "src/Core/arch/AVX512/MathFunctions.h"
|
||||
#include "src/Core/arch/AVX512/TrsmKernel.h"
|
||||
#elif defined EIGEN_VECTORIZE_AVX
|
||||
// Use AVX for floats and doubles, SSE for integers
|
||||
#include "src/Core/arch/SSE/PacketMath.h"
|
||||
@@ -256,10 +259,14 @@ using std::ptrdiff_t;
|
||||
#include "src/Core/functors/StlFunctors.h"
|
||||
#include "src/Core/functors/AssignmentFunctors.h"
|
||||
|
||||
// Specialized functors to enable the processing of complex numbers
|
||||
// on CUDA devices
|
||||
#ifdef EIGEN_CUDACC
|
||||
#include "src/Core/arch/CUDA/Complex.h"
|
||||
// Specialized functors for GPU.
|
||||
#ifdef EIGEN_GPUCC
|
||||
#include "src/Core/arch/GPU/Complex.h"
|
||||
#endif
|
||||
|
||||
// Specializations of vectorized activation functions for NEON.
|
||||
#ifdef EIGEN_VECTORIZE_NEON
|
||||
#include "src/Core/arch/NEON/UnaryFunctors.h"
|
||||
#endif
|
||||
|
||||
#include "src/Core/util/IndexedViewHelper.h"
|
||||
@@ -314,6 +321,7 @@ using std::ptrdiff_t;
|
||||
#include "src/Core/DiagonalMatrix.h"
|
||||
#include "src/Core/Diagonal.h"
|
||||
#include "src/Core/DiagonalProduct.h"
|
||||
#include "src/Core/SkewSymmetricMatrix3.h"
|
||||
#include "src/Core/Redux.h"
|
||||
#include "src/Core/Visitor.h"
|
||||
#include "src/Core/Fuzzy.h"
|
||||
@@ -346,12 +354,16 @@ using std::ptrdiff_t;
|
||||
#include "src/Core/CoreIterators.h"
|
||||
#include "src/Core/ConditionEstimator.h"
|
||||
|
||||
#if defined(EIGEN_VECTORIZE_ALTIVEC) || defined(EIGEN_VECTORIZE_VSX)
|
||||
#if defined(EIGEN_VECTORIZE_VSX)
|
||||
#include "src/Core/arch/AltiVec/MatrixProduct.h"
|
||||
#elif defined EIGEN_VECTORIZE_NEON
|
||||
#include "src/Core/arch/NEON/GeneralBlockPanelKernel.h"
|
||||
#endif
|
||||
|
||||
#if defined(EIGEN_VECTORIZE_AVX512)
|
||||
#include "src/Core/arch/AVX512/GemmKernel.h"
|
||||
#endif
|
||||
|
||||
#include "src/Core/BooleanRedux.h"
|
||||
#include "src/Core/Select.h"
|
||||
#include "src/Core/VectorwiseOp.h"
|
||||
@@ -381,4 +393,4 @@ using std::ptrdiff_t;
|
||||
|
||||
#include "src/Core/util/ReenableStupidWarnings.h"
|
||||
|
||||
#endif // EIGEN_CORE_H
|
||||
#endif // EIGEN_CORE_MODULE_H
|
||||
|
||||
@@ -27,7 +27,7 @@
|
||||
* - DiagonalPreconditioner - also called Jacobi preconditioner, work very well on diagonal dominant matrices.
|
||||
* - IncompleteLUT - incomplete LU factorization with dual thresholding
|
||||
*
|
||||
* Such problems can also be solved using the direct sparse decomposition modules: SparseCholesky, CholmodSupport, UmfPackSupport, SuperLUSupport.
|
||||
* Such problems can also be solved using the direct sparse decomposition modules: SparseCholesky, CholmodSupport, UmfPackSupport, SuperLUSupport, AccelerateSupport.
|
||||
*
|
||||
\code
|
||||
#include <Eigen/IterativeLinearSolvers>
|
||||
|
||||
@@ -28,11 +28,7 @@
|
||||
#include "src/LU/FullPivLU.h"
|
||||
#include "src/LU/PartialPivLU.h"
|
||||
#ifdef EIGEN_USE_LAPACKE
|
||||
#ifdef EIGEN_USE_MKL
|
||||
#include "mkl_lapacke.h"
|
||||
#else
|
||||
#include "src/misc/lapacke.h"
|
||||
#endif
|
||||
#include "src/misc/lapacke_helpers.h"
|
||||
#include "src/LU/PartialPivLU_LAPACKE.h"
|
||||
#endif
|
||||
#include "src/LU/Determinant.h"
|
||||
|
||||
@@ -36,11 +36,7 @@
|
||||
#include "src/QR/ColPivHouseholderQR.h"
|
||||
#include "src/QR/CompleteOrthogonalDecomposition.h"
|
||||
#ifdef EIGEN_USE_LAPACKE
|
||||
#ifdef EIGEN_USE_MKL
|
||||
#include "mkl_lapacke.h"
|
||||
#else
|
||||
#include "src/misc/lapacke.h"
|
||||
#endif
|
||||
#include "src/misc/lapacke_helpers.h"
|
||||
#include "src/QR/HouseholderQR_LAPACKE.h"
|
||||
#include "src/QR/ColPivHouseholderQR_LAPACKE.h"
|
||||
#endif
|
||||
|
||||
@@ -28,7 +28,7 @@
|
||||
*
|
||||
*/
|
||||
|
||||
#include "src/CholmodSupport/CholmodSupport.h"
|
||||
#include "Eigen/CholmodSupport"
|
||||
#include "src/SPQRSupport/SuiteSparseQRSupport.h"
|
||||
|
||||
#endif
|
||||
|
||||
@@ -36,14 +36,17 @@
|
||||
#include "src/SVD/SVDBase.h"
|
||||
#include "src/SVD/JacobiSVD.h"
|
||||
#include "src/SVD/BDCSVD.h"
|
||||
#if defined(EIGEN_USE_LAPACKE) && !defined(EIGEN_USE_LAPACKE_STRICT)
|
||||
#ifdef EIGEN_USE_LAPACKE
|
||||
#ifdef EIGEN_USE_MKL
|
||||
#include "mkl_lapacke.h"
|
||||
#else
|
||||
#include "src/misc/lapacke.h"
|
||||
#endif
|
||||
#ifndef EIGEN_USE_LAPACKE_STRICT
|
||||
#include "src/SVD/JacobiSVD_LAPACKE.h"
|
||||
#endif
|
||||
#include "src/SVD/BDCSVD_LAPACKE.h"
|
||||
#endif
|
||||
|
||||
#include "src/Core/util/ReenableStupidWarnings.h"
|
||||
|
||||
|
||||
@@ -41,7 +41,6 @@
|
||||
#include "src/SparseCore/SparseCompressedBase.h"
|
||||
#include "src/SparseCore/SparseMatrix.h"
|
||||
#include "src/SparseCore/SparseMap.h"
|
||||
#include "src/SparseCore/MappedSparseMatrix.h"
|
||||
#include "src/SparseCore/SparseVector.h"
|
||||
#include "src/SparseCore/SparseRef.h"
|
||||
#include "src/SparseCore/SparseCwiseUnaryOp.h"
|
||||
|
||||
421
libs/eigen/Eigen/src/AccelerateSupport/AccelerateSupport.h
Normal file
421
libs/eigen/Eigen/src/AccelerateSupport/AccelerateSupport.h
Normal file
@@ -0,0 +1,421 @@
|
||||
#ifndef EIGEN_ACCELERATESUPPORT_H
|
||||
#define EIGEN_ACCELERATESUPPORT_H
|
||||
|
||||
#include <Accelerate/Accelerate.h>
|
||||
|
||||
#include <Eigen/Sparse>
|
||||
|
||||
namespace Eigen {
|
||||
|
||||
template <typename MatrixType_, int UpLo_, SparseFactorization_t Solver_, bool EnforceSquare_>
|
||||
class AccelerateImpl;
|
||||
|
||||
/** \ingroup AccelerateSupport_Module
|
||||
* \class AccelerateLLT
|
||||
* \brief A direct Cholesky (LLT) factorization and solver based on Accelerate
|
||||
*
|
||||
* \warning Only single and double precision real scalar types are supported by Accelerate
|
||||
*
|
||||
* \tparam MatrixType_ the type of the sparse matrix A, it must be a SparseMatrix<>
|
||||
* \tparam UpLo_ additional information about the matrix structure. Default is Lower.
|
||||
*
|
||||
* \sa \ref TutorialSparseSolverConcept, class AccelerateLLT
|
||||
*/
|
||||
template <typename MatrixType, int UpLo = Lower>
|
||||
using AccelerateLLT = AccelerateImpl<MatrixType, UpLo | Symmetric, SparseFactorizationCholesky, true>;
|
||||
|
||||
/** \ingroup AccelerateSupport_Module
|
||||
* \class AccelerateLDLT
|
||||
* \brief The default Cholesky (LDLT) factorization and solver based on Accelerate
|
||||
*
|
||||
* \warning Only single and double precision real scalar types are supported by Accelerate
|
||||
*
|
||||
* \tparam MatrixType_ the type of the sparse matrix A, it must be a SparseMatrix<>
|
||||
* \tparam UpLo_ additional information about the matrix structure. Default is Lower.
|
||||
*
|
||||
* \sa \ref TutorialSparseSolverConcept, class AccelerateLDLT
|
||||
*/
|
||||
template <typename MatrixType, int UpLo = Lower>
|
||||
using AccelerateLDLT = AccelerateImpl<MatrixType, UpLo | Symmetric, SparseFactorizationLDLT, true>;
|
||||
|
||||
/** \ingroup AccelerateSupport_Module
|
||||
* \class AccelerateLDLTUnpivoted
|
||||
* \brief A direct Cholesky-like LDL^T factorization and solver based on Accelerate with only 1x1 pivots and no pivoting
|
||||
*
|
||||
* \warning Only single and double precision real scalar types are supported by Accelerate
|
||||
*
|
||||
* \tparam MatrixType_ the type of the sparse matrix A, it must be a SparseMatrix<>
|
||||
* \tparam UpLo_ additional information about the matrix structure. Default is Lower.
|
||||
*
|
||||
* \sa \ref TutorialSparseSolverConcept, class AccelerateLDLTUnpivoted
|
||||
*/
|
||||
template <typename MatrixType, int UpLo = Lower>
|
||||
using AccelerateLDLTUnpivoted = AccelerateImpl<MatrixType, UpLo | Symmetric, SparseFactorizationLDLTUnpivoted, true>;
|
||||
|
||||
/** \ingroup AccelerateSupport_Module
|
||||
* \class AccelerateLDLTSBK
|
||||
* \brief A direct Cholesky (LDLT) factorization and solver based on Accelerate with Supernode Bunch-Kaufman and static pivoting
|
||||
*
|
||||
* \warning Only single and double precision real scalar types are supported by Accelerate
|
||||
*
|
||||
* \tparam MatrixType_ the type of the sparse matrix A, it must be a SparseMatrix<>
|
||||
* \tparam UpLo_ additional information about the matrix structure. Default is Lower.
|
||||
*
|
||||
* \sa \ref TutorialSparseSolverConcept, class AccelerateLDLTSBK
|
||||
*/
|
||||
template <typename MatrixType, int UpLo = Lower>
|
||||
using AccelerateLDLTSBK = AccelerateImpl<MatrixType, UpLo | Symmetric, SparseFactorizationLDLTSBK, true>;
|
||||
|
||||
/** \ingroup AccelerateSupport_Module
|
||||
* \class AccelerateLDLTTPP
|
||||
* \brief A direct Cholesky (LDLT) factorization and solver based on Accelerate with full threshold partial pivoting
|
||||
*
|
||||
* \warning Only single and double precision real scalar types are supported by Accelerate
|
||||
*
|
||||
* \tparam MatrixType_ the type of the sparse matrix A, it must be a SparseMatrix<>
|
||||
* \tparam UpLo_ additional information about the matrix structure. Default is Lower.
|
||||
*
|
||||
* \sa \ref TutorialSparseSolverConcept, class AccelerateLDLTTPP
|
||||
*/
|
||||
template <typename MatrixType, int UpLo = Lower>
|
||||
using AccelerateLDLTTPP = AccelerateImpl<MatrixType, UpLo | Symmetric, SparseFactorizationLDLTTPP, true>;
|
||||
|
||||
/** \ingroup AccelerateSupport_Module
|
||||
* \class AccelerateQR
|
||||
* \brief A QR factorization and solver based on Accelerate
|
||||
*
|
||||
* \warning Only single and double precision real scalar types are supported by Accelerate
|
||||
*
|
||||
* \tparam MatrixType_ the type of the sparse matrix A, it must be a SparseMatrix<>
|
||||
*
|
||||
* \sa \ref TutorialSparseSolverConcept, class AccelerateQR
|
||||
*/
|
||||
template <typename MatrixType>
|
||||
using AccelerateQR = AccelerateImpl<MatrixType, 0, SparseFactorizationQR, false>;
|
||||
|
||||
/** \ingroup AccelerateSupport_Module
|
||||
* \class AccelerateCholeskyAtA
|
||||
* \brief A QR factorization and solver based on Accelerate without storing Q (equivalent to A^TA = R^T R)
|
||||
*
|
||||
* \warning Only single and double precision real scalar types are supported by Accelerate
|
||||
*
|
||||
* \tparam MatrixType_ the type of the sparse matrix A, it must be a SparseMatrix<>
|
||||
*
|
||||
* \sa \ref TutorialSparseSolverConcept, class AccelerateCholeskyAtA
|
||||
*/
|
||||
template <typename MatrixType>
|
||||
using AccelerateCholeskyAtA = AccelerateImpl<MatrixType, 0, SparseFactorizationCholeskyAtA, false>;
|
||||
|
||||
namespace internal {
|
||||
template <typename T>
|
||||
struct AccelFactorizationDeleter {
|
||||
void operator()(T* sym) {
|
||||
if (sym) {
|
||||
SparseCleanup(*sym);
|
||||
delete sym;
|
||||
sym = nullptr;
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
template <typename DenseVecT, typename DenseMatT, typename SparseMatT, typename NumFactT>
|
||||
struct SparseTypesTraitBase {
|
||||
typedef DenseVecT AccelDenseVector;
|
||||
typedef DenseMatT AccelDenseMatrix;
|
||||
typedef SparseMatT AccelSparseMatrix;
|
||||
|
||||
typedef SparseOpaqueSymbolicFactorization SymbolicFactorization;
|
||||
typedef NumFactT NumericFactorization;
|
||||
|
||||
typedef AccelFactorizationDeleter<SymbolicFactorization> SymbolicFactorizationDeleter;
|
||||
typedef AccelFactorizationDeleter<NumericFactorization> NumericFactorizationDeleter;
|
||||
};
|
||||
|
||||
template <typename Scalar>
|
||||
struct SparseTypesTrait {};
|
||||
|
||||
template <>
|
||||
struct SparseTypesTrait<double> : SparseTypesTraitBase<DenseVector_Double, DenseMatrix_Double, SparseMatrix_Double,
|
||||
SparseOpaqueFactorization_Double> {};
|
||||
|
||||
template <>
|
||||
struct SparseTypesTrait<float>
|
||||
: SparseTypesTraitBase<DenseVector_Float, DenseMatrix_Float, SparseMatrix_Float, SparseOpaqueFactorization_Float> {
|
||||
};
|
||||
|
||||
} // end namespace internal
|
||||
|
||||
template <typename MatrixType_, int UpLo_, SparseFactorization_t Solver_, bool EnforceSquare_>
|
||||
class AccelerateImpl : public SparseSolverBase<AccelerateImpl<MatrixType_, UpLo_, Solver_, EnforceSquare_> > {
|
||||
protected:
|
||||
using Base = SparseSolverBase<AccelerateImpl>;
|
||||
using Base::derived;
|
||||
using Base::m_isInitialized;
|
||||
|
||||
public:
|
||||
using Base::_solve_impl;
|
||||
|
||||
typedef MatrixType_ MatrixType;
|
||||
typedef typename MatrixType::Scalar Scalar;
|
||||
typedef typename MatrixType::StorageIndex StorageIndex;
|
||||
enum { ColsAtCompileTime = Dynamic, MaxColsAtCompileTime = Dynamic };
|
||||
enum { UpLo = UpLo_ };
|
||||
|
||||
using AccelDenseVector = typename internal::SparseTypesTrait<Scalar>::AccelDenseVector;
|
||||
using AccelDenseMatrix = typename internal::SparseTypesTrait<Scalar>::AccelDenseMatrix;
|
||||
using AccelSparseMatrix = typename internal::SparseTypesTrait<Scalar>::AccelSparseMatrix;
|
||||
using SymbolicFactorization = typename internal::SparseTypesTrait<Scalar>::SymbolicFactorization;
|
||||
using NumericFactorization = typename internal::SparseTypesTrait<Scalar>::NumericFactorization;
|
||||
using SymbolicFactorizationDeleter = typename internal::SparseTypesTrait<Scalar>::SymbolicFactorizationDeleter;
|
||||
using NumericFactorizationDeleter = typename internal::SparseTypesTrait<Scalar>::NumericFactorizationDeleter;
|
||||
|
||||
AccelerateImpl() {
|
||||
m_isInitialized = false;
|
||||
|
||||
auto check_flag_set = [](int value, int flag) { return ((value & flag) == flag); };
|
||||
|
||||
if (check_flag_set(UpLo_, Symmetric)) {
|
||||
m_sparseKind = SparseSymmetric;
|
||||
m_triType = (UpLo_ & Lower) ? SparseLowerTriangle : SparseUpperTriangle;
|
||||
} else if (check_flag_set(UpLo_, UnitLower)) {
|
||||
m_sparseKind = SparseUnitTriangular;
|
||||
m_triType = SparseLowerTriangle;
|
||||
} else if (check_flag_set(UpLo_, UnitUpper)) {
|
||||
m_sparseKind = SparseUnitTriangular;
|
||||
m_triType = SparseUpperTriangle;
|
||||
} else if (check_flag_set(UpLo_, StrictlyLower)) {
|
||||
m_sparseKind = SparseTriangular;
|
||||
m_triType = SparseLowerTriangle;
|
||||
} else if (check_flag_set(UpLo_, StrictlyUpper)) {
|
||||
m_sparseKind = SparseTriangular;
|
||||
m_triType = SparseUpperTriangle;
|
||||
} else if (check_flag_set(UpLo_, Lower)) {
|
||||
m_sparseKind = SparseTriangular;
|
||||
m_triType = SparseLowerTriangle;
|
||||
} else if (check_flag_set(UpLo_, Upper)) {
|
||||
m_sparseKind = SparseTriangular;
|
||||
m_triType = SparseUpperTriangle;
|
||||
} else {
|
||||
m_sparseKind = SparseOrdinary;
|
||||
m_triType = (UpLo_ & Lower) ? SparseLowerTriangle : SparseUpperTriangle;
|
||||
}
|
||||
|
||||
m_order = SparseOrderDefault;
|
||||
}
|
||||
|
||||
explicit AccelerateImpl(const MatrixType& matrix) : AccelerateImpl() { compute(matrix); }
|
||||
|
||||
~AccelerateImpl() {}
|
||||
|
||||
inline Index cols() const { return m_nCols; }
|
||||
inline Index rows() const { return m_nRows; }
|
||||
|
||||
ComputationInfo info() const {
|
||||
eigen_assert(m_isInitialized && "Decomposition is not initialized.");
|
||||
return m_info;
|
||||
}
|
||||
|
||||
void analyzePattern(const MatrixType& matrix);
|
||||
|
||||
void factorize(const MatrixType& matrix);
|
||||
|
||||
void compute(const MatrixType& matrix);
|
||||
|
||||
template <typename Rhs, typename Dest>
|
||||
void _solve_impl(const MatrixBase<Rhs>& b, MatrixBase<Dest>& dest) const;
|
||||
|
||||
/** Sets the ordering algorithm to use. */
|
||||
void setOrder(SparseOrder_t order) { m_order = order; }
|
||||
|
||||
private:
|
||||
template <typename T>
|
||||
void buildAccelSparseMatrix(const SparseMatrix<T>& a, AccelSparseMatrix& A, std::vector<long>& columnStarts) {
|
||||
const Index nColumnsStarts = a.cols() + 1;
|
||||
|
||||
columnStarts.resize(nColumnsStarts);
|
||||
|
||||
for (Index i = 0; i < nColumnsStarts; i++) columnStarts[i] = a.outerIndexPtr()[i];
|
||||
|
||||
SparseAttributes_t attributes{};
|
||||
attributes.transpose = false;
|
||||
attributes.triangle = m_triType;
|
||||
attributes.kind = m_sparseKind;
|
||||
|
||||
SparseMatrixStructure structure{};
|
||||
structure.attributes = attributes;
|
||||
structure.rowCount = static_cast<int>(a.rows());
|
||||
structure.columnCount = static_cast<int>(a.cols());
|
||||
structure.blockSize = 1;
|
||||
structure.columnStarts = columnStarts.data();
|
||||
structure.rowIndices = const_cast<int*>(a.innerIndexPtr());
|
||||
|
||||
A.structure = structure;
|
||||
A.data = const_cast<T*>(a.valuePtr());
|
||||
}
|
||||
|
||||
void doAnalysis(AccelSparseMatrix& A) {
|
||||
m_numericFactorization.reset(nullptr);
|
||||
|
||||
SparseSymbolicFactorOptions opts{};
|
||||
opts.control = SparseDefaultControl;
|
||||
opts.orderMethod = m_order;
|
||||
opts.order = nullptr;
|
||||
opts.ignoreRowsAndColumns = nullptr;
|
||||
opts.malloc = malloc;
|
||||
opts.free = free;
|
||||
opts.reportError = nullptr;
|
||||
|
||||
m_symbolicFactorization.reset(new SymbolicFactorization(SparseFactor(Solver_, A.structure, opts)));
|
||||
|
||||
SparseStatus_t status = m_symbolicFactorization->status;
|
||||
|
||||
updateInfoStatus(status);
|
||||
|
||||
if (status != SparseStatusOK) m_symbolicFactorization.reset(nullptr);
|
||||
}
|
||||
|
||||
void doFactorization(AccelSparseMatrix& A) {
|
||||
SparseStatus_t status = SparseStatusReleased;
|
||||
|
||||
if (m_symbolicFactorization) {
|
||||
m_numericFactorization.reset(new NumericFactorization(SparseFactor(*m_symbolicFactorization, A)));
|
||||
|
||||
status = m_numericFactorization->status;
|
||||
|
||||
if (status != SparseStatusOK) m_numericFactorization.reset(nullptr);
|
||||
}
|
||||
|
||||
updateInfoStatus(status);
|
||||
}
|
||||
|
||||
protected:
|
||||
void updateInfoStatus(SparseStatus_t status) const {
|
||||
switch (status) {
|
||||
case SparseStatusOK:
|
||||
m_info = Success;
|
||||
break;
|
||||
case SparseFactorizationFailed:
|
||||
case SparseMatrixIsSingular:
|
||||
m_info = NumericalIssue;
|
||||
break;
|
||||
case SparseInternalError:
|
||||
case SparseParameterError:
|
||||
case SparseStatusReleased:
|
||||
default:
|
||||
m_info = InvalidInput;
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
mutable ComputationInfo m_info;
|
||||
Index m_nRows, m_nCols;
|
||||
std::unique_ptr<SymbolicFactorization, SymbolicFactorizationDeleter> m_symbolicFactorization;
|
||||
std::unique_ptr<NumericFactorization, NumericFactorizationDeleter> m_numericFactorization;
|
||||
SparseKind_t m_sparseKind;
|
||||
SparseTriangle_t m_triType;
|
||||
SparseOrder_t m_order;
|
||||
};
|
||||
|
||||
/** Computes the symbolic and numeric decomposition of matrix \a a */
|
||||
template <typename MatrixType_, int UpLo_, SparseFactorization_t Solver_, bool EnforceSquare_>
|
||||
void AccelerateImpl<MatrixType_, UpLo_, Solver_, EnforceSquare_>::compute(const MatrixType& a) {
|
||||
if (EnforceSquare_) eigen_assert(a.rows() == a.cols());
|
||||
|
||||
m_nRows = a.rows();
|
||||
m_nCols = a.cols();
|
||||
|
||||
AccelSparseMatrix A{};
|
||||
std::vector<long> columnStarts;
|
||||
|
||||
buildAccelSparseMatrix(a, A, columnStarts);
|
||||
|
||||
doAnalysis(A);
|
||||
|
||||
if (m_symbolicFactorization) doFactorization(A);
|
||||
|
||||
m_isInitialized = true;
|
||||
}
|
||||
|
||||
/** Performs a symbolic decomposition on the sparsity pattern of matrix \a a.
|
||||
*
|
||||
* This function is particularly useful when solving for several problems having the same structure.
|
||||
*
|
||||
* \sa factorize()
|
||||
*/
|
||||
template <typename MatrixType_, int UpLo_, SparseFactorization_t Solver_, bool EnforceSquare_>
|
||||
void AccelerateImpl<MatrixType_, UpLo_, Solver_, EnforceSquare_>::analyzePattern(const MatrixType& a) {
|
||||
if (EnforceSquare_) eigen_assert(a.rows() == a.cols());
|
||||
|
||||
m_nRows = a.rows();
|
||||
m_nCols = a.cols();
|
||||
|
||||
AccelSparseMatrix A{};
|
||||
std::vector<long> columnStarts;
|
||||
|
||||
buildAccelSparseMatrix(a, A, columnStarts);
|
||||
|
||||
doAnalysis(A);
|
||||
|
||||
m_isInitialized = true;
|
||||
}
|
||||
|
||||
/** Performs a numeric decomposition of matrix \a a.
|
||||
*
|
||||
* The given matrix must have the same sparsity pattern as the matrix on which the symbolic decomposition has been performed.
|
||||
*
|
||||
* \sa analyzePattern()
|
||||
*/
|
||||
template <typename MatrixType_, int UpLo_, SparseFactorization_t Solver_, bool EnforceSquare_>
|
||||
void AccelerateImpl<MatrixType_, UpLo_, Solver_, EnforceSquare_>::factorize(const MatrixType& a) {
|
||||
eigen_assert(m_symbolicFactorization && "You must first call analyzePattern()");
|
||||
eigen_assert(m_nRows == a.rows() && m_nCols == a.cols());
|
||||
|
||||
if (EnforceSquare_) eigen_assert(a.rows() == a.cols());
|
||||
|
||||
AccelSparseMatrix A{};
|
||||
std::vector<long> columnStarts;
|
||||
|
||||
buildAccelSparseMatrix(a, A, columnStarts);
|
||||
|
||||
doFactorization(A);
|
||||
}
|
||||
|
||||
template <typename MatrixType_, int UpLo_, SparseFactorization_t Solver_, bool EnforceSquare_>
|
||||
template <typename Rhs, typename Dest>
|
||||
void AccelerateImpl<MatrixType_, UpLo_, Solver_, EnforceSquare_>::_solve_impl(const MatrixBase<Rhs>& b,
|
||||
MatrixBase<Dest>& x) const {
|
||||
if (!m_numericFactorization) {
|
||||
m_info = InvalidInput;
|
||||
return;
|
||||
}
|
||||
|
||||
eigen_assert(m_nRows == b.rows());
|
||||
eigen_assert(((b.cols() == 1) || b.outerStride() == b.rows()));
|
||||
|
||||
SparseStatus_t status = SparseStatusOK;
|
||||
|
||||
Scalar* b_ptr = const_cast<Scalar*>(b.derived().data());
|
||||
Scalar* x_ptr = const_cast<Scalar*>(x.derived().data());
|
||||
|
||||
AccelDenseMatrix xmat{};
|
||||
xmat.attributes = SparseAttributes_t();
|
||||
xmat.columnCount = static_cast<int>(x.cols());
|
||||
xmat.rowCount = static_cast<int>(x.rows());
|
||||
xmat.columnStride = xmat.rowCount;
|
||||
xmat.data = x_ptr;
|
||||
|
||||
AccelDenseMatrix bmat{};
|
||||
bmat.attributes = SparseAttributes_t();
|
||||
bmat.columnCount = static_cast<int>(b.cols());
|
||||
bmat.rowCount = static_cast<int>(b.rows());
|
||||
bmat.columnStride = bmat.rowCount;
|
||||
bmat.data = b_ptr;
|
||||
|
||||
SparseSolve(*m_numericFactorization, bmat, xmat);
|
||||
|
||||
updateInfoStatus(status);
|
||||
}
|
||||
|
||||
} // end namespace Eigen
|
||||
|
||||
#endif // EIGEN_ACCELERATESUPPORT_H
|
||||
@@ -0,0 +1,3 @@
|
||||
#ifndef EIGEN_ACCELERATESUPPORT_MODULE_H
|
||||
#error "Please include Eigen/AccelerateSupport instead of including headers inside the src directory directly."
|
||||
#endif
|
||||
3
libs/eigen/Eigen/src/Cholesky/InternalHeaderCheck.h
Normal file
3
libs/eigen/Eigen/src/Cholesky/InternalHeaderCheck.h
Normal file
@@ -0,0 +1,3 @@
|
||||
#ifndef EIGEN_CHOLESKY_MODULE_H
|
||||
#error "Please include Eigen/Cholesky instead of including headers inside the src directory directly."
|
||||
#endif
|
||||
@@ -13,11 +13,13 @@
|
||||
#ifndef EIGEN_LDLT_H
|
||||
#define EIGEN_LDLT_H
|
||||
|
||||
#include "./InternalHeaderCheck.h"
|
||||
|
||||
namespace Eigen {
|
||||
|
||||
namespace internal {
|
||||
template<typename _MatrixType, int _UpLo> struct traits<LDLT<_MatrixType, _UpLo> >
|
||||
: traits<_MatrixType>
|
||||
template<typename MatrixType_, int UpLo_> struct traits<LDLT<MatrixType_, UpLo_> >
|
||||
: traits<MatrixType_>
|
||||
{
|
||||
typedef MatrixXpr XprKind;
|
||||
typedef SolverStorage StorageKind;
|
||||
@@ -37,8 +39,8 @@ namespace internal {
|
||||
*
|
||||
* \brief Robust Cholesky decomposition of a matrix with pivoting
|
||||
*
|
||||
* \tparam _MatrixType the type of the matrix of which to compute the LDL^T Cholesky decomposition
|
||||
* \tparam _UpLo the triangular part that will be used for the decompositon: Lower (default) or Upper.
|
||||
* \tparam MatrixType_ the type of the matrix of which to compute the LDL^T Cholesky decomposition
|
||||
* \tparam UpLo_ the triangular part that will be used for the decomposition: Lower (default) or Upper.
|
||||
* The other triangular part won't be read.
|
||||
*
|
||||
* Perform a robust Cholesky decomposition of a positive semidefinite or negative semidefinite
|
||||
@@ -56,11 +58,11 @@ namespace internal {
|
||||
*
|
||||
* \sa MatrixBase::ldlt(), SelfAdjointView::ldlt(), class LLT
|
||||
*/
|
||||
template<typename _MatrixType, int _UpLo> class LDLT
|
||||
: public SolverBase<LDLT<_MatrixType, _UpLo> >
|
||||
template<typename MatrixType_, int UpLo_> class LDLT
|
||||
: public SolverBase<LDLT<MatrixType_, UpLo_> >
|
||||
{
|
||||
public:
|
||||
typedef _MatrixType MatrixType;
|
||||
typedef MatrixType_ MatrixType;
|
||||
typedef SolverBase<LDLT> Base;
|
||||
friend class SolverBase<LDLT>;
|
||||
|
||||
@@ -68,7 +70,7 @@ template<typename _MatrixType, int _UpLo> class LDLT
|
||||
enum {
|
||||
MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
|
||||
MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime,
|
||||
UpLo = _UpLo
|
||||
UpLo = UpLo_
|
||||
};
|
||||
typedef Matrix<Scalar, RowsAtCompileTime, 1, 0, MaxRowsAtCompileTime, 1> TmpMatrixType;
|
||||
|
||||
@@ -244,7 +246,7 @@ template<typename _MatrixType, int _UpLo> class LDLT
|
||||
* This method is provided for compatibility with other matrix decompositions, thus enabling generic code such as:
|
||||
* \code x = decomposition.adjoint().solve(b) \endcode
|
||||
*/
|
||||
const LDLT& adjoint() const { return *this; };
|
||||
const LDLT& adjoint() const { return *this; }
|
||||
|
||||
EIGEN_DEVICE_FUNC inline EIGEN_CONSTEXPR Index rows() const EIGEN_NOEXCEPT { return m_matrix.rows(); }
|
||||
EIGEN_DEVICE_FUNC inline EIGEN_CONSTEXPR Index cols() const EIGEN_NOEXCEPT { return m_matrix.cols(); }
|
||||
@@ -270,10 +272,7 @@ template<typename _MatrixType, int _UpLo> class LDLT
|
||||
|
||||
protected:
|
||||
|
||||
static void check_template_parameters()
|
||||
{
|
||||
EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar);
|
||||
}
|
||||
EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar)
|
||||
|
||||
/** \internal
|
||||
* Used to compute and store the Cholesky decomposition A = L D L^* = U^* D U.
|
||||
@@ -441,7 +440,7 @@ template<> struct ldlt_inplace<Lower>
|
||||
// Update the terms of L
|
||||
Index rs = size-j-1;
|
||||
w.tail(rs) -= wj * mat.col(j).tail(rs);
|
||||
if(gamma != 0)
|
||||
if(!numext::is_exactly_zero(gamma))
|
||||
mat.col(j).tail(rs) += (sigma*numext::conj(wj)/gamma)*w.tail(rs);
|
||||
}
|
||||
return true;
|
||||
@@ -494,12 +493,10 @@ template<typename MatrixType> struct LDLT_Traits<MatrixType,Upper>
|
||||
|
||||
/** Compute / recompute the LDLT decomposition A = L D L^* = U^* D U of \a matrix
|
||||
*/
|
||||
template<typename MatrixType, int _UpLo>
|
||||
template<typename MatrixType, int UpLo_>
|
||||
template<typename InputType>
|
||||
LDLT<MatrixType,_UpLo>& LDLT<MatrixType,_UpLo>::compute(const EigenBase<InputType>& a)
|
||||
LDLT<MatrixType,UpLo_>& LDLT<MatrixType,UpLo_>::compute(const EigenBase<InputType>& a)
|
||||
{
|
||||
check_template_parameters();
|
||||
|
||||
eigen_assert(a.rows()==a.cols());
|
||||
const Index size = a.rows();
|
||||
|
||||
@@ -510,7 +507,7 @@ LDLT<MatrixType,_UpLo>& LDLT<MatrixType,_UpLo>::compute(const EigenBase<InputTyp
|
||||
// TODO move this code to SelfAdjointView
|
||||
for (Index col = 0; col < size; ++col) {
|
||||
RealScalar abs_col_sum;
|
||||
if (_UpLo == Lower)
|
||||
if (UpLo_ == Lower)
|
||||
abs_col_sum = m_matrix.col(col).tail(size - col).template lpNorm<1>() + m_matrix.row(col).head(col).template lpNorm<1>();
|
||||
else
|
||||
abs_col_sum = m_matrix.col(col).head(col).template lpNorm<1>() + m_matrix.row(col).tail(size - col).template lpNorm<1>();
|
||||
@@ -534,9 +531,9 @@ LDLT<MatrixType,_UpLo>& LDLT<MatrixType,_UpLo>::compute(const EigenBase<InputTyp
|
||||
* \param sigma a scalar, +1 for updates and -1 for "downdates," which correspond to removing previously-added column vectors. Optional; default value is +1.
|
||||
* \sa setZero()
|
||||
*/
|
||||
template<typename MatrixType, int _UpLo>
|
||||
template<typename MatrixType, int UpLo_>
|
||||
template<typename Derived>
|
||||
LDLT<MatrixType,_UpLo>& LDLT<MatrixType,_UpLo>::rankUpdate(const MatrixBase<Derived>& w, const typename LDLT<MatrixType,_UpLo>::RealScalar& sigma)
|
||||
LDLT<MatrixType,UpLo_>& LDLT<MatrixType,UpLo_>::rankUpdate(const MatrixBase<Derived>& w, const typename LDLT<MatrixType,UpLo_>::RealScalar& sigma)
|
||||
{
|
||||
typedef typename TranspositionType::StorageIndex IndexType;
|
||||
const Index size = w.rows();
|
||||
@@ -562,16 +559,16 @@ LDLT<MatrixType,_UpLo>& LDLT<MatrixType,_UpLo>::rankUpdate(const MatrixBase<Deri
|
||||
}
|
||||
|
||||
#ifndef EIGEN_PARSED_BY_DOXYGEN
|
||||
template<typename _MatrixType, int _UpLo>
|
||||
template<typename MatrixType_, int UpLo_>
|
||||
template<typename RhsType, typename DstType>
|
||||
void LDLT<_MatrixType,_UpLo>::_solve_impl(const RhsType &rhs, DstType &dst) const
|
||||
void LDLT<MatrixType_,UpLo_>::_solve_impl(const RhsType &rhs, DstType &dst) const
|
||||
{
|
||||
_solve_impl_transposed<true>(rhs, dst);
|
||||
}
|
||||
|
||||
template<typename _MatrixType,int _UpLo>
|
||||
template<typename MatrixType_,int UpLo_>
|
||||
template<bool Conjugate, typename RhsType, typename DstType>
|
||||
void LDLT<_MatrixType,_UpLo>::_solve_impl_transposed(const RhsType &rhs, DstType &dst) const
|
||||
void LDLT<MatrixType_,UpLo_>::_solve_impl_transposed(const RhsType &rhs, DstType &dst) const
|
||||
{
|
||||
// dst = P b
|
||||
dst = m_transpositions * rhs;
|
||||
@@ -624,9 +621,9 @@ void LDLT<_MatrixType,_UpLo>::_solve_impl_transposed(const RhsType &rhs, DstType
|
||||
*
|
||||
* \sa LDLT::solve(), MatrixBase::ldlt()
|
||||
*/
|
||||
template<typename MatrixType,int _UpLo>
|
||||
template<typename MatrixType,int UpLo_>
|
||||
template<typename Derived>
|
||||
bool LDLT<MatrixType,_UpLo>::solveInPlace(MatrixBase<Derived> &bAndX) const
|
||||
bool LDLT<MatrixType,UpLo_>::solveInPlace(MatrixBase<Derived> &bAndX) const
|
||||
{
|
||||
eigen_assert(m_isInitialized && "LDLT is not initialized.");
|
||||
eigen_assert(m_matrix.rows() == bAndX.rows());
|
||||
@@ -639,8 +636,8 @@ bool LDLT<MatrixType,_UpLo>::solveInPlace(MatrixBase<Derived> &bAndX) const
|
||||
/** \returns the matrix represented by the decomposition,
|
||||
* i.e., it returns the product: P^T L D L^* P.
|
||||
* This function is provided for debug purpose. */
|
||||
template<typename MatrixType, int _UpLo>
|
||||
MatrixType LDLT<MatrixType,_UpLo>::reconstructedMatrix() const
|
||||
template<typename MatrixType, int UpLo_>
|
||||
MatrixType LDLT<MatrixType,UpLo_>::reconstructedMatrix() const
|
||||
{
|
||||
eigen_assert(m_isInitialized && "LDLT is not initialized.");
|
||||
const Index size = m_matrix.rows();
|
||||
|
||||
@@ -10,12 +10,14 @@
|
||||
#ifndef EIGEN_LLT_H
|
||||
#define EIGEN_LLT_H
|
||||
|
||||
#include "./InternalHeaderCheck.h"
|
||||
|
||||
namespace Eigen {
|
||||
|
||||
namespace internal{
|
||||
|
||||
template<typename _MatrixType, int _UpLo> struct traits<LLT<_MatrixType, _UpLo> >
|
||||
: traits<_MatrixType>
|
||||
template<typename MatrixType_, int UpLo_> struct traits<LLT<MatrixType_, UpLo_> >
|
||||
: traits<MatrixType_>
|
||||
{
|
||||
typedef MatrixXpr XprKind;
|
||||
typedef SolverStorage StorageKind;
|
||||
@@ -32,8 +34,8 @@ template<typename MatrixType, int UpLo> struct LLT_Traits;
|
||||
*
|
||||
* \brief Standard Cholesky decomposition (LL^T) of a matrix and associated features
|
||||
*
|
||||
* \tparam _MatrixType the type of the matrix of which we are computing the LL^T Cholesky decomposition
|
||||
* \tparam _UpLo the triangular part that will be used for the decompositon: Lower (default) or Upper.
|
||||
* \tparam MatrixType_ the type of the matrix of which we are computing the LL^T Cholesky decomposition
|
||||
* \tparam UpLo_ the triangular part that will be used for the decomposition: Lower (default) or Upper.
|
||||
* The other triangular part won't be read.
|
||||
*
|
||||
* This class performs a LL^T Cholesky decomposition of a symmetric, positive definite
|
||||
@@ -58,16 +60,16 @@ template<typename MatrixType, int UpLo> struct LLT_Traits;
|
||||
*
|
||||
* This class supports the \link InplaceDecomposition inplace decomposition \endlink mechanism.
|
||||
*
|
||||
* Note that during the decomposition, only the lower (or upper, as defined by _UpLo) triangular part of A is considered.
|
||||
* Note that during the decomposition, only the lower (or upper, as defined by UpLo_) triangular part of A is considered.
|
||||
* Therefore, the strict lower part does not have to store correct values.
|
||||
*
|
||||
* \sa MatrixBase::llt(), SelfAdjointView::llt(), class LDLT
|
||||
*/
|
||||
template<typename _MatrixType, int _UpLo> class LLT
|
||||
: public SolverBase<LLT<_MatrixType, _UpLo> >
|
||||
template<typename MatrixType_, int UpLo_> class LLT
|
||||
: public SolverBase<LLT<MatrixType_, UpLo_> >
|
||||
{
|
||||
public:
|
||||
typedef _MatrixType MatrixType;
|
||||
typedef MatrixType_ MatrixType;
|
||||
typedef SolverBase<LLT> Base;
|
||||
friend class SolverBase<LLT>;
|
||||
|
||||
@@ -79,7 +81,7 @@ template<typename _MatrixType, int _UpLo> class LLT
|
||||
enum {
|
||||
PacketSize = internal::packet_traits<Scalar>::size,
|
||||
AlignmentMask = int(PacketSize)-1,
|
||||
UpLo = _UpLo
|
||||
UpLo = UpLo_
|
||||
};
|
||||
|
||||
typedef internal::LLT_Traits<MatrixType,UpLo> Traits;
|
||||
@@ -199,7 +201,7 @@ template<typename _MatrixType, int _UpLo> class LLT
|
||||
* This method is provided for compatibility with other matrix decompositions, thus enabling generic code such as:
|
||||
* \code x = decomposition.adjoint().solve(b) \endcode
|
||||
*/
|
||||
const LLT& adjoint() const EIGEN_NOEXCEPT { return *this; };
|
||||
const LLT& adjoint() const EIGEN_NOEXCEPT { return *this; }
|
||||
|
||||
inline EIGEN_CONSTEXPR Index rows() const EIGEN_NOEXCEPT { return m_matrix.rows(); }
|
||||
inline EIGEN_CONSTEXPR Index cols() const EIGEN_NOEXCEPT { return m_matrix.cols(); }
|
||||
@@ -217,10 +219,7 @@ template<typename _MatrixType, int _UpLo> class LLT
|
||||
|
||||
protected:
|
||||
|
||||
static void check_template_parameters()
|
||||
{
|
||||
EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar);
|
||||
}
|
||||
EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar)
|
||||
|
||||
/** \internal
|
||||
* Used to compute and store L
|
||||
@@ -243,7 +242,7 @@ static Index llt_rank_update_lower(MatrixType& mat, const VectorType& vec, const
|
||||
typedef typename MatrixType::Scalar Scalar;
|
||||
typedef typename MatrixType::RealScalar RealScalar;
|
||||
typedef typename MatrixType::ColXpr ColXpr;
|
||||
typedef typename internal::remove_all<ColXpr>::type ColXprCleaned;
|
||||
typedef internal::remove_all_t<ColXpr> ColXprCleaned;
|
||||
typedef typename ColXprCleaned::SegmentReturnType ColXprSegment;
|
||||
typedef Matrix<Scalar,Dynamic,1> TempVectorType;
|
||||
typedef typename TempVectorType::SegmentReturnType TempVecSegment;
|
||||
@@ -298,7 +297,7 @@ static Index llt_rank_update_lower(MatrixType& mat, const VectorType& vec, const
|
||||
if(rs)
|
||||
{
|
||||
temp.tail(rs) -= (wj/Ljj) * mat.col(j).tail(rs);
|
||||
if(gamma != 0)
|
||||
if(!numext::is_exactly_zero(gamma))
|
||||
mat.col(j).tail(rs) = (nLjj/Ljj) * mat.col(j).tail(rs) + (nLjj * sigma*numext::conj(wj)/gamma)*temp.tail(rs);
|
||||
}
|
||||
}
|
||||
@@ -427,12 +426,10 @@ template<typename MatrixType> struct LLT_Traits<MatrixType,Upper>
|
||||
* Example: \include TutorialLinAlgComputeTwice.cpp
|
||||
* Output: \verbinclude TutorialLinAlgComputeTwice.out
|
||||
*/
|
||||
template<typename MatrixType, int _UpLo>
|
||||
template<typename MatrixType, int UpLo_>
|
||||
template<typename InputType>
|
||||
LLT<MatrixType,_UpLo>& LLT<MatrixType,_UpLo>::compute(const EigenBase<InputType>& a)
|
||||
LLT<MatrixType,UpLo_>& LLT<MatrixType,UpLo_>::compute(const EigenBase<InputType>& a)
|
||||
{
|
||||
check_template_parameters();
|
||||
|
||||
eigen_assert(a.rows()==a.cols());
|
||||
const Index size = a.rows();
|
||||
m_matrix.resize(size, size);
|
||||
@@ -444,7 +441,7 @@ LLT<MatrixType,_UpLo>& LLT<MatrixType,_UpLo>::compute(const EigenBase<InputType>
|
||||
// TODO move this code to SelfAdjointView
|
||||
for (Index col = 0; col < size; ++col) {
|
||||
RealScalar abs_col_sum;
|
||||
if (_UpLo == Lower)
|
||||
if (UpLo_ == Lower)
|
||||
abs_col_sum = m_matrix.col(col).tail(size - col).template lpNorm<1>() + m_matrix.row(col).head(col).template lpNorm<1>();
|
||||
else
|
||||
abs_col_sum = m_matrix.col(col).head(col).template lpNorm<1>() + m_matrix.row(col).tail(size - col).template lpNorm<1>();
|
||||
@@ -464,9 +461,9 @@ LLT<MatrixType,_UpLo>& LLT<MatrixType,_UpLo>::compute(const EigenBase<InputType>
|
||||
* then after it we have LL^* = A + sigma * v v^* where \a v must be a vector
|
||||
* of same dimension.
|
||||
*/
|
||||
template<typename _MatrixType, int _UpLo>
|
||||
template<typename MatrixType_, int UpLo_>
|
||||
template<typename VectorType>
|
||||
LLT<_MatrixType,_UpLo> & LLT<_MatrixType,_UpLo>::rankUpdate(const VectorType& v, const RealScalar& sigma)
|
||||
LLT<MatrixType_,UpLo_> & LLT<MatrixType_,UpLo_>::rankUpdate(const VectorType& v, const RealScalar& sigma)
|
||||
{
|
||||
EIGEN_STATIC_ASSERT_VECTOR_ONLY(VectorType);
|
||||
eigen_assert(v.size()==m_matrix.cols());
|
||||
@@ -480,16 +477,16 @@ LLT<_MatrixType,_UpLo> & LLT<_MatrixType,_UpLo>::rankUpdate(const VectorType& v,
|
||||
}
|
||||
|
||||
#ifndef EIGEN_PARSED_BY_DOXYGEN
|
||||
template<typename _MatrixType,int _UpLo>
|
||||
template<typename MatrixType_,int UpLo_>
|
||||
template<typename RhsType, typename DstType>
|
||||
void LLT<_MatrixType,_UpLo>::_solve_impl(const RhsType &rhs, DstType &dst) const
|
||||
void LLT<MatrixType_,UpLo_>::_solve_impl(const RhsType &rhs, DstType &dst) const
|
||||
{
|
||||
_solve_impl_transposed<true>(rhs, dst);
|
||||
}
|
||||
|
||||
template<typename _MatrixType,int _UpLo>
|
||||
template<typename MatrixType_,int UpLo_>
|
||||
template<bool Conjugate, typename RhsType, typename DstType>
|
||||
void LLT<_MatrixType,_UpLo>::_solve_impl_transposed(const RhsType &rhs, DstType &dst) const
|
||||
void LLT<MatrixType_,UpLo_>::_solve_impl_transposed(const RhsType &rhs, DstType &dst) const
|
||||
{
|
||||
dst = rhs;
|
||||
|
||||
@@ -511,9 +508,9 @@ void LLT<_MatrixType,_UpLo>::_solve_impl_transposed(const RhsType &rhs, DstType
|
||||
*
|
||||
* \sa LLT::solve(), MatrixBase::llt()
|
||||
*/
|
||||
template<typename MatrixType, int _UpLo>
|
||||
template<typename MatrixType, int UpLo_>
|
||||
template<typename Derived>
|
||||
void LLT<MatrixType,_UpLo>::solveInPlace(const MatrixBase<Derived> &bAndX) const
|
||||
void LLT<MatrixType,UpLo_>::solveInPlace(const MatrixBase<Derived> &bAndX) const
|
||||
{
|
||||
eigen_assert(m_isInitialized && "LLT is not initialized.");
|
||||
eigen_assert(m_matrix.rows()==bAndX.rows());
|
||||
@@ -524,8 +521,8 @@ void LLT<MatrixType,_UpLo>::solveInPlace(const MatrixBase<Derived> &bAndX) const
|
||||
/** \returns the matrix represented by the decomposition,
|
||||
* i.e., it returns the product: L L^*.
|
||||
* This function is provided for debug purpose. */
|
||||
template<typename MatrixType, int _UpLo>
|
||||
MatrixType LLT<MatrixType,_UpLo>::reconstructedMatrix() const
|
||||
template<typename MatrixType, int UpLo_>
|
||||
MatrixType LLT<MatrixType,UpLo_>::reconstructedMatrix() const
|
||||
{
|
||||
eigen_assert(m_isInitialized && "LLT is not initialized.");
|
||||
return matrixL() * matrixL().adjoint().toDenseMatrix();
|
||||
|
||||
@@ -33,64 +33,86 @@
|
||||
#ifndef EIGEN_LLT_LAPACKE_H
|
||||
#define EIGEN_LLT_LAPACKE_H
|
||||
|
||||
namespace Eigen {
|
||||
#include "./InternalHeaderCheck.h"
|
||||
|
||||
namespace Eigen {
|
||||
|
||||
namespace internal {
|
||||
|
||||
template<typename Scalar> struct lapacke_llt;
|
||||
namespace lapacke_helpers {
|
||||
// -------------------------------------------------------------------------------------------------------------------
|
||||
// Dispatch for rank update handling upper and lower parts
|
||||
// -------------------------------------------------------------------------------------------------------------------
|
||||
|
||||
#define EIGEN_LAPACKE_LLT(EIGTYPE, BLASTYPE, LAPACKE_PREFIX) \
|
||||
template<> struct lapacke_llt<EIGTYPE> \
|
||||
{ \
|
||||
template<typename MatrixType> \
|
||||
static inline Index potrf(MatrixType& m, char uplo) \
|
||||
{ \
|
||||
lapack_int matrix_order; \
|
||||
lapack_int size, lda, info, StorageOrder; \
|
||||
EIGTYPE* a; \
|
||||
eigen_assert(m.rows()==m.cols()); \
|
||||
/* Set up parameters for ?potrf */ \
|
||||
size = convert_index<lapack_int>(m.rows()); \
|
||||
StorageOrder = MatrixType::Flags&RowMajorBit?RowMajor:ColMajor; \
|
||||
matrix_order = StorageOrder==RowMajor ? LAPACK_ROW_MAJOR : LAPACK_COL_MAJOR; \
|
||||
a = &(m.coeffRef(0,0)); \
|
||||
lda = convert_index<lapack_int>(m.outerStride()); \
|
||||
\
|
||||
info = LAPACKE_##LAPACKE_PREFIX##potrf( matrix_order, uplo, size, (BLASTYPE*)a, lda ); \
|
||||
info = (info==0) ? -1 : info>0 ? info-1 : size; \
|
||||
return info; \
|
||||
} \
|
||||
}; \
|
||||
template<> struct llt_inplace<EIGTYPE, Lower> \
|
||||
{ \
|
||||
template<typename MatrixType> \
|
||||
static Index blocked(MatrixType& m) \
|
||||
{ \
|
||||
return lapacke_llt<EIGTYPE>::potrf(m, 'L'); \
|
||||
} \
|
||||
template<typename MatrixType, typename VectorType> \
|
||||
static Index rankUpdate(MatrixType& mat, const VectorType& vec, const typename MatrixType::RealScalar& sigma) \
|
||||
{ return Eigen::internal::llt_rank_update_lower(mat, vec, sigma); } \
|
||||
}; \
|
||||
template<> struct llt_inplace<EIGTYPE, Upper> \
|
||||
{ \
|
||||
template<typename MatrixType> \
|
||||
static Index blocked(MatrixType& m) \
|
||||
{ \
|
||||
return lapacke_llt<EIGTYPE>::potrf(m, 'U'); \
|
||||
} \
|
||||
template<typename MatrixType, typename VectorType> \
|
||||
static Index rankUpdate(MatrixType& mat, const VectorType& vec, const typename MatrixType::RealScalar& sigma) \
|
||||
{ \
|
||||
Transpose<MatrixType> matt(mat); \
|
||||
return llt_inplace<EIGTYPE, Lower>::rankUpdate(matt, vec.conjugate(), sigma); \
|
||||
} \
|
||||
};
|
||||
template<UpLoType Mode>
|
||||
struct rank_update {};
|
||||
|
||||
EIGEN_LAPACKE_LLT(double, double, d)
|
||||
EIGEN_LAPACKE_LLT(float, float, s)
|
||||
EIGEN_LAPACKE_LLT(dcomplex, lapack_complex_double, z)
|
||||
EIGEN_LAPACKE_LLT(scomplex, lapack_complex_float, c)
|
||||
template<>
|
||||
struct rank_update<Lower> {
|
||||
template<typename MatrixType, typename VectorType>
|
||||
static Index run(MatrixType &mat, const VectorType &vec, const typename MatrixType::RealScalar &sigma) {
|
||||
return Eigen::internal::llt_rank_update_lower(mat, vec, sigma);
|
||||
}
|
||||
};
|
||||
|
||||
template<>
|
||||
struct rank_update<Upper> {
|
||||
template<typename MatrixType, typename VectorType>
|
||||
static Index run(MatrixType &mat, const VectorType &vec, const typename MatrixType::RealScalar &sigma) {
|
||||
Transpose<MatrixType> matt(mat);
|
||||
return Eigen::internal::llt_rank_update_lower(matt, vec.conjugate(), sigma);
|
||||
}
|
||||
};
|
||||
|
||||
// -------------------------------------------------------------------------------------------------------------------
|
||||
// Generic lapacke llt implementation that hands of to the dispatches
|
||||
// -------------------------------------------------------------------------------------------------------------------
|
||||
|
||||
template<typename Scalar, UpLoType Mode>
|
||||
struct lapacke_llt {
|
||||
template<typename MatrixType>
|
||||
static Index blocked(MatrixType& m)
|
||||
{
|
||||
eigen_assert(m.rows() == m.cols());
|
||||
if(m.rows() == 0) {
|
||||
return -1;
|
||||
}
|
||||
/* Set up parameters for ?potrf */
|
||||
lapack_int size = to_lapack(m.rows());
|
||||
lapack_int matrix_order = lapack_storage_of(m);
|
||||
Scalar* a = &(m.coeffRef(0,0));
|
||||
lapack_int lda = to_lapack(m.outerStride());
|
||||
|
||||
lapack_int info = potrf(matrix_order, translate_mode<Mode>, size, to_lapack(a), lda );
|
||||
info = (info==0) ? -1 : info>0 ? info-1 : size;
|
||||
return info;
|
||||
}
|
||||
|
||||
template<typename MatrixType, typename VectorType>
|
||||
static Index rankUpdate(MatrixType& mat, const VectorType& vec, const typename MatrixType::RealScalar& sigma)
|
||||
{
|
||||
return rank_update<Mode>::run(mat, vec, sigma);
|
||||
}
|
||||
};
|
||||
}
|
||||
// end namespace lapacke_helpers
|
||||
|
||||
/*
|
||||
* Here, we just put the generic implementation from lapacke_llt into a full specialization of the llt_inplace
|
||||
* type. By being a full specialization, the versions defined here thus get precedence over the generic implementation
|
||||
* in LLT.h for double, float and complex double, complex float types.
|
||||
*/
|
||||
|
||||
#define EIGEN_LAPACKE_LLT(EIGTYPE) \
|
||||
template<> struct llt_inplace<EIGTYPE, Lower> : public lapacke_helpers::lapacke_llt<EIGTYPE, Lower> {}; \
|
||||
template<> struct llt_inplace<EIGTYPE, Upper> : public lapacke_helpers::lapacke_llt<EIGTYPE, Upper> {};
|
||||
|
||||
EIGEN_LAPACKE_LLT(double)
|
||||
EIGEN_LAPACKE_LLT(float)
|
||||
EIGEN_LAPACKE_LLT(std::complex<double>)
|
||||
EIGEN_LAPACKE_LLT(std::complex<float>)
|
||||
|
||||
#undef EIGEN_LAPACKE_LLT
|
||||
|
||||
} // end namespace internal
|
||||
|
||||
|
||||
@@ -10,6 +10,8 @@
|
||||
#ifndef EIGEN_CHOLMODSUPPORT_H
|
||||
#define EIGEN_CHOLMODSUPPORT_H
|
||||
|
||||
#include "./InternalHeaderCheck.h"
|
||||
|
||||
namespace Eigen {
|
||||
|
||||
namespace internal {
|
||||
@@ -54,8 +56,8 @@ template<> struct cholmod_configure_matrix<std::complex<double> > {
|
||||
/** Wraps the Eigen sparse matrix \a mat into a Cholmod sparse matrix object.
|
||||
* Note that the data are shared.
|
||||
*/
|
||||
template<typename _Scalar, int _Options, typename _StorageIndex>
|
||||
cholmod_sparse viewAsCholmod(Ref<SparseMatrix<_Scalar,_Options,_StorageIndex> > mat)
|
||||
template<typename Scalar_, int Options_, typename StorageIndex_>
|
||||
cholmod_sparse viewAsCholmod(Ref<SparseMatrix<Scalar_,Options_,StorageIndex_> > mat)
|
||||
{
|
||||
cholmod_sparse res;
|
||||
res.nzmax = mat.nonZeros();
|
||||
@@ -80,11 +82,11 @@ cholmod_sparse viewAsCholmod(Ref<SparseMatrix<_Scalar,_Options,_StorageIndex> >
|
||||
res.dtype = 0;
|
||||
res.stype = -1;
|
||||
|
||||
if (internal::is_same<_StorageIndex,int>::value)
|
||||
if (internal::is_same<StorageIndex_,int>::value)
|
||||
{
|
||||
res.itype = CHOLMOD_INT;
|
||||
}
|
||||
else if (internal::is_same<_StorageIndex,SuiteSparse_long>::value)
|
||||
else if (internal::is_same<StorageIndex_,SuiteSparse_long>::value)
|
||||
{
|
||||
res.itype = CHOLMOD_LONG;
|
||||
}
|
||||
@@ -94,39 +96,39 @@ cholmod_sparse viewAsCholmod(Ref<SparseMatrix<_Scalar,_Options,_StorageIndex> >
|
||||
}
|
||||
|
||||
// setup res.xtype
|
||||
internal::cholmod_configure_matrix<_Scalar>::run(res);
|
||||
internal::cholmod_configure_matrix<Scalar_>::run(res);
|
||||
|
||||
res.stype = 0;
|
||||
|
||||
return res;
|
||||
}
|
||||
|
||||
template<typename _Scalar, int _Options, typename _Index>
|
||||
const cholmod_sparse viewAsCholmod(const SparseMatrix<_Scalar,_Options,_Index>& mat)
|
||||
template<typename Scalar_, int Options_, typename Index_>
|
||||
const cholmod_sparse viewAsCholmod(const SparseMatrix<Scalar_,Options_,Index_>& mat)
|
||||
{
|
||||
cholmod_sparse res = viewAsCholmod(Ref<SparseMatrix<_Scalar,_Options,_Index> >(mat.const_cast_derived()));
|
||||
cholmod_sparse res = viewAsCholmod(Ref<SparseMatrix<Scalar_,Options_,Index_> >(mat.const_cast_derived()));
|
||||
return res;
|
||||
}
|
||||
|
||||
template<typename _Scalar, int _Options, typename _Index>
|
||||
const cholmod_sparse viewAsCholmod(const SparseVector<_Scalar,_Options,_Index>& mat)
|
||||
template<typename Scalar_, int Options_, typename Index_>
|
||||
const cholmod_sparse viewAsCholmod(const SparseVector<Scalar_,Options_,Index_>& mat)
|
||||
{
|
||||
cholmod_sparse res = viewAsCholmod(Ref<SparseMatrix<_Scalar,_Options,_Index> >(mat.const_cast_derived()));
|
||||
cholmod_sparse res = viewAsCholmod(Ref<SparseMatrix<Scalar_,Options_,Index_> >(mat.const_cast_derived()));
|
||||
return res;
|
||||
}
|
||||
|
||||
/** Returns a view of the Eigen sparse matrix \a mat as Cholmod sparse matrix.
|
||||
* The data are not copied but shared. */
|
||||
template<typename _Scalar, int _Options, typename _Index, unsigned int UpLo>
|
||||
cholmod_sparse viewAsCholmod(const SparseSelfAdjointView<const SparseMatrix<_Scalar,_Options,_Index>, UpLo>& mat)
|
||||
template<typename Scalar_, int Options_, typename Index_, unsigned int UpLo>
|
||||
cholmod_sparse viewAsCholmod(const SparseSelfAdjointView<const SparseMatrix<Scalar_,Options_,Index_>, UpLo>& mat)
|
||||
{
|
||||
cholmod_sparse res = viewAsCholmod(Ref<SparseMatrix<_Scalar,_Options,_Index> >(mat.matrix().const_cast_derived()));
|
||||
cholmod_sparse res = viewAsCholmod(Ref<SparseMatrix<Scalar_,Options_,Index_> >(mat.matrix().const_cast_derived()));
|
||||
|
||||
if(UpLo==Upper) res.stype = 1;
|
||||
if(UpLo==Lower) res.stype = -1;
|
||||
// swap stype for rowmajor matrices (only works for real matrices)
|
||||
EIGEN_STATIC_ASSERT((_Options & RowMajorBit) == 0 || NumTraits<_Scalar>::IsComplex == 0, THIS_METHOD_IS_ONLY_FOR_COLUMN_MAJOR_MATRICES);
|
||||
if(_Options & RowMajorBit) res.stype *=-1;
|
||||
EIGEN_STATIC_ASSERT((Options_ & RowMajorBit) == 0 || NumTraits<Scalar_>::IsComplex == 0, THIS_METHOD_IS_ONLY_FOR_COLUMN_MAJOR_MATRICES);
|
||||
if(Options_ & RowMajorBit) res.stype *=-1;
|
||||
|
||||
return res;
|
||||
}
|
||||
@@ -155,9 +157,9 @@ cholmod_dense viewAsCholmod(MatrixBase<Derived>& mat)
|
||||
/** Returns a view of the Cholmod sparse matrix \a cm as an Eigen sparse matrix.
|
||||
* The data are not copied but shared. */
|
||||
template<typename Scalar, int Flags, typename StorageIndex>
|
||||
MappedSparseMatrix<Scalar,Flags,StorageIndex> viewAsEigen(cholmod_sparse& cm)
|
||||
Map<SparseMatrix<Scalar,Flags,StorageIndex> > viewAsEigen(cholmod_sparse& cm)
|
||||
{
|
||||
return MappedSparseMatrix<Scalar,Flags,StorageIndex>
|
||||
return Map<SparseMatrix<Scalar,Flags,StorageIndex> >
|
||||
(cm.nrow, cm.ncol, static_cast<StorageIndex*>(cm.p)[cm.ncol],
|
||||
static_cast<StorageIndex*>(cm.p), static_cast<StorageIndex*>(cm.i),static_cast<Scalar*>(cm.x) );
|
||||
}
|
||||
@@ -167,11 +169,11 @@ namespace internal {
|
||||
// template specializations for int and long that call the correct cholmod method
|
||||
|
||||
#define EIGEN_CHOLMOD_SPECIALIZE0(ret, name) \
|
||||
template<typename _StorageIndex> inline ret cm_ ## name (cholmod_common &Common) { return cholmod_ ## name (&Common); } \
|
||||
template<typename StorageIndex_> inline ret cm_ ## name (cholmod_common &Common) { return cholmod_ ## name (&Common); } \
|
||||
template<> inline ret cm_ ## name<SuiteSparse_long> (cholmod_common &Common) { return cholmod_l_ ## name (&Common); }
|
||||
|
||||
#define EIGEN_CHOLMOD_SPECIALIZE1(ret, name, t1, a1) \
|
||||
template<typename _StorageIndex> inline ret cm_ ## name (t1& a1, cholmod_common &Common) { return cholmod_ ## name (&a1, &Common); } \
|
||||
template<typename StorageIndex_> inline ret cm_ ## name (t1& a1, cholmod_common &Common) { return cholmod_ ## name (&a1, &Common); } \
|
||||
template<> inline ret cm_ ## name<SuiteSparse_long> (t1& a1, cholmod_common &Common) { return cholmod_l_ ## name (&a1, &Common); }
|
||||
|
||||
EIGEN_CHOLMOD_SPECIALIZE0(int, start)
|
||||
@@ -183,14 +185,14 @@ EIGEN_CHOLMOD_SPECIALIZE1(int, free_sparse, cholmod_sparse*, A)
|
||||
|
||||
EIGEN_CHOLMOD_SPECIALIZE1(cholmod_factor*, analyze, cholmod_sparse, A)
|
||||
|
||||
template<typename _StorageIndex> inline cholmod_dense* cm_solve (int sys, cholmod_factor& L, cholmod_dense& B, cholmod_common &Common) { return cholmod_solve (sys, &L, &B, &Common); }
|
||||
template<typename StorageIndex_> inline cholmod_dense* cm_solve (int sys, cholmod_factor& L, cholmod_dense& B, cholmod_common &Common) { return cholmod_solve (sys, &L, &B, &Common); }
|
||||
template<> inline cholmod_dense* cm_solve<SuiteSparse_long> (int sys, cholmod_factor& L, cholmod_dense& B, cholmod_common &Common) { return cholmod_l_solve (sys, &L, &B, &Common); }
|
||||
|
||||
template<typename _StorageIndex> inline cholmod_sparse* cm_spsolve (int sys, cholmod_factor& L, cholmod_sparse& B, cholmod_common &Common) { return cholmod_spsolve (sys, &L, &B, &Common); }
|
||||
template<typename StorageIndex_> inline cholmod_sparse* cm_spsolve (int sys, cholmod_factor& L, cholmod_sparse& B, cholmod_common &Common) { return cholmod_spsolve (sys, &L, &B, &Common); }
|
||||
template<> inline cholmod_sparse* cm_spsolve<SuiteSparse_long> (int sys, cholmod_factor& L, cholmod_sparse& B, cholmod_common &Common) { return cholmod_l_spsolve (sys, &L, &B, &Common); }
|
||||
|
||||
template<typename _StorageIndex>
|
||||
inline int cm_factorize_p (cholmod_sparse* A, double beta[2], _StorageIndex* fset, std::size_t fsize, cholmod_factor* L, cholmod_common &Common) { return cholmod_factorize_p (A, beta, fset, fsize, L, &Common); }
|
||||
template<typename StorageIndex_>
|
||||
inline int cm_factorize_p (cholmod_sparse* A, double beta[2], StorageIndex_* fset, std::size_t fsize, cholmod_factor* L, cholmod_common &Common) { return cholmod_factorize_p (A, beta, fset, fsize, L, &Common); }
|
||||
template<>
|
||||
inline int cm_factorize_p<SuiteSparse_long> (cholmod_sparse* A, double beta[2], SuiteSparse_long* fset, std::size_t fsize, cholmod_factor* L, cholmod_common &Common) { return cholmod_l_factorize_p (A, beta, fset, fsize, L, &Common); }
|
||||
|
||||
@@ -210,7 +212,7 @@ enum CholmodMode {
|
||||
* \brief The base class for the direct Cholesky factorization of Cholmod
|
||||
* \sa class CholmodSupernodalLLT, class CholmodSimplicialLDLT, class CholmodSimplicialLLT
|
||||
*/
|
||||
template<typename _MatrixType, int _UpLo, typename Derived>
|
||||
template<typename MatrixType_, int UpLo_, typename Derived>
|
||||
class CholmodBase : public SparseSolverBase<Derived>
|
||||
{
|
||||
protected:
|
||||
@@ -218,8 +220,8 @@ class CholmodBase : public SparseSolverBase<Derived>
|
||||
using Base::derived;
|
||||
using Base::m_isInitialized;
|
||||
public:
|
||||
typedef _MatrixType MatrixType;
|
||||
enum { UpLo = _UpLo };
|
||||
typedef MatrixType_ MatrixType;
|
||||
enum { UpLo = UpLo_ };
|
||||
typedef typename MatrixType::Scalar Scalar;
|
||||
typedef typename MatrixType::RealScalar RealScalar;
|
||||
typedef MatrixType CholMatrixType;
|
||||
@@ -436,7 +438,7 @@ class CholmodBase : public SparseSolverBase<Derived>
|
||||
if (m_cholmodFactor->is_ll)
|
||||
logDet *= 2.0;
|
||||
return logDet;
|
||||
};
|
||||
}
|
||||
|
||||
template<typename Stream>
|
||||
void dumpMemory(Stream& /*s*/)
|
||||
@@ -461,8 +463,8 @@ class CholmodBase : public SparseSolverBase<Derived>
|
||||
* The sparse matrix A must be selfadjoint and positive definite. The vectors or matrices
|
||||
* X and B can be either dense or sparse.
|
||||
*
|
||||
* \tparam _MatrixType the type of the sparse matrix A, it must be a SparseMatrix<>
|
||||
* \tparam _UpLo the triangular part that will be used for the computations. It can be Lower
|
||||
* \tparam MatrixType_ the type of the sparse matrix A, it must be a SparseMatrix<>
|
||||
* \tparam UpLo_ the triangular part that will be used for the computations. It can be Lower
|
||||
* or Upper. Default is Lower.
|
||||
*
|
||||
* \implsparsesolverconcept
|
||||
@@ -473,15 +475,15 @@ class CholmodBase : public SparseSolverBase<Derived>
|
||||
*
|
||||
* \sa \ref TutorialSparseSolverConcept, class CholmodSupernodalLLT, class SimplicialLLT
|
||||
*/
|
||||
template<typename _MatrixType, int _UpLo = Lower>
|
||||
class CholmodSimplicialLLT : public CholmodBase<_MatrixType, _UpLo, CholmodSimplicialLLT<_MatrixType, _UpLo> >
|
||||
template<typename MatrixType_, int UpLo_ = Lower>
|
||||
class CholmodSimplicialLLT : public CholmodBase<MatrixType_, UpLo_, CholmodSimplicialLLT<MatrixType_, UpLo_> >
|
||||
{
|
||||
typedef CholmodBase<_MatrixType, _UpLo, CholmodSimplicialLLT> Base;
|
||||
typedef CholmodBase<MatrixType_, UpLo_, CholmodSimplicialLLT> Base;
|
||||
using Base::m_cholmod;
|
||||
|
||||
public:
|
||||
|
||||
typedef _MatrixType MatrixType;
|
||||
typedef MatrixType_ MatrixType;
|
||||
|
||||
CholmodSimplicialLLT() : Base() { init(); }
|
||||
|
||||
@@ -512,8 +514,8 @@ class CholmodSimplicialLLT : public CholmodBase<_MatrixType, _UpLo, CholmodSimpl
|
||||
* The sparse matrix A must be selfadjoint and positive definite. The vectors or matrices
|
||||
* X and B can be either dense or sparse.
|
||||
*
|
||||
* \tparam _MatrixType the type of the sparse matrix A, it must be a SparseMatrix<>
|
||||
* \tparam _UpLo the triangular part that will be used for the computations. It can be Lower
|
||||
* \tparam MatrixType_ the type of the sparse matrix A, it must be a SparseMatrix<>
|
||||
* \tparam UpLo_ the triangular part that will be used for the computations. It can be Lower
|
||||
* or Upper. Default is Lower.
|
||||
*
|
||||
* \implsparsesolverconcept
|
||||
@@ -524,15 +526,15 @@ class CholmodSimplicialLLT : public CholmodBase<_MatrixType, _UpLo, CholmodSimpl
|
||||
*
|
||||
* \sa \ref TutorialSparseSolverConcept, class CholmodSupernodalLLT, class SimplicialLDLT
|
||||
*/
|
||||
template<typename _MatrixType, int _UpLo = Lower>
|
||||
class CholmodSimplicialLDLT : public CholmodBase<_MatrixType, _UpLo, CholmodSimplicialLDLT<_MatrixType, _UpLo> >
|
||||
template<typename MatrixType_, int UpLo_ = Lower>
|
||||
class CholmodSimplicialLDLT : public CholmodBase<MatrixType_, UpLo_, CholmodSimplicialLDLT<MatrixType_, UpLo_> >
|
||||
{
|
||||
typedef CholmodBase<_MatrixType, _UpLo, CholmodSimplicialLDLT> Base;
|
||||
typedef CholmodBase<MatrixType_, UpLo_, CholmodSimplicialLDLT> Base;
|
||||
using Base::m_cholmod;
|
||||
|
||||
public:
|
||||
|
||||
typedef _MatrixType MatrixType;
|
||||
typedef MatrixType_ MatrixType;
|
||||
|
||||
CholmodSimplicialLDLT() : Base() { init(); }
|
||||
|
||||
@@ -561,8 +563,8 @@ class CholmodSimplicialLDLT : public CholmodBase<_MatrixType, _UpLo, CholmodSimp
|
||||
* The sparse matrix A must be selfadjoint and positive definite. The vectors or matrices
|
||||
* X and B can be either dense or sparse.
|
||||
*
|
||||
* \tparam _MatrixType the type of the sparse matrix A, it must be a SparseMatrix<>
|
||||
* \tparam _UpLo the triangular part that will be used for the computations. It can be Lower
|
||||
* \tparam MatrixType_ the type of the sparse matrix A, it must be a SparseMatrix<>
|
||||
* \tparam UpLo_ the triangular part that will be used for the computations. It can be Lower
|
||||
* or Upper. Default is Lower.
|
||||
*
|
||||
* \implsparsesolverconcept
|
||||
@@ -573,15 +575,15 @@ class CholmodSimplicialLDLT : public CholmodBase<_MatrixType, _UpLo, CholmodSimp
|
||||
*
|
||||
* \sa \ref TutorialSparseSolverConcept
|
||||
*/
|
||||
template<typename _MatrixType, int _UpLo = Lower>
|
||||
class CholmodSupernodalLLT : public CholmodBase<_MatrixType, _UpLo, CholmodSupernodalLLT<_MatrixType, _UpLo> >
|
||||
template<typename MatrixType_, int UpLo_ = Lower>
|
||||
class CholmodSupernodalLLT : public CholmodBase<MatrixType_, UpLo_, CholmodSupernodalLLT<MatrixType_, UpLo_> >
|
||||
{
|
||||
typedef CholmodBase<_MatrixType, _UpLo, CholmodSupernodalLLT> Base;
|
||||
typedef CholmodBase<MatrixType_, UpLo_, CholmodSupernodalLLT> Base;
|
||||
using Base::m_cholmod;
|
||||
|
||||
public:
|
||||
|
||||
typedef _MatrixType MatrixType;
|
||||
typedef MatrixType_ MatrixType;
|
||||
|
||||
CholmodSupernodalLLT() : Base() { init(); }
|
||||
|
||||
@@ -612,8 +614,8 @@ class CholmodSupernodalLLT : public CholmodBase<_MatrixType, _UpLo, CholmodSuper
|
||||
* On the other hand, it does not provide access to the result of the factorization.
|
||||
* The default is to let Cholmod automatically choose between a simplicial and supernodal factorization.
|
||||
*
|
||||
* \tparam _MatrixType the type of the sparse matrix A, it must be a SparseMatrix<>
|
||||
* \tparam _UpLo the triangular part that will be used for the computations. It can be Lower
|
||||
* \tparam MatrixType_ the type of the sparse matrix A, it must be a SparseMatrix<>
|
||||
* \tparam UpLo_ the triangular part that will be used for the computations. It can be Lower
|
||||
* or Upper. Default is Lower.
|
||||
*
|
||||
* \implsparsesolverconcept
|
||||
@@ -624,15 +626,15 @@ class CholmodSupernodalLLT : public CholmodBase<_MatrixType, _UpLo, CholmodSuper
|
||||
*
|
||||
* \sa \ref TutorialSparseSolverConcept
|
||||
*/
|
||||
template<typename _MatrixType, int _UpLo = Lower>
|
||||
class CholmodDecomposition : public CholmodBase<_MatrixType, _UpLo, CholmodDecomposition<_MatrixType, _UpLo> >
|
||||
template<typename MatrixType_, int UpLo_ = Lower>
|
||||
class CholmodDecomposition : public CholmodBase<MatrixType_, UpLo_, CholmodDecomposition<MatrixType_, UpLo_> >
|
||||
{
|
||||
typedef CholmodBase<_MatrixType, _UpLo, CholmodDecomposition> Base;
|
||||
typedef CholmodBase<MatrixType_, UpLo_, CholmodDecomposition> Base;
|
||||
using Base::m_cholmod;
|
||||
|
||||
public:
|
||||
|
||||
typedef _MatrixType MatrixType;
|
||||
typedef MatrixType_ MatrixType;
|
||||
|
||||
CholmodDecomposition() : Base() { init(); }
|
||||
|
||||
|
||||
@@ -0,0 +1,3 @@
|
||||
#ifndef EIGEN_CHOLMODSUPPORT_MODULE_H
|
||||
#error "Please include Eigen/CholmodSupport instead of including headers inside the src directory directly."
|
||||
#endif
|
||||
@@ -10,69 +10,18 @@
|
||||
#ifndef EIGEN_ARITHMETIC_SEQUENCE_H
|
||||
#define EIGEN_ARITHMETIC_SEQUENCE_H
|
||||
|
||||
#include "./InternalHeaderCheck.h"
|
||||
|
||||
namespace Eigen {
|
||||
|
||||
namespace internal {
|
||||
|
||||
#if (!EIGEN_HAS_CXX11) || !((!EIGEN_COMP_GNUC) || EIGEN_COMP_GNUC>=48)
|
||||
template<typename T> struct aseq_negate {};
|
||||
|
||||
template<> struct aseq_negate<Index> {
|
||||
typedef Index type;
|
||||
};
|
||||
|
||||
template<int N> struct aseq_negate<FixedInt<N> > {
|
||||
typedef FixedInt<-N> type;
|
||||
};
|
||||
|
||||
// Compilation error in the following case:
|
||||
template<> struct aseq_negate<FixedInt<DynamicIndex> > {};
|
||||
|
||||
template<typename FirstType,typename SizeType,typename IncrType,
|
||||
bool FirstIsSymbolic=symbolic::is_symbolic<FirstType>::value,
|
||||
bool SizeIsSymbolic =symbolic::is_symbolic<SizeType>::value>
|
||||
struct aseq_reverse_first_type {
|
||||
typedef Index type;
|
||||
};
|
||||
|
||||
template<typename FirstType,typename SizeType,typename IncrType>
|
||||
struct aseq_reverse_first_type<FirstType,SizeType,IncrType,true,true> {
|
||||
typedef symbolic::AddExpr<FirstType,
|
||||
symbolic::ProductExpr<symbolic::AddExpr<SizeType,symbolic::ValueExpr<FixedInt<-1> > >,
|
||||
symbolic::ValueExpr<IncrType> >
|
||||
> type;
|
||||
};
|
||||
|
||||
template<typename SizeType,typename IncrType,typename EnableIf = void>
|
||||
struct aseq_reverse_first_type_aux {
|
||||
typedef Index type;
|
||||
};
|
||||
|
||||
template<typename SizeType,typename IncrType>
|
||||
struct aseq_reverse_first_type_aux<SizeType,IncrType,typename internal::enable_if<bool((SizeType::value+IncrType::value)|0x1)>::type> {
|
||||
typedef FixedInt<(SizeType::value-1)*IncrType::value> type;
|
||||
};
|
||||
|
||||
template<typename FirstType,typename SizeType,typename IncrType>
|
||||
struct aseq_reverse_first_type<FirstType,SizeType,IncrType,true,false> {
|
||||
typedef typename aseq_reverse_first_type_aux<SizeType,IncrType>::type Aux;
|
||||
typedef symbolic::AddExpr<FirstType,symbolic::ValueExpr<Aux> > type;
|
||||
};
|
||||
|
||||
template<typename FirstType,typename SizeType,typename IncrType>
|
||||
struct aseq_reverse_first_type<FirstType,SizeType,IncrType,false,true> {
|
||||
typedef symbolic::AddExpr<symbolic::ProductExpr<symbolic::AddExpr<SizeType,symbolic::ValueExpr<FixedInt<-1> > >,
|
||||
symbolic::ValueExpr<IncrType> >,
|
||||
symbolic::ValueExpr<> > type;
|
||||
};
|
||||
#endif
|
||||
|
||||
// Helper to cleanup the type of the increment:
|
||||
template<typename T> struct cleanup_seq_incr {
|
||||
typedef typename cleanup_index_type<T,DynamicIndex>::type type;
|
||||
};
|
||||
|
||||
}
|
||||
} // namespace internal
|
||||
|
||||
//--------------------------------------------------------------------------------
|
||||
// seq(first,last,incr) and seqN(first,size,incr)
|
||||
@@ -137,21 +86,9 @@ protected:
|
||||
IncrType m_incr;
|
||||
|
||||
public:
|
||||
|
||||
#if EIGEN_HAS_CXX11 && ((!EIGEN_COMP_GNUC) || EIGEN_COMP_GNUC>=48)
|
||||
auto reverse() const -> decltype(Eigen::seqN(m_first+(m_size+fix<-1>())*m_incr,m_size,-m_incr)) {
|
||||
return seqN(m_first+(m_size+fix<-1>())*m_incr,m_size,-m_incr);
|
||||
}
|
||||
#else
|
||||
protected:
|
||||
typedef typename internal::aseq_negate<IncrType>::type ReverseIncrType;
|
||||
typedef typename internal::aseq_reverse_first_type<FirstType,SizeType,IncrType>::type ReverseFirstType;
|
||||
public:
|
||||
ArithmeticSequence<ReverseFirstType,SizeType,ReverseIncrType>
|
||||
reverse() const {
|
||||
return seqN(m_first+(m_size+fix<-1>())*m_incr,m_size,-m_incr);
|
||||
}
|
||||
#endif
|
||||
};
|
||||
|
||||
/** \returns an ArithmeticSequence starting at \a first, of length \a size, and increment \a incr
|
||||
@@ -200,7 +137,6 @@ auto seq(FirstType f, LastType l);
|
||||
|
||||
#else // EIGEN_PARSED_BY_DOXYGEN
|
||||
|
||||
#if EIGEN_HAS_CXX11
|
||||
template<typename FirstType,typename LastType>
|
||||
auto seq(FirstType f, LastType l) -> decltype(seqN(typename internal::cleanup_index_type<FirstType>::type(f),
|
||||
( typename internal::cleanup_index_type<LastType>::type(l)
|
||||
@@ -226,101 +162,11 @@ auto seq(FirstType f, LastType l, IncrType incr)
|
||||
CleanedIncrType(incr));
|
||||
}
|
||||
|
||||
#else // EIGEN_HAS_CXX11
|
||||
|
||||
template<typename FirstType,typename LastType>
|
||||
typename internal::enable_if<!(symbolic::is_symbolic<FirstType>::value || symbolic::is_symbolic<LastType>::value),
|
||||
ArithmeticSequence<typename internal::cleanup_index_type<FirstType>::type,Index> >::type
|
||||
seq(FirstType f, LastType l)
|
||||
{
|
||||
return seqN(typename internal::cleanup_index_type<FirstType>::type(f),
|
||||
Index((typename internal::cleanup_index_type<LastType>::type(l)-typename internal::cleanup_index_type<FirstType>::type(f)+fix<1>())));
|
||||
}
|
||||
|
||||
template<typename FirstTypeDerived,typename LastType>
|
||||
typename internal::enable_if<!symbolic::is_symbolic<LastType>::value,
|
||||
ArithmeticSequence<FirstTypeDerived, symbolic::AddExpr<symbolic::AddExpr<symbolic::NegateExpr<FirstTypeDerived>,symbolic::ValueExpr<> >,
|
||||
symbolic::ValueExpr<internal::FixedInt<1> > > > >::type
|
||||
seq(const symbolic::BaseExpr<FirstTypeDerived> &f, LastType l)
|
||||
{
|
||||
return seqN(f.derived(),(typename internal::cleanup_index_type<LastType>::type(l)-f.derived()+fix<1>()));
|
||||
}
|
||||
|
||||
template<typename FirstType,typename LastTypeDerived>
|
||||
typename internal::enable_if<!symbolic::is_symbolic<FirstType>::value,
|
||||
ArithmeticSequence<typename internal::cleanup_index_type<FirstType>::type,
|
||||
symbolic::AddExpr<symbolic::AddExpr<LastTypeDerived,symbolic::ValueExpr<> >,
|
||||
symbolic::ValueExpr<internal::FixedInt<1> > > > >::type
|
||||
seq(FirstType f, const symbolic::BaseExpr<LastTypeDerived> &l)
|
||||
{
|
||||
return seqN(typename internal::cleanup_index_type<FirstType>::type(f),(l.derived()-typename internal::cleanup_index_type<FirstType>::type(f)+fix<1>()));
|
||||
}
|
||||
|
||||
template<typename FirstTypeDerived,typename LastTypeDerived>
|
||||
ArithmeticSequence<FirstTypeDerived,
|
||||
symbolic::AddExpr<symbolic::AddExpr<LastTypeDerived,symbolic::NegateExpr<FirstTypeDerived> >,symbolic::ValueExpr<internal::FixedInt<1> > > >
|
||||
seq(const symbolic::BaseExpr<FirstTypeDerived> &f, const symbolic::BaseExpr<LastTypeDerived> &l)
|
||||
{
|
||||
return seqN(f.derived(),(l.derived()-f.derived()+fix<1>()));
|
||||
}
|
||||
|
||||
|
||||
template<typename FirstType,typename LastType, typename IncrType>
|
||||
typename internal::enable_if<!(symbolic::is_symbolic<FirstType>::value || symbolic::is_symbolic<LastType>::value),
|
||||
ArithmeticSequence<typename internal::cleanup_index_type<FirstType>::type,Index,typename internal::cleanup_seq_incr<IncrType>::type> >::type
|
||||
seq(FirstType f, LastType l, IncrType incr)
|
||||
{
|
||||
typedef typename internal::cleanup_seq_incr<IncrType>::type CleanedIncrType;
|
||||
return seqN(typename internal::cleanup_index_type<FirstType>::type(f),
|
||||
Index((typename internal::cleanup_index_type<LastType>::type(l)-typename internal::cleanup_index_type<FirstType>::type(f)+CleanedIncrType(incr))/CleanedIncrType(incr)), incr);
|
||||
}
|
||||
|
||||
template<typename FirstTypeDerived,typename LastType, typename IncrType>
|
||||
typename internal::enable_if<!symbolic::is_symbolic<LastType>::value,
|
||||
ArithmeticSequence<FirstTypeDerived,
|
||||
symbolic::QuotientExpr<symbolic::AddExpr<symbolic::AddExpr<symbolic::NegateExpr<FirstTypeDerived>,
|
||||
symbolic::ValueExpr<> >,
|
||||
symbolic::ValueExpr<typename internal::cleanup_seq_incr<IncrType>::type> >,
|
||||
symbolic::ValueExpr<typename internal::cleanup_seq_incr<IncrType>::type> >,
|
||||
typename internal::cleanup_seq_incr<IncrType>::type> >::type
|
||||
seq(const symbolic::BaseExpr<FirstTypeDerived> &f, LastType l, IncrType incr)
|
||||
{
|
||||
typedef typename internal::cleanup_seq_incr<IncrType>::type CleanedIncrType;
|
||||
return seqN(f.derived(),(typename internal::cleanup_index_type<LastType>::type(l)-f.derived()+CleanedIncrType(incr))/CleanedIncrType(incr), incr);
|
||||
}
|
||||
|
||||
template<typename FirstType,typename LastTypeDerived, typename IncrType>
|
||||
typename internal::enable_if<!symbolic::is_symbolic<FirstType>::value,
|
||||
ArithmeticSequence<typename internal::cleanup_index_type<FirstType>::type,
|
||||
symbolic::QuotientExpr<symbolic::AddExpr<symbolic::AddExpr<LastTypeDerived,symbolic::ValueExpr<> >,
|
||||
symbolic::ValueExpr<typename internal::cleanup_seq_incr<IncrType>::type> >,
|
||||
symbolic::ValueExpr<typename internal::cleanup_seq_incr<IncrType>::type> >,
|
||||
typename internal::cleanup_seq_incr<IncrType>::type> >::type
|
||||
seq(FirstType f, const symbolic::BaseExpr<LastTypeDerived> &l, IncrType incr)
|
||||
{
|
||||
typedef typename internal::cleanup_seq_incr<IncrType>::type CleanedIncrType;
|
||||
return seqN(typename internal::cleanup_index_type<FirstType>::type(f),
|
||||
(l.derived()-typename internal::cleanup_index_type<FirstType>::type(f)+CleanedIncrType(incr))/CleanedIncrType(incr), incr);
|
||||
}
|
||||
|
||||
template<typename FirstTypeDerived,typename LastTypeDerived, typename IncrType>
|
||||
ArithmeticSequence<FirstTypeDerived,
|
||||
symbolic::QuotientExpr<symbolic::AddExpr<symbolic::AddExpr<LastTypeDerived,
|
||||
symbolic::NegateExpr<FirstTypeDerived> >,
|
||||
symbolic::ValueExpr<typename internal::cleanup_seq_incr<IncrType>::type> >,
|
||||
symbolic::ValueExpr<typename internal::cleanup_seq_incr<IncrType>::type> >,
|
||||
typename internal::cleanup_seq_incr<IncrType>::type>
|
||||
seq(const symbolic::BaseExpr<FirstTypeDerived> &f, const symbolic::BaseExpr<LastTypeDerived> &l, IncrType incr)
|
||||
{
|
||||
typedef typename internal::cleanup_seq_incr<IncrType>::type CleanedIncrType;
|
||||
return seqN(f.derived(),(l.derived()-f.derived()+CleanedIncrType(incr))/CleanedIncrType(incr), incr);
|
||||
}
|
||||
#endif // EIGEN_HAS_CXX11
|
||||
|
||||
#endif // EIGEN_PARSED_BY_DOXYGEN
|
||||
|
||||
namespace placeholders {
|
||||
|
||||
#if EIGEN_HAS_CXX11 || defined(EIGEN_PARSED_BY_DOXYGEN)
|
||||
/** \cpp11
|
||||
* \returns a symbolic ArithmeticSequence representing the last \a size elements with increment \a incr.
|
||||
*
|
||||
@@ -329,9 +175,9 @@ seq(const symbolic::BaseExpr<FirstTypeDerived> &f, const symbolic::BaseExpr<Last
|
||||
* \sa lastN(SizeType), seqN(FirstType,SizeType), seq(FirstType,LastType,IncrType) */
|
||||
template<typename SizeType,typename IncrType>
|
||||
auto lastN(SizeType size, IncrType incr)
|
||||
-> decltype(seqN(Eigen::last-(size-fix<1>())*incr, size, incr))
|
||||
-> decltype(seqN(Eigen::placeholders::last-(size-fix<1>())*incr, size, incr))
|
||||
{
|
||||
return seqN(Eigen::last-(size-fix<1>())*incr, size, incr);
|
||||
return seqN(Eigen::placeholders::last-(size-fix<1>())*incr, size, incr);
|
||||
}
|
||||
|
||||
/** \cpp11
|
||||
@@ -342,18 +188,19 @@ auto lastN(SizeType size, IncrType incr)
|
||||
* \sa lastN(SizeType,IncrType, seqN(FirstType,SizeType), seq(FirstType,LastType) */
|
||||
template<typename SizeType>
|
||||
auto lastN(SizeType size)
|
||||
-> decltype(seqN(Eigen::last+fix<1>()-size, size))
|
||||
-> decltype(seqN(Eigen::placeholders::last+fix<1>()-size, size))
|
||||
{
|
||||
return seqN(Eigen::last+fix<1>()-size, size);
|
||||
return seqN(Eigen::placeholders::last+fix<1>()-size, size);
|
||||
}
|
||||
#endif
|
||||
|
||||
} // namespace placeholders
|
||||
|
||||
namespace internal {
|
||||
|
||||
// Convert a symbolic span into a usable one (i.e., remove last/end "keywords")
|
||||
template<typename T>
|
||||
struct make_size_type {
|
||||
typedef typename internal::conditional<symbolic::is_symbolic<T>::value, Index, T>::type type;
|
||||
typedef std::conditional_t<symbolic::is_symbolic<T>::value, Index, T> type;
|
||||
};
|
||||
|
||||
template<typename FirstType,typename SizeType,typename IncrType,int XprSize>
|
||||
@@ -387,25 +234,23 @@ struct get_compile_time_incr<ArithmeticSequence<FirstType,SizeType,IncrType> > {
|
||||
* \code using namespace Eigen::indexing; \endcode
|
||||
* is equivalent to:
|
||||
* \code
|
||||
using Eigen::all;
|
||||
using Eigen::fix;
|
||||
using Eigen::seq;
|
||||
using Eigen::seqN;
|
||||
using Eigen::lastN; // c++11 only
|
||||
using Eigen::last;
|
||||
using Eigen::lastp1;
|
||||
using Eigen::fix;
|
||||
using Eigen::placeholders::all;
|
||||
using Eigen::placeholders::last;
|
||||
using Eigen::placeholders::lastN; // c++11 only
|
||||
using Eigen::placeholders::lastp1;
|
||||
\endcode
|
||||
*/
|
||||
namespace indexing {
|
||||
using Eigen::all;
|
||||
using Eigen::fix;
|
||||
using Eigen::seq;
|
||||
using Eigen::seqN;
|
||||
#if EIGEN_HAS_CXX11
|
||||
using Eigen::lastN;
|
||||
#endif
|
||||
using Eigen::last;
|
||||
using Eigen::lastp1;
|
||||
using Eigen::fix;
|
||||
using Eigen::placeholders::all;
|
||||
using Eigen::placeholders::last;
|
||||
using Eigen::placeholders::lastN;
|
||||
using Eigen::placeholders::lastp1;
|
||||
}
|
||||
|
||||
} // end namespace Eigen
|
||||
|
||||
@@ -10,14 +10,16 @@
|
||||
#ifndef EIGEN_ARRAY_H
|
||||
#define EIGEN_ARRAY_H
|
||||
|
||||
#include "./InternalHeaderCheck.h"
|
||||
|
||||
namespace Eigen {
|
||||
|
||||
namespace internal {
|
||||
template<typename _Scalar, int _Rows, int _Cols, int _Options, int _MaxRows, int _MaxCols>
|
||||
struct traits<Array<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols> > : traits<Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols> >
|
||||
template<typename Scalar_, int Rows_, int Cols_, int Options_, int MaxRows_, int MaxCols_>
|
||||
struct traits<Array<Scalar_, Rows_, Cols_, Options_, MaxRows_, MaxCols_> > : traits<Matrix<Scalar_, Rows_, Cols_, Options_, MaxRows_, MaxCols_> >
|
||||
{
|
||||
typedef ArrayXpr XprKind;
|
||||
typedef ArrayBase<Array<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols> > XprBase;
|
||||
typedef ArrayBase<Array<Scalar_, Rows_, Cols_, Options_, MaxRows_, MaxCols_> > XprBase;
|
||||
};
|
||||
}
|
||||
|
||||
@@ -41,16 +43,16 @@ struct traits<Array<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols> > : tra
|
||||
*
|
||||
* \sa \blank \ref TutorialArrayClass, \ref TopicClassHierarchy
|
||||
*/
|
||||
template<typename _Scalar, int _Rows, int _Cols, int _Options, int _MaxRows, int _MaxCols>
|
||||
template<typename Scalar_, int Rows_, int Cols_, int Options_, int MaxRows_, int MaxCols_>
|
||||
class Array
|
||||
: public PlainObjectBase<Array<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols> >
|
||||
: public PlainObjectBase<Array<Scalar_, Rows_, Cols_, Options_, MaxRows_, MaxCols_> >
|
||||
{
|
||||
public:
|
||||
|
||||
typedef PlainObjectBase<Array> Base;
|
||||
EIGEN_DENSE_PUBLIC_INTERFACE(Array)
|
||||
|
||||
enum { Options = _Options };
|
||||
enum { Options = Options_ };
|
||||
typedef typename Base::PlainObject PlainObject;
|
||||
|
||||
protected:
|
||||
@@ -131,7 +133,6 @@ class Array
|
||||
EIGEN_DEVICE_FUNC
|
||||
EIGEN_STRONG_INLINE Array() : Base()
|
||||
{
|
||||
Base::_check_template_params();
|
||||
EIGEN_INITIALIZE_COEFFS_IF_THAT_OPTION_IS_ENABLED
|
||||
}
|
||||
|
||||
@@ -142,17 +143,14 @@ class Array
|
||||
Array(internal::constructor_without_unaligned_array_assert)
|
||||
: Base(internal::constructor_without_unaligned_array_assert())
|
||||
{
|
||||
Base::_check_template_params();
|
||||
EIGEN_INITIALIZE_COEFFS_IF_THAT_OPTION_IS_ENABLED
|
||||
}
|
||||
#endif
|
||||
|
||||
#if EIGEN_HAS_RVALUE_REFERENCES
|
||||
EIGEN_DEVICE_FUNC
|
||||
Array(Array&& other) EIGEN_NOEXCEPT_IF(std::is_nothrow_move_constructible<Scalar>::value)
|
||||
: Base(std::move(other))
|
||||
{
|
||||
Base::_check_template_params();
|
||||
}
|
||||
EIGEN_DEVICE_FUNC
|
||||
Array& operator=(Array&& other) EIGEN_NOEXCEPT_IF(std::is_nothrow_move_assignable<Scalar>::value)
|
||||
@@ -160,9 +158,7 @@ class Array
|
||||
Base::operator=(std::move(other));
|
||||
return *this;
|
||||
}
|
||||
#endif
|
||||
|
||||
#if EIGEN_HAS_CXX11
|
||||
/** \copydoc PlainObjectBase(const Scalar& a0, const Scalar& a1, const Scalar& a2, const Scalar& a3, const ArgTypes&... args)
|
||||
*
|
||||
* Example: \include Array_variadic_ctor_cxx11.cpp
|
||||
@@ -197,16 +193,15 @@ class Array
|
||||
*
|
||||
* \sa Array(const Scalar& a0, const Scalar& a1, const Scalar& a2, const Scalar& a3, const ArgTypes&... args)
|
||||
*/
|
||||
EIGEN_DEVICE_FUNC
|
||||
EIGEN_STRONG_INLINE Array(const std::initializer_list<std::initializer_list<Scalar>>& list) : Base(list) {}
|
||||
#endif // end EIGEN_HAS_CXX11
|
||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE constexpr Array(
|
||||
const std::initializer_list<std::initializer_list<Scalar>>& list)
|
||||
: Base(list) {}
|
||||
|
||||
#ifndef EIGEN_PARSED_BY_DOXYGEN
|
||||
template<typename T>
|
||||
EIGEN_DEVICE_FUNC
|
||||
EIGEN_STRONG_INLINE explicit Array(const T& x)
|
||||
{
|
||||
Base::_check_template_params();
|
||||
Base::template _init1<T>(x);
|
||||
}
|
||||
|
||||
@@ -214,7 +209,6 @@ class Array
|
||||
EIGEN_DEVICE_FUNC
|
||||
EIGEN_STRONG_INLINE Array(const T0& val0, const T1& val1)
|
||||
{
|
||||
Base::_check_template_params();
|
||||
this->template _init2<T0,T1>(val0, val1);
|
||||
}
|
||||
|
||||
@@ -249,7 +243,6 @@ class Array
|
||||
EIGEN_DEVICE_FUNC
|
||||
EIGEN_STRONG_INLINE Array(const Scalar& val0, const Scalar& val1, const Scalar& val2)
|
||||
{
|
||||
Base::_check_template_params();
|
||||
EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(Array, 3)
|
||||
m_storage.data()[0] = val0;
|
||||
m_storage.data()[1] = val1;
|
||||
@@ -261,7 +254,6 @@ class Array
|
||||
EIGEN_DEVICE_FUNC
|
||||
EIGEN_STRONG_INLINE Array(const Scalar& val0, const Scalar& val1, const Scalar& val2, const Scalar& val3)
|
||||
{
|
||||
Base::_check_template_params();
|
||||
EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(Array, 4)
|
||||
m_storage.data()[0] = val0;
|
||||
m_storage.data()[1] = val1;
|
||||
@@ -283,8 +275,8 @@ class Array
|
||||
template<typename OtherDerived>
|
||||
EIGEN_DEVICE_FUNC
|
||||
EIGEN_STRONG_INLINE Array(const EigenBase<OtherDerived> &other,
|
||||
typename internal::enable_if<internal::is_convertible<typename OtherDerived::Scalar,Scalar>::value,
|
||||
PrivateType>::type = PrivateType())
|
||||
std::enable_if_t<internal::is_convertible<typename OtherDerived::Scalar,Scalar>::value,
|
||||
PrivateType> = PrivateType())
|
||||
: Base(other.derived())
|
||||
{ }
|
||||
|
||||
@@ -359,8 +351,6 @@ EIGEN_MAKE_ARRAY_TYPEDEFS_ALL_SIZES(std::complex<double>, cd)
|
||||
#undef EIGEN_MAKE_ARRAY_TYPEDEFS
|
||||
#undef EIGEN_MAKE_ARRAY_FIXED_TYPEDEFS
|
||||
|
||||
#if EIGEN_HAS_CXX11
|
||||
|
||||
#define EIGEN_MAKE_ARRAY_TYPEDEFS(Size, SizeSuffix) \
|
||||
/** \ingroup arraytypedefs */ \
|
||||
/** \brief \cpp11 */ \
|
||||
@@ -392,8 +382,6 @@ EIGEN_MAKE_ARRAY_FIXED_TYPEDEFS(4)
|
||||
#undef EIGEN_MAKE_ARRAY_TYPEDEFS
|
||||
#undef EIGEN_MAKE_ARRAY_FIXED_TYPEDEFS
|
||||
|
||||
#endif // EIGEN_HAS_CXX11
|
||||
|
||||
#define EIGEN_USING_ARRAY_TYPEDEFS_FOR_TYPE_AND_SIZE(TypeSuffix, SizeSuffix) \
|
||||
using Eigen::Matrix##SizeSuffix##TypeSuffix; \
|
||||
using Eigen::Vector##SizeSuffix##TypeSuffix; \
|
||||
|
||||
@@ -10,6 +10,8 @@
|
||||
#ifndef EIGEN_ARRAYBASE_H
|
||||
#define EIGEN_ARRAYBASE_H
|
||||
|
||||
#include "./InternalHeaderCheck.h"
|
||||
|
||||
namespace Eigen {
|
||||
|
||||
template<typename ExpressionType> class MatrixWrapper;
|
||||
@@ -21,7 +23,7 @@ template<typename ExpressionType> class MatrixWrapper;
|
||||
*
|
||||
* An array is similar to a dense vector or matrix. While matrices are mathematical
|
||||
* objects with well defined linear algebra operators, an array is just a collection
|
||||
* of scalar values arranged in a one or two dimensionnal fashion. As the main consequence,
|
||||
* of scalar values arranged in a one or two dimensional fashion. As the main consequence,
|
||||
* all operations applied to an array are performed coefficient wise. Furthermore,
|
||||
* arrays support scalar math functions of the c++ standard library (e.g., std::sin(x)), and convenient
|
||||
* constructors allowing to easily write generic code working for both scalar values
|
||||
|
||||
@@ -10,6 +10,8 @@
|
||||
#ifndef EIGEN_ARRAYWRAPPER_H
|
||||
#define EIGEN_ARRAYWRAPPER_H
|
||||
|
||||
#include "./InternalHeaderCheck.h"
|
||||
|
||||
namespace Eigen {
|
||||
|
||||
/** \class ArrayWrapper
|
||||
@@ -26,12 +28,12 @@ namespace Eigen {
|
||||
namespace internal {
|
||||
template<typename ExpressionType>
|
||||
struct traits<ArrayWrapper<ExpressionType> >
|
||||
: public traits<typename remove_all<typename ExpressionType::Nested>::type >
|
||||
: public traits<remove_all_t<typename ExpressionType::Nested> >
|
||||
{
|
||||
typedef ArrayXpr XprKind;
|
||||
// Let's remove NestByRefBit
|
||||
enum {
|
||||
Flags0 = traits<typename remove_all<typename ExpressionType::Nested>::type >::Flags,
|
||||
Flags0 = traits<remove_all_t<typename ExpressionType::Nested> >::Flags,
|
||||
LvalueBitFlag = is_lvalue<ExpressionType>::value ? LvalueBit : 0,
|
||||
Flags = (Flags0 & ~(NestByRefBit | LvalueBit)) | LvalueBitFlag
|
||||
};
|
||||
@@ -45,13 +47,13 @@ class ArrayWrapper : public ArrayBase<ArrayWrapper<ExpressionType> >
|
||||
typedef ArrayBase<ArrayWrapper> Base;
|
||||
EIGEN_DENSE_PUBLIC_INTERFACE(ArrayWrapper)
|
||||
EIGEN_INHERIT_ASSIGNMENT_OPERATORS(ArrayWrapper)
|
||||
typedef typename internal::remove_all<ExpressionType>::type NestedExpression;
|
||||
typedef internal::remove_all_t<ExpressionType> NestedExpression;
|
||||
|
||||
typedef typename internal::conditional<
|
||||
typedef std::conditional_t<
|
||||
internal::is_lvalue<ExpressionType>::value,
|
||||
Scalar,
|
||||
const Scalar
|
||||
>::type ScalarWithConstIfNotLvalue;
|
||||
> ScalarWithConstIfNotLvalue;
|
||||
|
||||
typedef typename internal::ref_selector<ExpressionType>::non_const_type NestedExpressionType;
|
||||
|
||||
@@ -91,7 +93,7 @@ class ArrayWrapper : public ArrayBase<ArrayWrapper<ExpressionType> >
|
||||
inline void evalTo(Dest& dst) const { dst = m_expression; }
|
||||
|
||||
EIGEN_DEVICE_FUNC
|
||||
const typename internal::remove_all<NestedExpressionType>::type&
|
||||
const internal::remove_all_t<NestedExpressionType>&
|
||||
nestedExpression() const
|
||||
{
|
||||
return m_expression;
|
||||
@@ -124,12 +126,12 @@ class ArrayWrapper : public ArrayBase<ArrayWrapper<ExpressionType> >
|
||||
namespace internal {
|
||||
template<typename ExpressionType>
|
||||
struct traits<MatrixWrapper<ExpressionType> >
|
||||
: public traits<typename remove_all<typename ExpressionType::Nested>::type >
|
||||
: public traits<remove_all_t<typename ExpressionType::Nested> >
|
||||
{
|
||||
typedef MatrixXpr XprKind;
|
||||
// Let's remove NestByRefBit
|
||||
enum {
|
||||
Flags0 = traits<typename remove_all<typename ExpressionType::Nested>::type >::Flags,
|
||||
Flags0 = traits<remove_all_t<typename ExpressionType::Nested> >::Flags,
|
||||
LvalueBitFlag = is_lvalue<ExpressionType>::value ? LvalueBit : 0,
|
||||
Flags = (Flags0 & ~(NestByRefBit | LvalueBit)) | LvalueBitFlag
|
||||
};
|
||||
@@ -143,13 +145,13 @@ class MatrixWrapper : public MatrixBase<MatrixWrapper<ExpressionType> >
|
||||
typedef MatrixBase<MatrixWrapper<ExpressionType> > Base;
|
||||
EIGEN_DENSE_PUBLIC_INTERFACE(MatrixWrapper)
|
||||
EIGEN_INHERIT_ASSIGNMENT_OPERATORS(MatrixWrapper)
|
||||
typedef typename internal::remove_all<ExpressionType>::type NestedExpression;
|
||||
typedef internal::remove_all_t<ExpressionType> NestedExpression;
|
||||
|
||||
typedef typename internal::conditional<
|
||||
internal::is_lvalue<ExpressionType>::value,
|
||||
Scalar,
|
||||
const Scalar
|
||||
>::type ScalarWithConstIfNotLvalue;
|
||||
typedef std::conditional_t<
|
||||
internal::is_lvalue<ExpressionType>::value,
|
||||
Scalar,
|
||||
const Scalar
|
||||
> ScalarWithConstIfNotLvalue;
|
||||
|
||||
typedef typename internal::ref_selector<ExpressionType>::non_const_type NestedExpressionType;
|
||||
|
||||
@@ -185,7 +187,7 @@ class MatrixWrapper : public MatrixBase<MatrixWrapper<ExpressionType> >
|
||||
}
|
||||
|
||||
EIGEN_DEVICE_FUNC
|
||||
const typename internal::remove_all<NestedExpressionType>::type&
|
||||
const internal::remove_all_t<NestedExpressionType>&
|
||||
nestedExpression() const
|
||||
{
|
||||
return m_expression;
|
||||
|
||||
@@ -12,6 +12,8 @@
|
||||
#ifndef EIGEN_ASSIGN_H
|
||||
#define EIGEN_ASSIGN_H
|
||||
|
||||
#include "./InternalHeaderCheck.h"
|
||||
|
||||
namespace Eigen {
|
||||
|
||||
template<typename Derived>
|
||||
|
||||
@@ -12,6 +12,8 @@
|
||||
#ifndef EIGEN_ASSIGN_EVALUATOR_H
|
||||
#define EIGEN_ASSIGN_EVALUATOR_H
|
||||
|
||||
#include "./InternalHeaderCheck.h"
|
||||
|
||||
namespace Eigen {
|
||||
|
||||
// This implementation is based on Assign.h
|
||||
@@ -40,7 +42,7 @@ public:
|
||||
DstAlignment = DstEvaluator::Alignment,
|
||||
SrcAlignment = SrcEvaluator::Alignment,
|
||||
DstHasDirectAccess = (DstFlags & DirectAccessBit) == DirectAccessBit,
|
||||
JointAlignment = EIGEN_PLAIN_ENUM_MIN(DstAlignment,SrcAlignment)
|
||||
JointAlignment = plain_enum_min(DstAlignment, SrcAlignment)
|
||||
};
|
||||
|
||||
private:
|
||||
@@ -51,8 +53,8 @@ private:
|
||||
InnerMaxSize = int(Dst::IsVectorAtCompileTime) ? int(Dst::MaxSizeAtCompileTime)
|
||||
: int(DstFlags)&RowMajorBit ? int(Dst::MaxColsAtCompileTime)
|
||||
: int(Dst::MaxRowsAtCompileTime),
|
||||
RestrictedInnerSize = EIGEN_SIZE_MIN_PREFER_FIXED(InnerSize,MaxPacketSize),
|
||||
RestrictedLinearSize = EIGEN_SIZE_MIN_PREFER_FIXED(Dst::SizeAtCompileTime,MaxPacketSize),
|
||||
RestrictedInnerSize = min_size_prefer_fixed(InnerSize, MaxPacketSize),
|
||||
RestrictedLinearSize = min_size_prefer_fixed(Dst::SizeAtCompileTime, MaxPacketSize),
|
||||
OuterStride = int(outer_stride_at_compile_time<Dst>::ret),
|
||||
MaxSizeAtCompileTime = Dst::SizeAtCompileTime
|
||||
};
|
||||
@@ -111,7 +113,7 @@ public:
|
||||
|| int(Traversal) == SliceVectorizedTraversal
|
||||
};
|
||||
|
||||
typedef typename conditional<int(Traversal)==LinearVectorizedTraversal, LinearPacketType, InnerPacketType>::type PacketType;
|
||||
typedef std::conditional_t<int(Traversal)==LinearVectorizedTraversal, LinearPacketType, InnerPacketType> PacketType;
|
||||
|
||||
private:
|
||||
enum {
|
||||
@@ -216,7 +218,7 @@ struct copy_using_evaluator_DefaultTraversal_CompleteUnrolling
|
||||
template<typename Kernel, int Stop>
|
||||
struct copy_using_evaluator_DefaultTraversal_CompleteUnrolling<Kernel, Stop, Stop>
|
||||
{
|
||||
EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE void run(Kernel&) { }
|
||||
EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE EIGEN_CONSTEXPR void run(Kernel&) { }
|
||||
};
|
||||
|
||||
template<typename Kernel, int Index_, int Stop>
|
||||
@@ -285,7 +287,7 @@ struct copy_using_evaluator_innervec_CompleteUnrolling
|
||||
template<typename Kernel, int Stop>
|
||||
struct copy_using_evaluator_innervec_CompleteUnrolling<Kernel, Stop, Stop>
|
||||
{
|
||||
EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE void run(Kernel&) { }
|
||||
EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE EIGEN_CONSTEXPR void run(Kernel&) { }
|
||||
};
|
||||
|
||||
template<typename Kernel, int Index_, int Stop, int SrcAlignment, int DstAlignment>
|
||||
@@ -325,10 +327,9 @@ struct dense_assignment_loop;
|
||||
template<typename Kernel, int Unrolling>
|
||||
struct dense_assignment_loop<Kernel, AllAtOnceTraversal, Unrolling>
|
||||
{
|
||||
EIGEN_DEVICE_FUNC static void EIGEN_STRONG_INLINE run(Kernel& /*kernel*/)
|
||||
EIGEN_DEVICE_FUNC static void EIGEN_STRONG_INLINE EIGEN_CONSTEXPR run(Kernel& /*kernel*/)
|
||||
{
|
||||
typedef typename Kernel::DstEvaluatorType::XprType DstXprType;
|
||||
EIGEN_STATIC_ASSERT(int(DstXprType::SizeAtCompileTime) == 0,
|
||||
EIGEN_STATIC_ASSERT(int(Kernel::DstEvaluatorType::XprType::SizeAtCompileTime) == 0,
|
||||
EIGEN_INTERNAL_ERROR_PLEASE_FILE_A_BUG_REPORT)
|
||||
}
|
||||
};
|
||||
@@ -386,7 +387,7 @@ struct unaligned_dense_assignment_loop
|
||||
{
|
||||
// if IsAligned = true, then do nothing
|
||||
template <typename Kernel>
|
||||
EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE void run(Kernel&, Index, Index) {}
|
||||
EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE EIGEN_CONSTEXPR void run(Kernel&, Index, Index) {}
|
||||
};
|
||||
|
||||
template <>
|
||||
@@ -402,7 +403,7 @@ struct unaligned_dense_assignment_loop<false>
|
||||
Index end)
|
||||
#else
|
||||
template <typename Kernel>
|
||||
EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE void run(Kernel &kernel,
|
||||
EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE EIGEN_CONSTEXPR void run(Kernel &kernel,
|
||||
Index start,
|
||||
Index end)
|
||||
#endif
|
||||
@@ -415,7 +416,7 @@ struct unaligned_dense_assignment_loop<false>
|
||||
template<typename Kernel>
|
||||
struct dense_assignment_loop<Kernel, LinearVectorizedTraversal, NoUnrolling>
|
||||
{
|
||||
EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE void run(Kernel &kernel)
|
||||
EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE EIGEN_CONSTEXPR void run(Kernel &kernel)
|
||||
{
|
||||
const Index size = kernel.size();
|
||||
typedef typename Kernel::Scalar Scalar;
|
||||
@@ -443,7 +444,7 @@ struct dense_assignment_loop<Kernel, LinearVectorizedTraversal, NoUnrolling>
|
||||
template<typename Kernel>
|
||||
struct dense_assignment_loop<Kernel, LinearVectorizedTraversal, CompleteUnrolling>
|
||||
{
|
||||
EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE void run(Kernel &kernel)
|
||||
EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE EIGEN_CONSTEXPR void run(Kernel &kernel)
|
||||
{
|
||||
typedef typename Kernel::DstEvaluatorType::XprType DstXprType;
|
||||
typedef typename Kernel::PacketType PacketType;
|
||||
@@ -469,7 +470,7 @@ struct dense_assignment_loop<Kernel, InnerVectorizedTraversal, NoUnrolling>
|
||||
SrcAlignment = Kernel::AssignmentTraits::SrcAlignment,
|
||||
DstAlignment = Kernel::AssignmentTraits::DstAlignment
|
||||
};
|
||||
EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE void run(Kernel &kernel)
|
||||
EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE EIGEN_CONSTEXPR void run(Kernel &kernel)
|
||||
{
|
||||
const Index innerSize = kernel.innerSize();
|
||||
const Index outerSize = kernel.outerSize();
|
||||
@@ -511,7 +512,7 @@ struct dense_assignment_loop<Kernel, InnerVectorizedTraversal, InnerUnrolling>
|
||||
template<typename Kernel>
|
||||
struct dense_assignment_loop<Kernel, LinearTraversal, NoUnrolling>
|
||||
{
|
||||
EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE void run(Kernel &kernel)
|
||||
EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE EIGEN_CONSTEXPR void run(Kernel &kernel)
|
||||
{
|
||||
const Index size = kernel.size();
|
||||
for(Index i = 0; i < size; ++i)
|
||||
@@ -522,7 +523,7 @@ struct dense_assignment_loop<Kernel, LinearTraversal, NoUnrolling>
|
||||
template<typename Kernel>
|
||||
struct dense_assignment_loop<Kernel, LinearTraversal, CompleteUnrolling>
|
||||
{
|
||||
EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE void run(Kernel &kernel)
|
||||
EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE EIGEN_CONSTEXPR void run(Kernel &kernel)
|
||||
{
|
||||
typedef typename Kernel::DstEvaluatorType::XprType DstXprType;
|
||||
copy_using_evaluator_LinearTraversal_CompleteUnrolling<Kernel, 0, DstXprType::SizeAtCompileTime>::run(kernel);
|
||||
@@ -536,7 +537,7 @@ struct dense_assignment_loop<Kernel, LinearTraversal, CompleteUnrolling>
|
||||
template<typename Kernel>
|
||||
struct dense_assignment_loop<Kernel, SliceVectorizedTraversal, NoUnrolling>
|
||||
{
|
||||
EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE void run(Kernel &kernel)
|
||||
EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE EIGEN_CONSTEXPR void run(Kernel &kernel)
|
||||
{
|
||||
typedef typename Kernel::Scalar Scalar;
|
||||
typedef typename Kernel::PacketType PacketType;
|
||||
@@ -584,7 +585,7 @@ struct dense_assignment_loop<Kernel, SliceVectorizedTraversal, NoUnrolling>
|
||||
template<typename Kernel>
|
||||
struct dense_assignment_loop<Kernel, SliceVectorizedTraversal, InnerUnrolling>
|
||||
{
|
||||
EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE void run(Kernel &kernel)
|
||||
EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE EIGEN_CONSTEXPR void run(Kernel &kernel)
|
||||
{
|
||||
typedef typename Kernel::DstEvaluatorType::XprType DstXprType;
|
||||
typedef typename Kernel::PacketType PacketType;
|
||||
@@ -766,7 +767,7 @@ void resize_if_allowed(DstXprType &dst, const SrcXprType& src, const internal::a
|
||||
}
|
||||
|
||||
template<typename DstXprType, typename SrcXprType, typename Functor>
|
||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void call_dense_assignment_loop(DstXprType& dst, const SrcXprType& src, const Functor &func)
|
||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE EIGEN_CONSTEXPR void call_dense_assignment_loop(DstXprType& dst, const SrcXprType& src, const Functor &func)
|
||||
{
|
||||
typedef evaluator<DstXprType> DstEvaluatorType;
|
||||
typedef evaluator<SrcXprType> SrcEvaluatorType;
|
||||
@@ -844,8 +845,8 @@ void call_assignment(const Dst& dst, const Src& src)
|
||||
|
||||
// Deal with "assume-aliasing"
|
||||
template<typename Dst, typename Src, typename Func>
|
||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
|
||||
void call_assignment(Dst& dst, const Src& src, const Func& func, typename enable_if< evaluator_assume_aliasing<Src>::value, void*>::type = 0)
|
||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE EIGEN_CONSTEXPR
|
||||
void call_assignment(Dst& dst, const Src& src, const Func& func, std::enable_if_t< evaluator_assume_aliasing<Src>::value, void*> = 0)
|
||||
{
|
||||
typename plain_matrix_type<Src>::type tmp(src);
|
||||
call_assignment_no_alias(dst, tmp, func);
|
||||
@@ -853,7 +854,7 @@ void call_assignment(Dst& dst, const Src& src, const Func& func, typename enable
|
||||
|
||||
template<typename Dst, typename Src, typename Func>
|
||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
|
||||
void call_assignment(Dst& dst, const Src& src, const Func& func, typename enable_if<!evaluator_assume_aliasing<Src>::value, void*>::type = 0)
|
||||
void call_assignment(Dst& dst, const Src& src, const Func& func, std::enable_if_t<!evaluator_assume_aliasing<Src>::value, void*> = 0)
|
||||
{
|
||||
call_assignment_no_alias(dst, src, func);
|
||||
}
|
||||
@@ -861,7 +862,7 @@ void call_assignment(Dst& dst, const Src& src, const Func& func, typename enable
|
||||
// by-pass "assume-aliasing"
|
||||
// When there is no aliasing, we require that 'dst' has been properly resized
|
||||
template<typename Dst, template <typename> class StorageBase, typename Src, typename Func>
|
||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
|
||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE EIGEN_CONSTEXPR
|
||||
void call_assignment(NoAlias<Dst,StorageBase>& dst, const Src& src, const Func& func)
|
||||
{
|
||||
call_assignment_no_alias(dst.expression(), src, func);
|
||||
@@ -869,7 +870,7 @@ void call_assignment(NoAlias<Dst,StorageBase>& dst, const Src& src, const Func&
|
||||
|
||||
|
||||
template<typename Dst, typename Src, typename Func>
|
||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
|
||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE EIGEN_CONSTEXPR
|
||||
void call_assignment_no_alias(Dst& dst, const Src& src, const Func& func)
|
||||
{
|
||||
enum {
|
||||
@@ -878,8 +879,8 @@ void call_assignment_no_alias(Dst& dst, const Src& src, const Func& func)
|
||||
) && int(Dst::SizeAtCompileTime) != 1
|
||||
};
|
||||
|
||||
typedef typename internal::conditional<NeedToTranspose, Transpose<Dst>, Dst>::type ActualDstTypeCleaned;
|
||||
typedef typename internal::conditional<NeedToTranspose, Transpose<Dst>, Dst&>::type ActualDstType;
|
||||
typedef std::conditional_t<NeedToTranspose, Transpose<Dst>, Dst> ActualDstTypeCleaned;
|
||||
typedef std::conditional_t<NeedToTranspose, Transpose<Dst>, Dst&> ActualDstType;
|
||||
ActualDstType actualDst(dst);
|
||||
|
||||
// TODO check whether this is the right place to perform these checks:
|
||||
@@ -911,14 +912,14 @@ void call_restricted_packet_assignment_no_alias(Dst& dst, const Src& src, const
|
||||
}
|
||||
|
||||
template<typename Dst, typename Src>
|
||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
|
||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE EIGEN_CONSTEXPR
|
||||
void call_assignment_no_alias(Dst& dst, const Src& src)
|
||||
{
|
||||
call_assignment_no_alias(dst, src, internal::assign_op<typename Dst::Scalar,typename Src::Scalar>());
|
||||
}
|
||||
|
||||
template<typename Dst, typename Src, typename Func>
|
||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
|
||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE EIGEN_CONSTEXPR
|
||||
void call_assignment_no_alias_no_transpose(Dst& dst, const Src& src, const Func& func)
|
||||
{
|
||||
// TODO check whether this is the right place to perform these checks:
|
||||
@@ -929,7 +930,7 @@ void call_assignment_no_alias_no_transpose(Dst& dst, const Src& src, const Func&
|
||||
Assignment<Dst,Src,Func>::run(dst, src, func);
|
||||
}
|
||||
template<typename Dst, typename Src>
|
||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
|
||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE EIGEN_CONSTEXPR
|
||||
void call_assignment_no_alias_no_transpose(Dst& dst, const Src& src)
|
||||
{
|
||||
call_assignment_no_alias_no_transpose(dst, src, internal::assign_op<typename Dst::Scalar,typename Src::Scalar>());
|
||||
|
||||
6
libs/eigen/Eigen/src/Core/Assign_MKL.h
Executable file → Normal file
6
libs/eigen/Eigen/src/Core/Assign_MKL.h
Executable file → Normal file
@@ -34,6 +34,8 @@
|
||||
#ifndef EIGEN_ASSIGN_VML_H
|
||||
#define EIGEN_ASSIGN_VML_H
|
||||
|
||||
#include "./InternalHeaderCheck.h"
|
||||
|
||||
namespace Eigen {
|
||||
|
||||
namespace internal {
|
||||
@@ -82,7 +84,7 @@ class vml_assign_traits
|
||||
#define EIGEN_MKL_VML_DECLARE_UNARY_CALL(EIGENOP, VMLOP, EIGENTYPE, VMLTYPE, VMLMODE) \
|
||||
template< typename DstXprType, typename SrcXprNested> \
|
||||
struct Assignment<DstXprType, CwiseUnaryOp<scalar_##EIGENOP##_op<EIGENTYPE>, SrcXprNested>, assign_op<EIGENTYPE,EIGENTYPE>, \
|
||||
Dense2Dense, typename enable_if<vml_assign_traits<DstXprType,SrcXprNested>::EnableVml>::type> { \
|
||||
Dense2Dense, std::enable_if_t<vml_assign_traits<DstXprType,SrcXprNested>::EnableVml>> { \
|
||||
typedef CwiseUnaryOp<scalar_##EIGENOP##_op<EIGENTYPE>, SrcXprNested> SrcXprType; \
|
||||
static void run(DstXprType &dst, const SrcXprType &src, const assign_op<EIGENTYPE,EIGENTYPE> &func) { \
|
||||
resize_if_allowed(dst, src, func); \
|
||||
@@ -142,7 +144,7 @@ EIGEN_MKL_VML_DECLARE_UNARY_CALLS_REAL(ceil, Ceil, _)
|
||||
template< typename DstXprType, typename SrcXprNested, typename Plain> \
|
||||
struct Assignment<DstXprType, CwiseBinaryOp<scalar_##EIGENOP##_op<EIGENTYPE,EIGENTYPE>, SrcXprNested, \
|
||||
const CwiseNullaryOp<internal::scalar_constant_op<EIGENTYPE>,Plain> >, assign_op<EIGENTYPE,EIGENTYPE>, \
|
||||
Dense2Dense, typename enable_if<vml_assign_traits<DstXprType,SrcXprNested>::EnableVml>::type> { \
|
||||
Dense2Dense, std::enable_if_t<vml_assign_traits<DstXprType,SrcXprNested>::EnableVml>> { \
|
||||
typedef CwiseBinaryOp<scalar_##EIGENOP##_op<EIGENTYPE,EIGENTYPE>, SrcXprNested, \
|
||||
const CwiseNullaryOp<internal::scalar_constant_op<EIGENTYPE>,Plain> > SrcXprType; \
|
||||
static void run(DstXprType &dst, const SrcXprType &src, const assign_op<EIGENTYPE,EIGENTYPE> &func) { \
|
||||
|
||||
@@ -10,6 +10,8 @@
|
||||
#ifndef EIGEN_BANDMATRIX_H
|
||||
#define EIGEN_BANDMATRIX_H
|
||||
|
||||
#include "./InternalHeaderCheck.h"
|
||||
|
||||
namespace Eigen {
|
||||
|
||||
namespace internal {
|
||||
@@ -41,7 +43,7 @@ class BandMatrixBase : public EigenBase<Derived>
|
||||
DataRowsAtCompileTime = ((Supers!=Dynamic) && (Subs!=Dynamic))
|
||||
? 1 + Supers + Subs
|
||||
: Dynamic,
|
||||
SizeAtCompileTime = EIGEN_SIZE_MIN_PREFER_DYNAMIC(RowsAtCompileTime,ColsAtCompileTime)
|
||||
SizeAtCompileTime = min_size_prefer_dynamic(RowsAtCompileTime,ColsAtCompileTime)
|
||||
};
|
||||
|
||||
public:
|
||||
@@ -96,13 +98,13 @@ class BandMatrixBase : public EigenBase<Derived>
|
||||
DiagonalSize = (RowsAtCompileTime==Dynamic || ColsAtCompileTime==Dynamic)
|
||||
? Dynamic
|
||||
: (ActualIndex<0
|
||||
? EIGEN_SIZE_MIN_PREFER_DYNAMIC(ColsAtCompileTime, RowsAtCompileTime + ActualIndex)
|
||||
: EIGEN_SIZE_MIN_PREFER_DYNAMIC(RowsAtCompileTime, ColsAtCompileTime - ActualIndex))
|
||||
? min_size_prefer_dynamic(ColsAtCompileTime, RowsAtCompileTime + ActualIndex)
|
||||
: min_size_prefer_dynamic(RowsAtCompileTime, ColsAtCompileTime - ActualIndex))
|
||||
};
|
||||
typedef Block<CoefficientsType,1, DiagonalSize> BuildType;
|
||||
typedef typename internal::conditional<Conjugate,
|
||||
typedef std::conditional_t<Conjugate,
|
||||
CwiseUnaryOp<internal::scalar_conjugate_op<Scalar>,BuildType >,
|
||||
BuildType>::type Type;
|
||||
BuildType> Type;
|
||||
};
|
||||
|
||||
/** \returns a vector expression of the \a N -th sub or super diagonal */
|
||||
@@ -161,12 +163,12 @@ class BandMatrixBase : public EigenBase<Derived>
|
||||
*
|
||||
* \brief Represents a rectangular matrix with a banded storage
|
||||
*
|
||||
* \tparam _Scalar Numeric type, i.e. float, double, int
|
||||
* \tparam _Rows Number of rows, or \b Dynamic
|
||||
* \tparam _Cols Number of columns, or \b Dynamic
|
||||
* \tparam _Supers Number of super diagonal
|
||||
* \tparam _Subs Number of sub diagonal
|
||||
* \tparam _Options A combination of either \b #RowMajor or \b #ColMajor, and of \b #SelfAdjoint
|
||||
* \tparam Scalar_ Numeric type, i.e. float, double, int
|
||||
* \tparam Rows_ Number of rows, or \b Dynamic
|
||||
* \tparam Cols_ Number of columns, or \b Dynamic
|
||||
* \tparam Supers_ Number of super diagonal
|
||||
* \tparam Subs_ Number of sub diagonal
|
||||
* \tparam Options_ A combination of either \b #RowMajor or \b #ColMajor, and of \b #SelfAdjoint
|
||||
* The former controls \ref TopicStorageOrders "storage order", and defaults to
|
||||
* column-major. The latter controls whether the matrix represents a selfadjoint
|
||||
* matrix in which case either Supers of Subs have to be null.
|
||||
@@ -174,29 +176,29 @@ class BandMatrixBase : public EigenBase<Derived>
|
||||
* \sa class TridiagonalMatrix
|
||||
*/
|
||||
|
||||
template<typename _Scalar, int _Rows, int _Cols, int _Supers, int _Subs, int _Options>
|
||||
struct traits<BandMatrix<_Scalar,_Rows,_Cols,_Supers,_Subs,_Options> >
|
||||
template<typename Scalar_, int Rows_, int Cols_, int Supers_, int Subs_, int Options_>
|
||||
struct traits<BandMatrix<Scalar_,Rows_,Cols_,Supers_,Subs_,Options_> >
|
||||
{
|
||||
typedef _Scalar Scalar;
|
||||
typedef Scalar_ Scalar;
|
||||
typedef Dense StorageKind;
|
||||
typedef Eigen::Index StorageIndex;
|
||||
enum {
|
||||
CoeffReadCost = NumTraits<Scalar>::ReadCost,
|
||||
RowsAtCompileTime = _Rows,
|
||||
ColsAtCompileTime = _Cols,
|
||||
MaxRowsAtCompileTime = _Rows,
|
||||
MaxColsAtCompileTime = _Cols,
|
||||
RowsAtCompileTime = Rows_,
|
||||
ColsAtCompileTime = Cols_,
|
||||
MaxRowsAtCompileTime = Rows_,
|
||||
MaxColsAtCompileTime = Cols_,
|
||||
Flags = LvalueBit,
|
||||
Supers = _Supers,
|
||||
Subs = _Subs,
|
||||
Options = _Options,
|
||||
Supers = Supers_,
|
||||
Subs = Subs_,
|
||||
Options = Options_,
|
||||
DataRowsAtCompileTime = ((Supers!=Dynamic) && (Subs!=Dynamic)) ? 1 + Supers + Subs : Dynamic
|
||||
};
|
||||
typedef Matrix<Scalar, DataRowsAtCompileTime, ColsAtCompileTime, int(Options) & int(RowMajor) ? RowMajor : ColMajor> CoefficientsType;
|
||||
};
|
||||
|
||||
template<typename _Scalar, int Rows, int Cols, int Supers, int Subs, int Options>
|
||||
class BandMatrix : public BandMatrixBase<BandMatrix<_Scalar,Rows,Cols,Supers,Subs,Options> >
|
||||
template<typename Scalar_, int Rows, int Cols, int Supers, int Subs, int Options>
|
||||
class BandMatrix : public BandMatrixBase<BandMatrix<Scalar_,Rows,Cols,Supers,Subs,Options> >
|
||||
{
|
||||
public:
|
||||
|
||||
@@ -233,32 +235,32 @@ class BandMatrix : public BandMatrixBase<BandMatrix<_Scalar,Rows,Cols,Supers,Sub
|
||||
internal::variable_if_dynamic<Index, Subs> m_subs;
|
||||
};
|
||||
|
||||
template<typename _CoefficientsType,int _Rows, int _Cols, int _Supers, int _Subs,int _Options>
|
||||
template<typename CoefficientsType_,int Rows_, int Cols_, int Supers_, int Subs_,int Options_>
|
||||
class BandMatrixWrapper;
|
||||
|
||||
template<typename _CoefficientsType,int _Rows, int _Cols, int _Supers, int _Subs,int _Options>
|
||||
struct traits<BandMatrixWrapper<_CoefficientsType,_Rows,_Cols,_Supers,_Subs,_Options> >
|
||||
template<typename CoefficientsType_,int Rows_, int Cols_, int Supers_, int Subs_,int Options_>
|
||||
struct traits<BandMatrixWrapper<CoefficientsType_,Rows_,Cols_,Supers_,Subs_,Options_> >
|
||||
{
|
||||
typedef typename _CoefficientsType::Scalar Scalar;
|
||||
typedef typename _CoefficientsType::StorageKind StorageKind;
|
||||
typedef typename _CoefficientsType::StorageIndex StorageIndex;
|
||||
typedef typename CoefficientsType_::Scalar Scalar;
|
||||
typedef typename CoefficientsType_::StorageKind StorageKind;
|
||||
typedef typename CoefficientsType_::StorageIndex StorageIndex;
|
||||
enum {
|
||||
CoeffReadCost = internal::traits<_CoefficientsType>::CoeffReadCost,
|
||||
RowsAtCompileTime = _Rows,
|
||||
ColsAtCompileTime = _Cols,
|
||||
MaxRowsAtCompileTime = _Rows,
|
||||
MaxColsAtCompileTime = _Cols,
|
||||
CoeffReadCost = internal::traits<CoefficientsType_>::CoeffReadCost,
|
||||
RowsAtCompileTime = Rows_,
|
||||
ColsAtCompileTime = Cols_,
|
||||
MaxRowsAtCompileTime = Rows_,
|
||||
MaxColsAtCompileTime = Cols_,
|
||||
Flags = LvalueBit,
|
||||
Supers = _Supers,
|
||||
Subs = _Subs,
|
||||
Options = _Options,
|
||||
Supers = Supers_,
|
||||
Subs = Subs_,
|
||||
Options = Options_,
|
||||
DataRowsAtCompileTime = ((Supers!=Dynamic) && (Subs!=Dynamic)) ? 1 + Supers + Subs : Dynamic
|
||||
};
|
||||
typedef _CoefficientsType CoefficientsType;
|
||||
typedef CoefficientsType_ CoefficientsType;
|
||||
};
|
||||
|
||||
template<typename _CoefficientsType,int _Rows, int _Cols, int _Supers, int _Subs,int _Options>
|
||||
class BandMatrixWrapper : public BandMatrixBase<BandMatrixWrapper<_CoefficientsType,_Rows,_Cols,_Supers,_Subs,_Options> >
|
||||
template<typename CoefficientsType_,int Rows_, int Cols_, int Supers_, int Subs_,int Options_>
|
||||
class BandMatrixWrapper : public BandMatrixBase<BandMatrixWrapper<CoefficientsType_,Rows_,Cols_,Supers_,Subs_,Options_> >
|
||||
{
|
||||
public:
|
||||
|
||||
@@ -266,12 +268,12 @@ class BandMatrixWrapper : public BandMatrixBase<BandMatrixWrapper<_CoefficientsT
|
||||
typedef typename internal::traits<BandMatrixWrapper>::CoefficientsType CoefficientsType;
|
||||
typedef typename internal::traits<BandMatrixWrapper>::StorageIndex StorageIndex;
|
||||
|
||||
explicit inline BandMatrixWrapper(const CoefficientsType& coeffs, Index rows=_Rows, Index cols=_Cols, Index supers=_Supers, Index subs=_Subs)
|
||||
explicit inline BandMatrixWrapper(const CoefficientsType& coeffs, Index rows=Rows_, Index cols=Cols_, Index supers=Supers_, Index subs=Subs_)
|
||||
: m_coeffs(coeffs),
|
||||
m_rows(rows), m_supers(supers), m_subs(subs)
|
||||
{
|
||||
EIGEN_UNUSED_VARIABLE(cols);
|
||||
//internal::assert(coeffs.cols()==cols() && (supers()+subs()+1)==coeffs.rows());
|
||||
// eigen_assert(coeffs.cols()==cols() && (supers()+subs()+1)==coeffs.rows());
|
||||
}
|
||||
|
||||
/** \returns the number of columns */
|
||||
@@ -291,9 +293,9 @@ class BandMatrixWrapper : public BandMatrixBase<BandMatrixWrapper<_CoefficientsT
|
||||
protected:
|
||||
|
||||
const CoefficientsType& m_coeffs;
|
||||
internal::variable_if_dynamic<Index, _Rows> m_rows;
|
||||
internal::variable_if_dynamic<Index, _Supers> m_supers;
|
||||
internal::variable_if_dynamic<Index, _Subs> m_subs;
|
||||
internal::variable_if_dynamic<Index, Rows_> m_rows;
|
||||
internal::variable_if_dynamic<Index, Supers_> m_supers;
|
||||
internal::variable_if_dynamic<Index, Subs_> m_subs;
|
||||
};
|
||||
|
||||
/**
|
||||
@@ -330,16 +332,16 @@ class TridiagonalMatrix : public BandMatrix<Scalar,Size,Size,Options&SelfAdjoint
|
||||
|
||||
struct BandShape {};
|
||||
|
||||
template<typename _Scalar, int _Rows, int _Cols, int _Supers, int _Subs, int _Options>
|
||||
struct evaluator_traits<BandMatrix<_Scalar,_Rows,_Cols,_Supers,_Subs,_Options> >
|
||||
: public evaluator_traits_base<BandMatrix<_Scalar,_Rows,_Cols,_Supers,_Subs,_Options> >
|
||||
template<typename Scalar_, int Rows_, int Cols_, int Supers_, int Subs_, int Options_>
|
||||
struct evaluator_traits<BandMatrix<Scalar_,Rows_,Cols_,Supers_,Subs_,Options_> >
|
||||
: public evaluator_traits_base<BandMatrix<Scalar_,Rows_,Cols_,Supers_,Subs_,Options_> >
|
||||
{
|
||||
typedef BandShape Shape;
|
||||
};
|
||||
|
||||
template<typename _CoefficientsType,int _Rows, int _Cols, int _Supers, int _Subs,int _Options>
|
||||
struct evaluator_traits<BandMatrixWrapper<_CoefficientsType,_Rows,_Cols,_Supers,_Subs,_Options> >
|
||||
: public evaluator_traits_base<BandMatrixWrapper<_CoefficientsType,_Rows,_Cols,_Supers,_Subs,_Options> >
|
||||
template<typename CoefficientsType_,int Rows_, int Cols_, int Supers_, int Subs_,int Options_>
|
||||
struct evaluator_traits<BandMatrixWrapper<CoefficientsType_,Rows_,Cols_,Supers_,Subs_,Options_> >
|
||||
: public evaluator_traits_base<BandMatrixWrapper<CoefficientsType_,Rows_,Cols_,Supers_,Subs_,Options_> >
|
||||
{
|
||||
typedef BandShape Shape;
|
||||
};
|
||||
|
||||
@@ -11,6 +11,8 @@
|
||||
#ifndef EIGEN_BLOCK_H
|
||||
#define EIGEN_BLOCK_H
|
||||
|
||||
#include "./InternalHeaderCheck.h"
|
||||
|
||||
namespace Eigen {
|
||||
|
||||
namespace internal {
|
||||
@@ -21,7 +23,7 @@ struct traits<Block<XprType, BlockRows, BlockCols, InnerPanel> > : traits<XprTyp
|
||||
typedef typename traits<XprType>::StorageKind StorageKind;
|
||||
typedef typename traits<XprType>::XprKind XprKind;
|
||||
typedef typename ref_selector<XprType>::type XprTypeNested;
|
||||
typedef typename remove_reference<XprTypeNested>::type _XprTypeNested;
|
||||
typedef std::remove_reference_t<XprTypeNested> XprTypeNested_;
|
||||
enum{
|
||||
MatrixRows = traits<XprType>::RowsAtCompileTime,
|
||||
MatrixCols = traits<XprType>::ColsAtCompileTime,
|
||||
@@ -110,7 +112,7 @@ template<typename XprType, int BlockRows, int BlockCols, bool InnerPanel> class
|
||||
EIGEN_GENERIC_PUBLIC_INTERFACE(Block)
|
||||
EIGEN_INHERIT_ASSIGNMENT_OPERATORS(Block)
|
||||
|
||||
typedef typename internal::remove_all<XprType>::type NestedExpression;
|
||||
typedef internal::remove_all_t<XprType> NestedExpression;
|
||||
|
||||
/** Column or Row constructor
|
||||
*/
|
||||
@@ -260,19 +262,19 @@ template<typename XprType, int BlockRows, int BlockCols, bool InnerPanel, bool H
|
||||
}
|
||||
|
||||
template<int LoadMode>
|
||||
inline PacketScalar packet(Index rowId, Index colId) const
|
||||
EIGEN_DEVICE_FUNC inline PacketScalar packet(Index rowId, Index colId) const
|
||||
{
|
||||
return m_xpr.template packet<Unaligned>(rowId + m_startRow.value(), colId + m_startCol.value());
|
||||
}
|
||||
|
||||
template<int LoadMode>
|
||||
inline void writePacket(Index rowId, Index colId, const PacketScalar& val)
|
||||
EIGEN_DEVICE_FUNC inline void writePacket(Index rowId, Index colId, const PacketScalar& val)
|
||||
{
|
||||
m_xpr.template writePacket<Unaligned>(rowId + m_startRow.value(), colId + m_startCol.value(), val);
|
||||
}
|
||||
|
||||
template<int LoadMode>
|
||||
inline PacketScalar packet(Index index) const
|
||||
EIGEN_DEVICE_FUNC inline PacketScalar packet(Index index) const
|
||||
{
|
||||
return m_xpr.template packet<Unaligned>
|
||||
(m_startRow.value() + (RowsAtCompileTime == 1 ? 0 : index),
|
||||
@@ -280,7 +282,7 @@ template<typename XprType, int BlockRows, int BlockCols, bool InnerPanel, bool H
|
||||
}
|
||||
|
||||
template<int LoadMode>
|
||||
inline void writePacket(Index index, const PacketScalar& val)
|
||||
EIGEN_DEVICE_FUNC inline void writePacket(Index index, const PacketScalar& val)
|
||||
{
|
||||
m_xpr.template writePacket<Unaligned>
|
||||
(m_startRow.value() + (RowsAtCompileTime == 1 ? 0 : index),
|
||||
@@ -295,7 +297,7 @@ template<typename XprType, int BlockRows, int BlockCols, bool InnerPanel, bool H
|
||||
#endif
|
||||
|
||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
|
||||
const typename internal::remove_all<XprTypeNested>::type& nestedExpression() const
|
||||
const internal::remove_all_t<XprTypeNested>& nestedExpression() const
|
||||
{
|
||||
return m_xpr;
|
||||
}
|
||||
@@ -378,7 +380,7 @@ class BlockImpl_dense<XprType,BlockRows,BlockCols, InnerPanel,true>
|
||||
}
|
||||
|
||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
|
||||
const typename internal::remove_all<XprTypeNested>::type& nestedExpression() const EIGEN_NOEXCEPT
|
||||
const internal::remove_all_t<XprTypeNested>& nestedExpression() const EIGEN_NOEXCEPT
|
||||
{
|
||||
return m_xpr;
|
||||
}
|
||||
|
||||
@@ -10,58 +10,62 @@
|
||||
#ifndef EIGEN_ALLANDANY_H
|
||||
#define EIGEN_ALLANDANY_H
|
||||
|
||||
namespace Eigen {
|
||||
#include "./InternalHeaderCheck.h"
|
||||
|
||||
namespace Eigen {
|
||||
|
||||
namespace internal {
|
||||
|
||||
template<typename Derived, int UnrollCount, int Rows>
|
||||
template<typename Derived, int UnrollCount, int InnerSize>
|
||||
struct all_unroller
|
||||
{
|
||||
enum {
|
||||
col = (UnrollCount-1) / Rows,
|
||||
row = (UnrollCount-1) % Rows
|
||||
IsRowMajor = (int(Derived::Flags) & int(RowMajor)),
|
||||
i = (UnrollCount-1) / InnerSize,
|
||||
j = (UnrollCount-1) % InnerSize
|
||||
};
|
||||
|
||||
EIGEN_DEVICE_FUNC static inline bool run(const Derived &mat)
|
||||
{
|
||||
return all_unroller<Derived, UnrollCount-1, Rows>::run(mat) && mat.coeff(row, col);
|
||||
return all_unroller<Derived, UnrollCount-1, InnerSize>::run(mat) && mat.coeff(IsRowMajor ? i : j, IsRowMajor ? j : i);
|
||||
}
|
||||
};
|
||||
|
||||
template<typename Derived, int Rows>
|
||||
struct all_unroller<Derived, 0, Rows>
|
||||
template<typename Derived, int InnerSize>
|
||||
struct all_unroller<Derived, 0, InnerSize>
|
||||
{
|
||||
EIGEN_DEVICE_FUNC static inline bool run(const Derived &/*mat*/) { return true; }
|
||||
};
|
||||
|
||||
template<typename Derived, int Rows>
|
||||
struct all_unroller<Derived, Dynamic, Rows>
|
||||
template<typename Derived, int InnerSize>
|
||||
struct all_unroller<Derived, Dynamic, InnerSize>
|
||||
{
|
||||
EIGEN_DEVICE_FUNC static inline bool run(const Derived &) { return false; }
|
||||
};
|
||||
|
||||
template<typename Derived, int UnrollCount, int Rows>
|
||||
template<typename Derived, int UnrollCount, int InnerSize>
|
||||
struct any_unroller
|
||||
{
|
||||
enum {
|
||||
col = (UnrollCount-1) / Rows,
|
||||
row = (UnrollCount-1) % Rows
|
||||
IsRowMajor = (int(Derived::Flags) & int(RowMajor)),
|
||||
i = (UnrollCount-1) / InnerSize,
|
||||
j = (UnrollCount-1) % InnerSize
|
||||
};
|
||||
|
||||
|
||||
EIGEN_DEVICE_FUNC static inline bool run(const Derived &mat)
|
||||
{
|
||||
return any_unroller<Derived, UnrollCount-1, Rows>::run(mat) || mat.coeff(row, col);
|
||||
return any_unroller<Derived, UnrollCount-1, InnerSize>::run(mat) || mat.coeff(IsRowMajor ? i : j, IsRowMajor ? j : i);
|
||||
}
|
||||
};
|
||||
|
||||
template<typename Derived, int Rows>
|
||||
struct any_unroller<Derived, 0, Rows>
|
||||
template<typename Derived, int InnerSize>
|
||||
struct any_unroller<Derived, 0, InnerSize>
|
||||
{
|
||||
EIGEN_DEVICE_FUNC static inline bool run(const Derived & /*mat*/) { return false; }
|
||||
};
|
||||
|
||||
template<typename Derived, int Rows>
|
||||
struct any_unroller<Derived, Dynamic, Rows>
|
||||
template<typename Derived, int InnerSize>
|
||||
struct any_unroller<Derived, Dynamic, InnerSize>
|
||||
{
|
||||
EIGEN_DEVICE_FUNC static inline bool run(const Derived &) { return false; }
|
||||
};
|
||||
@@ -81,16 +85,16 @@ EIGEN_DEVICE_FUNC inline bool DenseBase<Derived>::all() const
|
||||
typedef internal::evaluator<Derived> Evaluator;
|
||||
enum {
|
||||
unroll = SizeAtCompileTime != Dynamic
|
||||
&& SizeAtCompileTime * (int(Evaluator::CoeffReadCost) + int(NumTraits<Scalar>::AddCost)) <= EIGEN_UNROLLING_LIMIT
|
||||
&& SizeAtCompileTime * (int(Evaluator::CoeffReadCost) + int(NumTraits<Scalar>::AddCost)) <= EIGEN_UNROLLING_LIMIT,
|
||||
};
|
||||
Evaluator evaluator(derived());
|
||||
if(unroll)
|
||||
return internal::all_unroller<Evaluator, unroll ? int(SizeAtCompileTime) : Dynamic, internal::traits<Derived>::RowsAtCompileTime>::run(evaluator);
|
||||
return internal::all_unroller<Evaluator, unroll ? int(SizeAtCompileTime) : Dynamic, InnerSizeAtCompileTime>::run(evaluator);
|
||||
else
|
||||
{
|
||||
for(Index j = 0; j < cols(); ++j)
|
||||
for(Index i = 0; i < rows(); ++i)
|
||||
if (!evaluator.coeff(i, j)) return false;
|
||||
for(Index i = 0; i < derived().outerSize(); ++i)
|
||||
for(Index j = 0; j < derived().innerSize(); ++j)
|
||||
if (!evaluator.coeff(IsRowMajor ? i : j, IsRowMajor ? j : i)) return false;
|
||||
return true;
|
||||
}
|
||||
}
|
||||
@@ -105,16 +109,16 @@ EIGEN_DEVICE_FUNC inline bool DenseBase<Derived>::any() const
|
||||
typedef internal::evaluator<Derived> Evaluator;
|
||||
enum {
|
||||
unroll = SizeAtCompileTime != Dynamic
|
||||
&& SizeAtCompileTime * (int(Evaluator::CoeffReadCost) + int(NumTraits<Scalar>::AddCost)) <= EIGEN_UNROLLING_LIMIT
|
||||
&& SizeAtCompileTime * (int(Evaluator::CoeffReadCost) + int(NumTraits<Scalar>::AddCost)) <= EIGEN_UNROLLING_LIMIT,
|
||||
};
|
||||
Evaluator evaluator(derived());
|
||||
if(unroll)
|
||||
return internal::any_unroller<Evaluator, unroll ? int(SizeAtCompileTime) : Dynamic, internal::traits<Derived>::RowsAtCompileTime>::run(evaluator);
|
||||
return internal::any_unroller<Evaluator, unroll ? int(SizeAtCompileTime) : Dynamic, InnerSizeAtCompileTime>::run(evaluator);
|
||||
else
|
||||
{
|
||||
for(Index j = 0; j < cols(); ++j)
|
||||
for(Index i = 0; i < rows(); ++i)
|
||||
if (evaluator.coeff(i, j)) return true;
|
||||
for(Index i = 0; i < derived().outerSize(); ++i)
|
||||
for(Index j = 0; j < derived().innerSize(); ++j)
|
||||
if (evaluator.coeff(IsRowMajor ? i : j, IsRowMajor ? j : i)) return true;
|
||||
return false;
|
||||
}
|
||||
}
|
||||
@@ -134,7 +138,7 @@ EIGEN_DEVICE_FUNC inline Eigen::Index DenseBase<Derived>::count() const
|
||||
* \sa allFinite()
|
||||
*/
|
||||
template<typename Derived>
|
||||
inline bool DenseBase<Derived>::hasNaN() const
|
||||
EIGEN_DEVICE_FUNC inline bool DenseBase<Derived>::hasNaN() const
|
||||
{
|
||||
#if EIGEN_COMP_MSVC || (defined __FAST_MATH__)
|
||||
return derived().array().isNaN().any();
|
||||
@@ -148,7 +152,7 @@ inline bool DenseBase<Derived>::hasNaN() const
|
||||
* \sa hasNaN()
|
||||
*/
|
||||
template<typename Derived>
|
||||
inline bool DenseBase<Derived>::allFinite() const
|
||||
EIGEN_DEVICE_FUNC inline bool DenseBase<Derived>::allFinite() const
|
||||
{
|
||||
#if EIGEN_COMP_MSVC || (defined __FAST_MATH__)
|
||||
return derived().array().isFinite().all();
|
||||
@@ -156,7 +160,7 @@ inline bool DenseBase<Derived>::allFinite() const
|
||||
return !((derived()-derived()).hasNaN());
|
||||
#endif
|
||||
}
|
||||
|
||||
|
||||
} // end namespace Eigen
|
||||
|
||||
#endif // EIGEN_ALLANDANY_H
|
||||
|
||||
@@ -11,6 +11,8 @@
|
||||
#ifndef EIGEN_COMMAINITIALIZER_H
|
||||
#define EIGEN_COMMAINITIALIZER_H
|
||||
|
||||
#include "./InternalHeaderCheck.h"
|
||||
|
||||
namespace Eigen {
|
||||
|
||||
/** \class CommaInitializer
|
||||
@@ -45,7 +47,7 @@ struct CommaInitializer
|
||||
{
|
||||
eigen_assert(m_xpr.rows() >= other.rows() && m_xpr.cols() >= other.cols()
|
||||
&& "Cannot comma-initialize a 0x0 matrix (operator<<)");
|
||||
m_xpr.block(0, 0, other.rows(), other.cols()) = other;
|
||||
m_xpr.template block<OtherDerived::RowsAtCompileTime, OtherDerived::ColsAtCompileTime>(0, 0, other.rows(), other.cols()) = other;
|
||||
}
|
||||
|
||||
/* Copy/Move constructor which transfers ownership. This is crucial in
|
||||
|
||||
@@ -10,6 +10,8 @@
|
||||
#ifndef EIGEN_CONDITIONESTIMATOR_H
|
||||
#define EIGEN_CONDITIONESTIMATOR_H
|
||||
|
||||
#include "./InternalHeaderCheck.h"
|
||||
|
||||
namespace Eigen {
|
||||
|
||||
namespace internal {
|
||||
@@ -160,12 +162,12 @@ rcond_estimate_helper(typename Decomposition::RealScalar matrix_norm, const Deco
|
||||
{
|
||||
typedef typename Decomposition::RealScalar RealScalar;
|
||||
eigen_assert(dec.rows() == dec.cols());
|
||||
if (dec.rows() == 0) return NumTraits<RealScalar>::infinity();
|
||||
if (matrix_norm == RealScalar(0)) return RealScalar(0);
|
||||
if (dec.rows() == 1) return RealScalar(1);
|
||||
if (dec.rows() == 0) return NumTraits<RealScalar>::infinity();
|
||||
if (numext::is_exactly_zero(matrix_norm)) return RealScalar(0);
|
||||
if (dec.rows() == 1) return RealScalar(1);
|
||||
const RealScalar inverse_matrix_norm = rcond_invmatrix_L1_norm_estimate(dec);
|
||||
return (inverse_matrix_norm == RealScalar(0) ? RealScalar(0)
|
||||
: (RealScalar(1) / inverse_matrix_norm) / matrix_norm);
|
||||
return (numext::is_exactly_zero(inverse_matrix_norm) ? RealScalar(0)
|
||||
: (RealScalar(1) / inverse_matrix_norm) / matrix_norm);
|
||||
}
|
||||
|
||||
} // namespace internal
|
||||
|
||||
@@ -13,6 +13,8 @@
|
||||
#ifndef EIGEN_COREEVALUATORS_H
|
||||
#define EIGEN_COREEVALUATORS_H
|
||||
|
||||
#include "./InternalHeaderCheck.h"
|
||||
|
||||
namespace Eigen {
|
||||
|
||||
namespace internal {
|
||||
@@ -498,7 +500,7 @@ struct evaluator<CwiseNullaryOp<NullaryOp,PlainObjectType> >
|
||||
: evaluator_base<CwiseNullaryOp<NullaryOp,PlainObjectType> >
|
||||
{
|
||||
typedef CwiseNullaryOp<NullaryOp,PlainObjectType> XprType;
|
||||
typedef typename internal::remove_all<PlainObjectType>::type PlainObjectTypeCleaned;
|
||||
typedef internal::remove_all_t<PlainObjectType> PlainObjectTypeCleaned;
|
||||
|
||||
enum {
|
||||
CoeffReadCost = internal::functor_traits<NullaryOp>::Cost,
|
||||
@@ -655,9 +657,9 @@ struct ternary_evaluator<CwiseTernaryOp<TernaryOp, Arg1, Arg2, Arg3>, IndexBased
|
||||
)
|
||||
),
|
||||
Flags = (Flags0 & ~RowMajorBit) | (Arg1Flags & RowMajorBit),
|
||||
Alignment = EIGEN_PLAIN_ENUM_MIN(
|
||||
EIGEN_PLAIN_ENUM_MIN(evaluator<Arg1>::Alignment, evaluator<Arg2>::Alignment),
|
||||
evaluator<Arg3>::Alignment)
|
||||
Alignment = plain_enum_min(
|
||||
plain_enum_min(evaluator<Arg1>::Alignment, evaluator<Arg2>::Alignment),
|
||||
evaluator<Arg3>::Alignment)
|
||||
};
|
||||
|
||||
EIGEN_DEVICE_FUNC explicit ternary_evaluator(const XprType& xpr) : m_d(xpr)
|
||||
@@ -751,7 +753,7 @@ struct binary_evaluator<CwiseBinaryOp<BinaryOp, Lhs, Rhs>, IndexBased, IndexBase
|
||||
)
|
||||
),
|
||||
Flags = (Flags0 & ~RowMajorBit) | (LhsFlags & RowMajorBit),
|
||||
Alignment = EIGEN_PLAIN_ENUM_MIN(evaluator<Lhs>::Alignment,evaluator<Rhs>::Alignment)
|
||||
Alignment = plain_enum_min(evaluator<Lhs>::Alignment, evaluator<Rhs>::Alignment)
|
||||
};
|
||||
|
||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
|
||||
@@ -810,11 +812,11 @@ protected:
|
||||
|
||||
// -------------------- CwiseUnaryView --------------------
|
||||
|
||||
template<typename UnaryOp, typename ArgType>
|
||||
struct unary_evaluator<CwiseUnaryView<UnaryOp, ArgType>, IndexBased>
|
||||
: evaluator_base<CwiseUnaryView<UnaryOp, ArgType> >
|
||||
template<typename UnaryOp, typename ArgType, typename StrideType>
|
||||
struct unary_evaluator<CwiseUnaryView<UnaryOp, ArgType, StrideType>, IndexBased>
|
||||
: evaluator_base<CwiseUnaryView<UnaryOp, ArgType, StrideType> >
|
||||
{
|
||||
typedef CwiseUnaryView<UnaryOp, ArgType> XprType;
|
||||
typedef CwiseUnaryView<UnaryOp, ArgType, StrideType> XprType;
|
||||
|
||||
enum {
|
||||
CoeffReadCost = int(evaluator<ArgType>::CoeffReadCost) + int(functor_traits<UnaryOp>::Cost),
|
||||
@@ -900,7 +902,8 @@ struct mapbase_evaluator : evaluator_base<Derived>
|
||||
m_innerStride(map.innerStride()),
|
||||
m_outerStride(map.outerStride())
|
||||
{
|
||||
EIGEN_STATIC_ASSERT(EIGEN_IMPLIES(evaluator<Derived>::Flags&PacketAccessBit, internal::inner_stride_at_compile_time<Derived>::ret==1),
|
||||
EIGEN_STATIC_ASSERT(check_implication((evaluator<Derived>::Flags & PacketAccessBit) != 0,
|
||||
internal::inner_stride_at_compile_time<Derived>::ret == 1),
|
||||
PACKET_ACCESS_REQUIRES_TO_HAVE_INNER_STRIDE_FIXED_TO_1);
|
||||
EIGEN_INTERNAL_CHECK_COST_VALUE(CoeffReadCost);
|
||||
}
|
||||
@@ -1072,7 +1075,7 @@ struct evaluator<Block<ArgType, BlockRows, BlockCols, InnerPanel> >
|
||||
Alignment0 = (InnerPanel && (OuterStrideAtCompileTime!=Dynamic)
|
||||
&& (OuterStrideAtCompileTime!=0)
|
||||
&& (((OuterStrideAtCompileTime * int(sizeof(Scalar))) % int(PacketAlignment)) == 0)) ? int(PacketAlignment) : 0,
|
||||
Alignment = EIGEN_PLAIN_ENUM_MIN(evaluator<ArgType>::Alignment, Alignment0)
|
||||
Alignment = plain_enum_min(evaluator<ArgType>::Alignment, Alignment0)
|
||||
};
|
||||
typedef block_evaluator<ArgType, BlockRows, BlockCols, InnerPanel> block_evaluator_type;
|
||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
|
||||
@@ -1222,8 +1225,8 @@ struct block_evaluator<ArgType, BlockRows, BlockCols, InnerPanel, /* HasDirectAc
|
||||
explicit block_evaluator(const XprType& block)
|
||||
: mapbase_evaluator<XprType, typename XprType::PlainObject>(block)
|
||||
{
|
||||
// TODO: for the 3.3 release, this should be turned to an internal assertion, but let's keep it as is for the beta lifetime
|
||||
eigen_assert(((internal::UIntPtr(block.data()) % EIGEN_PLAIN_ENUM_MAX(1,evaluator<XprType>::Alignment)) == 0) && "data is not aligned");
|
||||
eigen_internal_assert((internal::is_constant_evaluated() || (internal::UIntPtr(block.data()) % plain_enum_max(1,evaluator<XprType>::Alignment)) == 0) \
|
||||
&& "data is not aligned");
|
||||
}
|
||||
};
|
||||
|
||||
@@ -1239,12 +1242,12 @@ struct evaluator<Select<ConditionMatrixType, ThenMatrixType, ElseMatrixType> >
|
||||
typedef Select<ConditionMatrixType, ThenMatrixType, ElseMatrixType> XprType;
|
||||
enum {
|
||||
CoeffReadCost = evaluator<ConditionMatrixType>::CoeffReadCost
|
||||
+ EIGEN_PLAIN_ENUM_MAX(evaluator<ThenMatrixType>::CoeffReadCost,
|
||||
evaluator<ElseMatrixType>::CoeffReadCost),
|
||||
+ plain_enum_max(evaluator<ThenMatrixType>::CoeffReadCost,
|
||||
evaluator<ElseMatrixType>::CoeffReadCost),
|
||||
|
||||
Flags = (unsigned int)evaluator<ThenMatrixType>::Flags & evaluator<ElseMatrixType>::Flags & HereditaryBits,
|
||||
|
||||
Alignment = EIGEN_PLAIN_ENUM_MIN(evaluator<ThenMatrixType>::Alignment, evaluator<ElseMatrixType>::Alignment)
|
||||
Alignment = plain_enum_min(evaluator<ThenMatrixType>::Alignment, evaluator<ElseMatrixType>::Alignment)
|
||||
};
|
||||
|
||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
|
||||
@@ -1295,7 +1298,7 @@ struct unary_evaluator<Replicate<ArgType, RowFactor, ColFactor> >
|
||||
Factor = (RowFactor==Dynamic || ColFactor==Dynamic) ? Dynamic : RowFactor*ColFactor
|
||||
};
|
||||
typedef typename internal::nested_eval<ArgType,Factor>::type ArgTypeNested;
|
||||
typedef typename internal::remove_all<ArgTypeNested>::type ArgTypeNestedCleaned;
|
||||
typedef internal::remove_all_t<ArgTypeNested> ArgTypeNestedCleaned;
|
||||
|
||||
enum {
|
||||
CoeffReadCost = evaluator<ArgTypeNestedCleaned>::CoeffReadCost,
|
||||
@@ -1379,7 +1382,7 @@ template<typename XprType>
|
||||
struct evaluator_wrapper_base
|
||||
: evaluator_base<XprType>
|
||||
{
|
||||
typedef typename remove_all<typename XprType::NestedExpressionType>::type ArgType;
|
||||
typedef remove_all_t<typename XprType::NestedExpressionType> ArgType;
|
||||
enum {
|
||||
CoeffReadCost = evaluator<ArgType>::CoeffReadCost,
|
||||
Flags = evaluator<ArgType>::Flags,
|
||||
@@ -1720,14 +1723,14 @@ struct evaluator<EvalToTemp<ArgType> >
|
||||
EIGEN_DEVICE_FUNC explicit evaluator(const XprType& xpr)
|
||||
: m_result(xpr.arg())
|
||||
{
|
||||
::new (static_cast<Base*>(this)) Base(m_result);
|
||||
internal::construct_at<Base>(this, m_result);
|
||||
}
|
||||
|
||||
// This constructor is used when nesting an EvalTo evaluator in another evaluator
|
||||
EIGEN_DEVICE_FUNC evaluator(const ArgType& arg)
|
||||
: m_result(arg)
|
||||
{
|
||||
::new (static_cast<Base*>(this)) Base(m_result);
|
||||
internal::construct_at<Base>(this, m_result);
|
||||
}
|
||||
|
||||
protected:
|
||||
|
||||
@@ -10,6 +10,8 @@
|
||||
#ifndef EIGEN_COREITERATORS_H
|
||||
#define EIGEN_COREITERATORS_H
|
||||
|
||||
#include "./InternalHeaderCheck.h"
|
||||
|
||||
namespace Eigen {
|
||||
|
||||
/* This file contains the respective InnerIterator definition of the expressions defined in Eigen/Core
|
||||
|
||||
@@ -11,6 +11,8 @@
|
||||
#ifndef EIGEN_CWISE_BINARY_OP_H
|
||||
#define EIGEN_CWISE_BINARY_OP_H
|
||||
|
||||
#include "./InternalHeaderCheck.h"
|
||||
|
||||
namespace Eigen {
|
||||
|
||||
namespace internal {
|
||||
@@ -19,7 +21,7 @@ struct traits<CwiseBinaryOp<BinaryOp, Lhs, Rhs> >
|
||||
{
|
||||
// we must not inherit from traits<Lhs> since it has
|
||||
// the potential to cause problems with MSVC
|
||||
typedef typename remove_all<Lhs>::type Ancestor;
|
||||
typedef remove_all_t<Lhs> Ancestor;
|
||||
typedef typename traits<Ancestor>::XprKind XprKind;
|
||||
enum {
|
||||
RowsAtCompileTime = traits<Ancestor>::RowsAtCompileTime,
|
||||
@@ -43,10 +45,10 @@ struct traits<CwiseBinaryOp<BinaryOp, Lhs, Rhs> >
|
||||
typename traits<Rhs>::StorageIndex>::type StorageIndex;
|
||||
typedef typename Lhs::Nested LhsNested;
|
||||
typedef typename Rhs::Nested RhsNested;
|
||||
typedef typename remove_reference<LhsNested>::type _LhsNested;
|
||||
typedef typename remove_reference<RhsNested>::type _RhsNested;
|
||||
typedef std::remove_reference_t<LhsNested> LhsNested_;
|
||||
typedef std::remove_reference_t<RhsNested> RhsNested_;
|
||||
enum {
|
||||
Flags = cwise_promote_storage_order<typename traits<Lhs>::StorageKind,typename traits<Rhs>::StorageKind,_LhsNested::Flags & RowMajorBit,_RhsNested::Flags & RowMajorBit>::value
|
||||
Flags = cwise_promote_storage_order<typename traits<Lhs>::StorageKind,typename traits<Rhs>::StorageKind,LhsNested_::Flags & RowMajorBit,RhsNested_::Flags & RowMajorBit>::value
|
||||
};
|
||||
};
|
||||
} // end namespace internal
|
||||
@@ -84,9 +86,9 @@ class CwiseBinaryOp :
|
||||
{
|
||||
public:
|
||||
|
||||
typedef typename internal::remove_all<BinaryOp>::type Functor;
|
||||
typedef typename internal::remove_all<LhsType>::type Lhs;
|
||||
typedef typename internal::remove_all<RhsType>::type Rhs;
|
||||
typedef internal::remove_all_t<BinaryOp> Functor;
|
||||
typedef internal::remove_all_t<LhsType> Lhs;
|
||||
typedef internal::remove_all_t<RhsType> Rhs;
|
||||
|
||||
typedef typename CwiseBinaryOpImpl<
|
||||
BinaryOp, LhsType, RhsType,
|
||||
@@ -95,12 +97,15 @@ class CwiseBinaryOp :
|
||||
BinaryOp>::ret>::Base Base;
|
||||
EIGEN_GENERIC_PUBLIC_INTERFACE(CwiseBinaryOp)
|
||||
|
||||
EIGEN_CHECK_BINARY_COMPATIBILIY(BinaryOp,typename Lhs::Scalar,typename Rhs::Scalar)
|
||||
EIGEN_STATIC_ASSERT_SAME_MATRIX_SIZE(Lhs, Rhs)
|
||||
|
||||
typedef typename internal::ref_selector<LhsType>::type LhsNested;
|
||||
typedef typename internal::ref_selector<RhsType>::type RhsNested;
|
||||
typedef typename internal::remove_reference<LhsNested>::type _LhsNested;
|
||||
typedef typename internal::remove_reference<RhsNested>::type _RhsNested;
|
||||
typedef std::remove_reference_t<LhsNested> LhsNested_;
|
||||
typedef std::remove_reference_t<RhsNested> RhsNested_;
|
||||
|
||||
#if EIGEN_COMP_MSVC && EIGEN_HAS_CXX11
|
||||
#if EIGEN_COMP_MSVC
|
||||
//Required for Visual Studio or the Copy constructor will probably not get inlined!
|
||||
EIGEN_STRONG_INLINE
|
||||
CwiseBinaryOp(const CwiseBinaryOp<BinaryOp,LhsType,RhsType>&) = default;
|
||||
@@ -110,29 +115,26 @@ class CwiseBinaryOp :
|
||||
CwiseBinaryOp(const Lhs& aLhs, const Rhs& aRhs, const BinaryOp& func = BinaryOp())
|
||||
: m_lhs(aLhs), m_rhs(aRhs), m_functor(func)
|
||||
{
|
||||
EIGEN_CHECK_BINARY_COMPATIBILIY(BinaryOp,typename Lhs::Scalar,typename Rhs::Scalar);
|
||||
// require the sizes to match
|
||||
EIGEN_STATIC_ASSERT_SAME_MATRIX_SIZE(Lhs, Rhs)
|
||||
eigen_assert(aLhs.rows() == aRhs.rows() && aLhs.cols() == aRhs.cols());
|
||||
}
|
||||
|
||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE EIGEN_CONSTEXPR
|
||||
Index rows() const EIGEN_NOEXCEPT {
|
||||
// return the fixed size type if available to enable compile time optimizations
|
||||
return internal::traits<typename internal::remove_all<LhsNested>::type>::RowsAtCompileTime==Dynamic ? m_rhs.rows() : m_lhs.rows();
|
||||
return internal::traits<internal::remove_all_t<LhsNested>>::RowsAtCompileTime==Dynamic ? m_rhs.rows() : m_lhs.rows();
|
||||
}
|
||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE EIGEN_CONSTEXPR
|
||||
Index cols() const EIGEN_NOEXCEPT {
|
||||
// return the fixed size type if available to enable compile time optimizations
|
||||
return internal::traits<typename internal::remove_all<LhsNested>::type>::ColsAtCompileTime==Dynamic ? m_rhs.cols() : m_lhs.cols();
|
||||
return internal::traits<internal::remove_all_t<LhsNested>>::ColsAtCompileTime==Dynamic ? m_rhs.cols() : m_lhs.cols();
|
||||
}
|
||||
|
||||
/** \returns the left hand side nested expression */
|
||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
|
||||
const _LhsNested& lhs() const { return m_lhs; }
|
||||
const LhsNested_& lhs() const { return m_lhs; }
|
||||
/** \returns the right hand side nested expression */
|
||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
|
||||
const _RhsNested& rhs() const { return m_rhs; }
|
||||
const RhsNested_& rhs() const { return m_rhs; }
|
||||
/** \returns the functor representing the binary operation */
|
||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
|
||||
const BinaryOp& functor() const { return m_functor; }
|
||||
|
||||
@@ -10,6 +10,8 @@
|
||||
#ifndef EIGEN_CWISE_NULLARY_OP_H
|
||||
#define EIGEN_CWISE_NULLARY_OP_H
|
||||
|
||||
#include "./InternalHeaderCheck.h"
|
||||
|
||||
namespace Eigen {
|
||||
|
||||
namespace internal {
|
||||
@@ -304,6 +306,20 @@ DenseBase<Derived>::LinSpaced(const Scalar& low, const Scalar& high)
|
||||
return DenseBase<Derived>::NullaryExpr(Derived::SizeAtCompileTime, internal::linspaced_op<Scalar>(low,high,Derived::SizeAtCompileTime));
|
||||
}
|
||||
|
||||
template <typename Derived>
|
||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const typename DenseBase<Derived>::RandomAccessEqualSpacedReturnType
|
||||
DenseBase<Derived>::EqualSpaced(Index size, const Scalar& low, const Scalar& step) {
|
||||
EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived)
|
||||
return DenseBase<Derived>::NullaryExpr(size, internal::equalspaced_op<Scalar>(low, step));
|
||||
}
|
||||
|
||||
template <typename Derived>
|
||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const typename DenseBase<Derived>::RandomAccessEqualSpacedReturnType
|
||||
DenseBase<Derived>::EqualSpaced(const Scalar& low, const Scalar& step) {
|
||||
EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived)
|
||||
return DenseBase<Derived>::NullaryExpr(Derived::SizeAtCompileTime, internal::equalspaced_op<Scalar>(low, step));
|
||||
}
|
||||
|
||||
/** \returns true if all coefficients in this matrix are approximately equal to \a val, to within precision \a prec */
|
||||
template<typename Derived>
|
||||
EIGEN_DEVICE_FUNC bool DenseBase<Derived>::isApproxToConstant
|
||||
@@ -453,6 +469,19 @@ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Derived& DenseBase<Derived>::setLinSpaced(
|
||||
return setLinSpaced(size(), low, high);
|
||||
}
|
||||
|
||||
template <typename Derived>
|
||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Derived& DenseBase<Derived>::setEqualSpaced(Index newSize, const Scalar& low,
|
||||
const Scalar& step) {
|
||||
EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived)
|
||||
return derived() = Derived::NullaryExpr(newSize, internal::equalspaced_op<Scalar>(low, step));
|
||||
}
|
||||
template <typename Derived>
|
||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Derived& DenseBase<Derived>::setEqualSpaced(const Scalar& low,
|
||||
const Scalar& step) {
|
||||
EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived)
|
||||
return setEqualSpaced(size(), low, step);
|
||||
}
|
||||
|
||||
// zero:
|
||||
|
||||
/** \returns an expression of a zero matrix.
|
||||
|
||||
@@ -12,6 +12,8 @@
|
||||
#ifndef EIGEN_CWISE_TERNARY_OP_H
|
||||
#define EIGEN_CWISE_TERNARY_OP_H
|
||||
|
||||
#include "./InternalHeaderCheck.h"
|
||||
|
||||
namespace Eigen {
|
||||
|
||||
namespace internal {
|
||||
@@ -19,7 +21,7 @@ template <typename TernaryOp, typename Arg1, typename Arg2, typename Arg3>
|
||||
struct traits<CwiseTernaryOp<TernaryOp, Arg1, Arg2, Arg3> > {
|
||||
// we must not inherit from traits<Arg1> since it has
|
||||
// the potential to cause problems with MSVC
|
||||
typedef typename remove_all<Arg1>::type Ancestor;
|
||||
typedef remove_all_t<Arg1> Ancestor;
|
||||
typedef typename traits<Ancestor>::XprKind XprKind;
|
||||
enum {
|
||||
RowsAtCompileTime = traits<Ancestor>::RowsAtCompileTime,
|
||||
@@ -41,10 +43,10 @@ struct traits<CwiseTernaryOp<TernaryOp, Arg1, Arg2, Arg3> > {
|
||||
typedef typename Arg1::Nested Arg1Nested;
|
||||
typedef typename Arg2::Nested Arg2Nested;
|
||||
typedef typename Arg3::Nested Arg3Nested;
|
||||
typedef typename remove_reference<Arg1Nested>::type _Arg1Nested;
|
||||
typedef typename remove_reference<Arg2Nested>::type _Arg2Nested;
|
||||
typedef typename remove_reference<Arg3Nested>::type _Arg3Nested;
|
||||
enum { Flags = _Arg1Nested::Flags & RowMajorBit };
|
||||
typedef std::remove_reference_t<Arg1Nested> Arg1Nested_;
|
||||
typedef std::remove_reference_t<Arg2Nested> Arg2Nested_;
|
||||
typedef std::remove_reference_t<Arg3Nested> Arg3Nested_;
|
||||
enum { Flags = Arg1Nested_::Flags & RowMajorBit };
|
||||
};
|
||||
} // end namespace internal
|
||||
|
||||
@@ -87,9 +89,23 @@ class CwiseTernaryOp : public CwiseTernaryOpImpl<
|
||||
internal::no_assignment_operator
|
||||
{
|
||||
public:
|
||||
typedef typename internal::remove_all<Arg1Type>::type Arg1;
|
||||
typedef typename internal::remove_all<Arg2Type>::type Arg2;
|
||||
typedef typename internal::remove_all<Arg3Type>::type Arg3;
|
||||
typedef internal::remove_all_t<Arg1Type> Arg1;
|
||||
typedef internal::remove_all_t<Arg2Type> Arg2;
|
||||
typedef internal::remove_all_t<Arg3Type> Arg3;
|
||||
|
||||
// require the sizes to match
|
||||
EIGEN_STATIC_ASSERT_SAME_MATRIX_SIZE(Arg1, Arg2)
|
||||
EIGEN_STATIC_ASSERT_SAME_MATRIX_SIZE(Arg1, Arg3)
|
||||
|
||||
// The index types should match
|
||||
EIGEN_STATIC_ASSERT((internal::is_same<
|
||||
typename internal::traits<Arg1Type>::StorageKind,
|
||||
typename internal::traits<Arg2Type>::StorageKind>::value),
|
||||
STORAGE_KIND_MUST_MATCH)
|
||||
EIGEN_STATIC_ASSERT((internal::is_same<
|
||||
typename internal::traits<Arg1Type>::StorageKind,
|
||||
typename internal::traits<Arg3Type>::StorageKind>::value),
|
||||
STORAGE_KIND_MUST_MATCH)
|
||||
|
||||
typedef typename CwiseTernaryOpImpl<
|
||||
TernaryOp, Arg1Type, Arg2Type, Arg3Type,
|
||||
@@ -99,29 +115,15 @@ class CwiseTernaryOp : public CwiseTernaryOpImpl<
|
||||
typedef typename internal::ref_selector<Arg1Type>::type Arg1Nested;
|
||||
typedef typename internal::ref_selector<Arg2Type>::type Arg2Nested;
|
||||
typedef typename internal::ref_selector<Arg3Type>::type Arg3Nested;
|
||||
typedef typename internal::remove_reference<Arg1Nested>::type _Arg1Nested;
|
||||
typedef typename internal::remove_reference<Arg2Nested>::type _Arg2Nested;
|
||||
typedef typename internal::remove_reference<Arg3Nested>::type _Arg3Nested;
|
||||
typedef std::remove_reference_t<Arg1Nested> Arg1Nested_;
|
||||
typedef std::remove_reference_t<Arg2Nested> Arg2Nested_;
|
||||
typedef std::remove_reference_t<Arg3Nested> Arg3Nested_;
|
||||
|
||||
EIGEN_DEVICE_FUNC
|
||||
EIGEN_STRONG_INLINE CwiseTernaryOp(const Arg1& a1, const Arg2& a2,
|
||||
const Arg3& a3,
|
||||
const TernaryOp& func = TernaryOp())
|
||||
: m_arg1(a1), m_arg2(a2), m_arg3(a3), m_functor(func) {
|
||||
// require the sizes to match
|
||||
EIGEN_STATIC_ASSERT_SAME_MATRIX_SIZE(Arg1, Arg2)
|
||||
EIGEN_STATIC_ASSERT_SAME_MATRIX_SIZE(Arg1, Arg3)
|
||||
|
||||
// The index types should match
|
||||
EIGEN_STATIC_ASSERT((internal::is_same<
|
||||
typename internal::traits<Arg1Type>::StorageKind,
|
||||
typename internal::traits<Arg2Type>::StorageKind>::value),
|
||||
STORAGE_KIND_MUST_MATCH)
|
||||
EIGEN_STATIC_ASSERT((internal::is_same<
|
||||
typename internal::traits<Arg1Type>::StorageKind,
|
||||
typename internal::traits<Arg3Type>::StorageKind>::value),
|
||||
STORAGE_KIND_MUST_MATCH)
|
||||
|
||||
eigen_assert(a1.rows() == a2.rows() && a1.cols() == a2.cols() &&
|
||||
a1.rows() == a3.rows() && a1.cols() == a3.cols());
|
||||
}
|
||||
@@ -130,14 +132,14 @@ class CwiseTernaryOp : public CwiseTernaryOpImpl<
|
||||
EIGEN_STRONG_INLINE Index rows() const {
|
||||
// return the fixed size type if available to enable compile time
|
||||
// optimizations
|
||||
if (internal::traits<typename internal::remove_all<Arg1Nested>::type>::
|
||||
if (internal::traits<internal::remove_all_t<Arg1Nested>>::
|
||||
RowsAtCompileTime == Dynamic &&
|
||||
internal::traits<typename internal::remove_all<Arg2Nested>::type>::
|
||||
internal::traits<internal::remove_all_t<Arg2Nested>>::
|
||||
RowsAtCompileTime == Dynamic)
|
||||
return m_arg3.rows();
|
||||
else if (internal::traits<typename internal::remove_all<Arg1Nested>::type>::
|
||||
else if (internal::traits<internal::remove_all_t<Arg1Nested>>::
|
||||
RowsAtCompileTime == Dynamic &&
|
||||
internal::traits<typename internal::remove_all<Arg3Nested>::type>::
|
||||
internal::traits<internal::remove_all_t<Arg3Nested>>::
|
||||
RowsAtCompileTime == Dynamic)
|
||||
return m_arg2.rows();
|
||||
else
|
||||
@@ -147,14 +149,14 @@ class CwiseTernaryOp : public CwiseTernaryOpImpl<
|
||||
EIGEN_STRONG_INLINE Index cols() const {
|
||||
// return the fixed size type if available to enable compile time
|
||||
// optimizations
|
||||
if (internal::traits<typename internal::remove_all<Arg1Nested>::type>::
|
||||
if (internal::traits<internal::remove_all_t<Arg1Nested>>::
|
||||
ColsAtCompileTime == Dynamic &&
|
||||
internal::traits<typename internal::remove_all<Arg2Nested>::type>::
|
||||
internal::traits<internal::remove_all_t<Arg2Nested>>::
|
||||
ColsAtCompileTime == Dynamic)
|
||||
return m_arg3.cols();
|
||||
else if (internal::traits<typename internal::remove_all<Arg1Nested>::type>::
|
||||
else if (internal::traits<internal::remove_all_t<Arg1Nested>>::
|
||||
ColsAtCompileTime == Dynamic &&
|
||||
internal::traits<typename internal::remove_all<Arg3Nested>::type>::
|
||||
internal::traits<internal::remove_all_t<Arg3Nested>>::
|
||||
ColsAtCompileTime == Dynamic)
|
||||
return m_arg2.cols();
|
||||
else
|
||||
@@ -163,13 +165,13 @@ class CwiseTernaryOp : public CwiseTernaryOpImpl<
|
||||
|
||||
/** \returns the first argument nested expression */
|
||||
EIGEN_DEVICE_FUNC
|
||||
const _Arg1Nested& arg1() const { return m_arg1; }
|
||||
const Arg1Nested_& arg1() const { return m_arg1; }
|
||||
/** \returns the first argument nested expression */
|
||||
EIGEN_DEVICE_FUNC
|
||||
const _Arg2Nested& arg2() const { return m_arg2; }
|
||||
const Arg2Nested_& arg2() const { return m_arg2; }
|
||||
/** \returns the third argument nested expression */
|
||||
EIGEN_DEVICE_FUNC
|
||||
const _Arg3Nested& arg3() const { return m_arg3; }
|
||||
const Arg3Nested_& arg3() const { return m_arg3; }
|
||||
/** \returns the functor representing the ternary operation */
|
||||
EIGEN_DEVICE_FUNC
|
||||
const TernaryOp& functor() const { return m_functor; }
|
||||
|
||||
@@ -11,6 +11,8 @@
|
||||
#ifndef EIGEN_CWISE_UNARY_OP_H
|
||||
#define EIGEN_CWISE_UNARY_OP_H
|
||||
|
||||
#include "./InternalHeaderCheck.h"
|
||||
|
||||
namespace Eigen {
|
||||
|
||||
namespace internal {
|
||||
@@ -22,9 +24,9 @@ struct traits<CwiseUnaryOp<UnaryOp, XprType> >
|
||||
UnaryOp(const typename XprType::Scalar&)
|
||||
>::type Scalar;
|
||||
typedef typename XprType::Nested XprTypeNested;
|
||||
typedef typename remove_reference<XprTypeNested>::type _XprTypeNested;
|
||||
typedef std::remove_reference_t<XprTypeNested> XprTypeNested_;
|
||||
enum {
|
||||
Flags = _XprTypeNested::Flags & RowMajorBit
|
||||
Flags = XprTypeNested_::Flags & RowMajorBit
|
||||
};
|
||||
};
|
||||
}
|
||||
@@ -59,7 +61,7 @@ class CwiseUnaryOp : public CwiseUnaryOpImpl<UnaryOp, XprType, typename internal
|
||||
typedef typename CwiseUnaryOpImpl<UnaryOp, XprType,typename internal::traits<XprType>::StorageKind>::Base Base;
|
||||
EIGEN_GENERIC_PUBLIC_INTERFACE(CwiseUnaryOp)
|
||||
typedef typename internal::ref_selector<XprType>::type XprTypeNested;
|
||||
typedef typename internal::remove_all<XprType>::type NestedExpression;
|
||||
typedef internal::remove_all_t<XprType> NestedExpression;
|
||||
|
||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
|
||||
explicit CwiseUnaryOp(const XprType& xpr, const UnaryOp& func = UnaryOp())
|
||||
@@ -76,12 +78,12 @@ class CwiseUnaryOp : public CwiseUnaryOpImpl<UnaryOp, XprType, typename internal
|
||||
|
||||
/** \returns the nested expression */
|
||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
|
||||
const typename internal::remove_all<XprTypeNested>::type&
|
||||
const internal::remove_all_t<XprTypeNested>&
|
||||
nestedExpression() const { return m_xpr; }
|
||||
|
||||
/** \returns the nested expression */
|
||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
|
||||
typename internal::remove_all<XprTypeNested>::type&
|
||||
internal::remove_all_t<XprTypeNested>&
|
||||
nestedExpression() { return m_xpr; }
|
||||
|
||||
protected:
|
||||
|
||||
@@ -10,35 +10,42 @@
|
||||
#ifndef EIGEN_CWISE_UNARY_VIEW_H
|
||||
#define EIGEN_CWISE_UNARY_VIEW_H
|
||||
|
||||
#include "./InternalHeaderCheck.h"
|
||||
|
||||
namespace Eigen {
|
||||
|
||||
namespace internal {
|
||||
template<typename ViewOp, typename MatrixType>
|
||||
struct traits<CwiseUnaryView<ViewOp, MatrixType> >
|
||||
template<typename ViewOp, typename MatrixType, typename StrideType>
|
||||
struct traits<CwiseUnaryView<ViewOp, MatrixType, StrideType> >
|
||||
: traits<MatrixType>
|
||||
{
|
||||
typedef typename result_of<
|
||||
ViewOp(const typename traits<MatrixType>::Scalar&)
|
||||
>::type Scalar;
|
||||
typedef typename MatrixType::Nested MatrixTypeNested;
|
||||
typedef typename remove_all<MatrixTypeNested>::type _MatrixTypeNested;
|
||||
typedef remove_all_t<MatrixTypeNested> MatrixTypeNested_;
|
||||
enum {
|
||||
FlagsLvalueBit = is_lvalue<MatrixType>::value ? LvalueBit : 0,
|
||||
Flags = traits<_MatrixTypeNested>::Flags & (RowMajorBit | FlagsLvalueBit | DirectAccessBit), // FIXME DirectAccessBit should not be handled by expressions
|
||||
Flags = traits<MatrixTypeNested_>::Flags & (RowMajorBit | FlagsLvalueBit | DirectAccessBit), // FIXME DirectAccessBit should not be handled by expressions
|
||||
MatrixTypeInnerStride = inner_stride_at_compile_time<MatrixType>::ret,
|
||||
// need to cast the sizeof's from size_t to int explicitly, otherwise:
|
||||
// "error: no integral type can represent all of the enumerator values
|
||||
InnerStrideAtCompileTime = MatrixTypeInnerStride == Dynamic
|
||||
? int(Dynamic)
|
||||
: int(MatrixTypeInnerStride) * int(sizeof(typename traits<MatrixType>::Scalar) / sizeof(Scalar)),
|
||||
OuterStrideAtCompileTime = outer_stride_at_compile_time<MatrixType>::ret == Dynamic
|
||||
? int(Dynamic)
|
||||
: outer_stride_at_compile_time<MatrixType>::ret * int(sizeof(typename traits<MatrixType>::Scalar) / sizeof(Scalar))
|
||||
InnerStrideAtCompileTime = StrideType::InnerStrideAtCompileTime == 0
|
||||
? (MatrixTypeInnerStride == Dynamic
|
||||
? int(Dynamic)
|
||||
: int(MatrixTypeInnerStride) * int(sizeof(typename traits<MatrixType>::Scalar) / sizeof(Scalar)))
|
||||
: int(StrideType::InnerStrideAtCompileTime),
|
||||
|
||||
OuterStrideAtCompileTime = StrideType::OuterStrideAtCompileTime == 0
|
||||
? (outer_stride_at_compile_time<MatrixType>::ret == Dynamic
|
||||
? int(Dynamic)
|
||||
: outer_stride_at_compile_time<MatrixType>::ret * int(sizeof(typename traits<MatrixType>::Scalar) / sizeof(Scalar)))
|
||||
: int(StrideType::OuterStrideAtCompileTime)
|
||||
};
|
||||
};
|
||||
}
|
||||
|
||||
template<typename ViewOp, typename MatrixType, typename StorageKind>
|
||||
template<typename ViewOp, typename MatrixType, typename StrideType, typename StorageKind>
|
||||
class CwiseUnaryViewImpl;
|
||||
|
||||
/** \class CwiseUnaryView
|
||||
@@ -54,15 +61,15 @@ class CwiseUnaryViewImpl;
|
||||
*
|
||||
* \sa MatrixBase::unaryViewExpr(const CustomUnaryOp &) const, class CwiseUnaryOp
|
||||
*/
|
||||
template<typename ViewOp, typename MatrixType>
|
||||
class CwiseUnaryView : public CwiseUnaryViewImpl<ViewOp, MatrixType, typename internal::traits<MatrixType>::StorageKind>
|
||||
template<typename ViewOp, typename MatrixType, typename StrideType>
|
||||
class CwiseUnaryView : public CwiseUnaryViewImpl<ViewOp, MatrixType, StrideType, typename internal::traits<MatrixType>::StorageKind>
|
||||
{
|
||||
public:
|
||||
|
||||
typedef typename CwiseUnaryViewImpl<ViewOp, MatrixType,typename internal::traits<MatrixType>::StorageKind>::Base Base;
|
||||
typedef typename CwiseUnaryViewImpl<ViewOp, MatrixType, StrideType, typename internal::traits<MatrixType>::StorageKind>::Base Base;
|
||||
EIGEN_GENERIC_PUBLIC_INTERFACE(CwiseUnaryView)
|
||||
typedef typename internal::ref_selector<MatrixType>::non_const_type MatrixTypeNested;
|
||||
typedef typename internal::remove_all<MatrixType>::type NestedExpression;
|
||||
typedef internal::remove_all_t<MatrixType> NestedExpression;
|
||||
|
||||
explicit EIGEN_DEVICE_FUNC inline CwiseUnaryView(MatrixType& mat, const ViewOp& func = ViewOp())
|
||||
: m_matrix(mat), m_functor(func) {}
|
||||
@@ -78,11 +85,11 @@ class CwiseUnaryView : public CwiseUnaryViewImpl<ViewOp, MatrixType, typename in
|
||||
EIGEN_DEVICE_FUNC const ViewOp& functor() const { return m_functor; }
|
||||
|
||||
/** \returns the nested expression */
|
||||
EIGEN_DEVICE_FUNC const typename internal::remove_all<MatrixTypeNested>::type&
|
||||
EIGEN_DEVICE_FUNC const internal::remove_all_t<MatrixTypeNested>&
|
||||
nestedExpression() const { return m_matrix; }
|
||||
|
||||
/** \returns the nested expression */
|
||||
EIGEN_DEVICE_FUNC typename internal::remove_reference<MatrixTypeNested>::type&
|
||||
EIGEN_DEVICE_FUNC std::remove_reference_t<MatrixTypeNested>&
|
||||
nestedExpression() { return m_matrix; }
|
||||
|
||||
protected:
|
||||
@@ -91,22 +98,22 @@ class CwiseUnaryView : public CwiseUnaryViewImpl<ViewOp, MatrixType, typename in
|
||||
};
|
||||
|
||||
// Generic API dispatcher
|
||||
template<typename ViewOp, typename XprType, typename StorageKind>
|
||||
template<typename ViewOp, typename XprType, typename StrideType, typename StorageKind>
|
||||
class CwiseUnaryViewImpl
|
||||
: public internal::generic_xpr_base<CwiseUnaryView<ViewOp, XprType> >::type
|
||||
: public internal::generic_xpr_base<CwiseUnaryView<ViewOp, XprType, StrideType> >::type
|
||||
{
|
||||
public:
|
||||
typedef typename internal::generic_xpr_base<CwiseUnaryView<ViewOp, XprType> >::type Base;
|
||||
typedef typename internal::generic_xpr_base<CwiseUnaryView<ViewOp, XprType, StrideType> >::type Base;
|
||||
};
|
||||
|
||||
template<typename ViewOp, typename MatrixType>
|
||||
class CwiseUnaryViewImpl<ViewOp,MatrixType,Dense>
|
||||
: public internal::dense_xpr_base< CwiseUnaryView<ViewOp, MatrixType> >::type
|
||||
template<typename ViewOp, typename MatrixType, typename StrideType>
|
||||
class CwiseUnaryViewImpl<ViewOp,MatrixType,StrideType,Dense>
|
||||
: public internal::dense_xpr_base< CwiseUnaryView<ViewOp, MatrixType, StrideType> >::type
|
||||
{
|
||||
public:
|
||||
|
||||
typedef CwiseUnaryView<ViewOp, MatrixType> Derived;
|
||||
typedef typename internal::dense_xpr_base< CwiseUnaryView<ViewOp, MatrixType> >::type Base;
|
||||
typedef CwiseUnaryView<ViewOp, MatrixType,StrideType> Derived;
|
||||
typedef typename internal::dense_xpr_base< CwiseUnaryView<ViewOp, MatrixType,StrideType> >::type Base;
|
||||
|
||||
EIGEN_DENSE_PUBLIC_INTERFACE(Derived)
|
||||
EIGEN_INHERIT_ASSIGNMENT_OPERATORS(CwiseUnaryViewImpl)
|
||||
@@ -116,12 +123,16 @@ class CwiseUnaryViewImpl<ViewOp,MatrixType,Dense>
|
||||
|
||||
EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR inline Index innerStride() const
|
||||
{
|
||||
return derived().nestedExpression().innerStride() * sizeof(typename internal::traits<MatrixType>::Scalar) / sizeof(Scalar);
|
||||
return StrideType::InnerStrideAtCompileTime != 0
|
||||
? int(StrideType::InnerStrideAtCompileTime)
|
||||
: derived().nestedExpression().innerStride() * sizeof(typename internal::traits<MatrixType>::Scalar) / sizeof(Scalar);
|
||||
}
|
||||
|
||||
EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR inline Index outerStride() const
|
||||
{
|
||||
return derived().nestedExpression().outerStride() * sizeof(typename internal::traits<MatrixType>::Scalar) / sizeof(Scalar);
|
||||
return StrideType::OuterStrideAtCompileTime != 0
|
||||
? int(StrideType::OuterStrideAtCompileTime)
|
||||
: derived().nestedExpression().outerStride() * sizeof(typename internal::traits<MatrixType>::Scalar) / sizeof(Scalar);
|
||||
}
|
||||
protected:
|
||||
EIGEN_DEFAULT_EMPTY_CONSTRUCTOR_AND_DESTRUCTOR(CwiseUnaryViewImpl)
|
||||
|
||||
@@ -11,17 +11,12 @@
|
||||
#ifndef EIGEN_DENSEBASE_H
|
||||
#define EIGEN_DENSEBASE_H
|
||||
|
||||
#include "./InternalHeaderCheck.h"
|
||||
|
||||
namespace Eigen {
|
||||
|
||||
namespace internal {
|
||||
|
||||
// The index type defined by EIGEN_DEFAULT_DENSE_INDEX_TYPE must be a signed type.
|
||||
// This dummy function simply aims at checking that at compile time.
|
||||
static inline void check_DenseIndex_is_signed() {
|
||||
EIGEN_STATIC_ASSERT(NumTraits<DenseIndex>::IsSigned,THE_INDEX_TYPE_MUST_BE_A_SIGNED_TYPE)
|
||||
}
|
||||
|
||||
} // end namespace internal
|
||||
EIGEN_STATIC_ASSERT(NumTraits<DenseIndex>::IsSigned,THE_INDEX_TYPE_MUST_BE_A_SIGNED_TYPE)
|
||||
|
||||
/** \class DenseBase
|
||||
* \ingroup Core_Module
|
||||
@@ -110,8 +105,7 @@ template<typename Derived> class DenseBase
|
||||
* \sa MatrixBase::rows(), MatrixBase::cols(), RowsAtCompileTime, SizeAtCompileTime */
|
||||
|
||||
|
||||
SizeAtCompileTime = (internal::size_at_compile_time<internal::traits<Derived>::RowsAtCompileTime,
|
||||
internal::traits<Derived>::ColsAtCompileTime>::ret),
|
||||
SizeAtCompileTime = (internal::size_of_xpr_at_compile_time<Derived>::ret),
|
||||
/**< This is equal to the number of coefficients, i.e. the number of
|
||||
* rows times the number of columns, or to \a Dynamic if this is not
|
||||
* known at compile-time. \sa RowsAtCompileTime, ColsAtCompileTime */
|
||||
@@ -138,8 +132,8 @@ template<typename Derived> class DenseBase
|
||||
* \sa ColsAtCompileTime, MaxRowsAtCompileTime, MaxSizeAtCompileTime
|
||||
*/
|
||||
|
||||
MaxSizeAtCompileTime = (internal::size_at_compile_time<internal::traits<Derived>::MaxRowsAtCompileTime,
|
||||
internal::traits<Derived>::MaxColsAtCompileTime>::ret),
|
||||
MaxSizeAtCompileTime = internal::size_at_compile_time(internal::traits<Derived>::MaxRowsAtCompileTime,
|
||||
internal::traits<Derived>::MaxColsAtCompileTime),
|
||||
/**< This value is equal to the maximum possible number of coefficients that this expression
|
||||
* might have. If this expression might have an arbitrarily high number of coefficients,
|
||||
* this value is set to \a Dynamic.
|
||||
@@ -206,13 +200,8 @@ template<typename Derived> class DenseBase
|
||||
* the return type of eval() is a const reference to a matrix, not a matrix! It is however guaranteed
|
||||
* that the return type of eval() is either PlainObject or const PlainObject&.
|
||||
*/
|
||||
typedef typename internal::conditional<internal::is_same<typename internal::traits<Derived>::XprKind,MatrixXpr >::value,
|
||||
PlainMatrix, PlainArray>::type PlainObject;
|
||||
|
||||
/** \returns the number of nonzero coefficients which is in practice the number
|
||||
* of stored coefficients. */
|
||||
EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR
|
||||
inline Index nonZeros() const { return size(); }
|
||||
typedef std::conditional_t<internal::is_same<typename internal::traits<Derived>::XprKind,MatrixXpr >::value,
|
||||
PlainMatrix, PlainArray> PlainObject;
|
||||
|
||||
/** \returns the outer size.
|
||||
*
|
||||
@@ -269,6 +258,8 @@ template<typename Derived> class DenseBase
|
||||
EIGEN_DEPRECATED typedef CwiseNullaryOp<internal::linspaced_op<Scalar>,PlainObject> SequentialLinSpacedReturnType;
|
||||
/** \internal Represents a vector with linearly spaced coefficients that allows random access. */
|
||||
typedef CwiseNullaryOp<internal::linspaced_op<Scalar>,PlainObject> RandomAccessLinSpacedReturnType;
|
||||
/** \internal Represents a vector with equally spaced coefficients that allows random access. */
|
||||
typedef CwiseNullaryOp<internal::equalspaced_op<Scalar>, PlainObject> RandomAccessEqualSpacedReturnType;
|
||||
/** \internal the return type of MatrixBase::eigenvalues() */
|
||||
typedef Matrix<typename NumTraits<typename internal::traits<Derived>::Scalar>::Real, internal::traits<Derived>::ColsAtCompileTime, 1> EigenvaluesReturnType;
|
||||
|
||||
@@ -324,9 +315,9 @@ template<typename Derived> class DenseBase
|
||||
typedef Transpose<Derived> TransposeReturnType;
|
||||
EIGEN_DEVICE_FUNC
|
||||
TransposeReturnType transpose();
|
||||
typedef typename internal::add_const<Transpose<const Derived> >::type ConstTransposeReturnType;
|
||||
typedef Transpose<const Derived> ConstTransposeReturnType;
|
||||
EIGEN_DEVICE_FUNC
|
||||
ConstTransposeReturnType transpose() const;
|
||||
const ConstTransposeReturnType transpose() const;
|
||||
EIGEN_DEVICE_FUNC
|
||||
void transposeInPlace();
|
||||
|
||||
@@ -347,6 +338,11 @@ template<typename Derived> class DenseBase
|
||||
EIGEN_DEVICE_FUNC static const RandomAccessLinSpacedReturnType
|
||||
LinSpaced(const Scalar& low, const Scalar& high);
|
||||
|
||||
EIGEN_DEVICE_FUNC static const RandomAccessEqualSpacedReturnType
|
||||
EqualSpaced(Index size, const Scalar& low, const Scalar& step);
|
||||
EIGEN_DEVICE_FUNC static const RandomAccessEqualSpacedReturnType
|
||||
EqualSpaced(const Scalar& low, const Scalar& step);
|
||||
|
||||
template<typename CustomNullaryOp> EIGEN_DEVICE_FUNC
|
||||
static const CwiseNullaryOp<CustomNullaryOp, PlainObject>
|
||||
NullaryExpr(Index rows, Index cols, const CustomNullaryOp& func);
|
||||
@@ -368,6 +364,8 @@ template<typename Derived> class DenseBase
|
||||
EIGEN_DEVICE_FUNC Derived& setConstant(const Scalar& value);
|
||||
EIGEN_DEVICE_FUNC Derived& setLinSpaced(Index size, const Scalar& low, const Scalar& high);
|
||||
EIGEN_DEVICE_FUNC Derived& setLinSpaced(const Scalar& low, const Scalar& high);
|
||||
EIGEN_DEVICE_FUNC Derived& setEqualSpaced(Index size, const Scalar& low, const Scalar& step);
|
||||
EIGEN_DEVICE_FUNC Derived& setEqualSpaced(const Scalar& low, const Scalar& step);
|
||||
EIGEN_DEVICE_FUNC Derived& setZero();
|
||||
EIGEN_DEVICE_FUNC Derived& setOnes();
|
||||
EIGEN_DEVICE_FUNC Derived& setRandom();
|
||||
@@ -387,15 +385,15 @@ template<typename Derived> class DenseBase
|
||||
EIGEN_DEVICE_FUNC bool isZero(const RealScalar& prec = NumTraits<Scalar>::dummy_precision()) const;
|
||||
EIGEN_DEVICE_FUNC bool isOnes(const RealScalar& prec = NumTraits<Scalar>::dummy_precision()) const;
|
||||
|
||||
inline bool hasNaN() const;
|
||||
inline bool allFinite() const;
|
||||
EIGEN_DEVICE_FUNC inline bool hasNaN() const;
|
||||
EIGEN_DEVICE_FUNC inline bool allFinite() const;
|
||||
|
||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
|
||||
Derived& operator*=(const Scalar& other);
|
||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
|
||||
Derived& operator/=(const Scalar& other);
|
||||
|
||||
typedef typename internal::add_const_on_value_type<typename internal::eval<Derived>::type>::type EvalReturnType;
|
||||
typedef internal::add_const_on_value_type_t<typename internal::eval<Derived>::type> EvalReturnType;
|
||||
/** \returns the matrix or vector obtained by evaluating this expression.
|
||||
*
|
||||
* Notice that in the case of a plain matrix or vector (not an expression) this function just returns
|
||||
@@ -439,9 +437,9 @@ template<typename Derived> class DenseBase
|
||||
EIGEN_DEVICE_FUNC inline const ForceAlignedAccess<Derived> forceAlignedAccess() const;
|
||||
EIGEN_DEVICE_FUNC inline ForceAlignedAccess<Derived> forceAlignedAccess();
|
||||
template<bool Enable> EIGEN_DEVICE_FUNC
|
||||
inline const typename internal::conditional<Enable,ForceAlignedAccess<Derived>,Derived&>::type forceAlignedAccessIf() const;
|
||||
inline const std::conditional_t<Enable,ForceAlignedAccess<Derived>,Derived&> forceAlignedAccessIf() const;
|
||||
template<bool Enable> EIGEN_DEVICE_FUNC
|
||||
inline typename internal::conditional<Enable,ForceAlignedAccess<Derived>,Derived&>::type forceAlignedAccessIf();
|
||||
inline std::conditional_t<Enable,ForceAlignedAccess<Derived>,Derived&> forceAlignedAccessIf();
|
||||
|
||||
EIGEN_DEVICE_FUNC Scalar sum() const;
|
||||
EIGEN_DEVICE_FUNC Scalar mean() const;
|
||||
@@ -621,27 +619,21 @@ template<typename Derived> class DenseBase
|
||||
/** This is the const version of iterator (aka read-only) */
|
||||
typedef random_access_iterator_type const_iterator;
|
||||
#else
|
||||
typedef typename internal::conditional< (Flags&DirectAccessBit)==DirectAccessBit,
|
||||
internal::pointer_based_stl_iterator<Derived>,
|
||||
internal::generic_randaccess_stl_iterator<Derived>
|
||||
>::type iterator_type;
|
||||
typedef std::conditional_t< (Flags&DirectAccessBit)==DirectAccessBit,
|
||||
internal::pointer_based_stl_iterator<Derived>,
|
||||
internal::generic_randaccess_stl_iterator<Derived>
|
||||
> iterator_type;
|
||||
|
||||
typedef typename internal::conditional< (Flags&DirectAccessBit)==DirectAccessBit,
|
||||
internal::pointer_based_stl_iterator<const Derived>,
|
||||
internal::generic_randaccess_stl_iterator<const Derived>
|
||||
>::type const_iterator_type;
|
||||
typedef std::conditional_t< (Flags&DirectAccessBit)==DirectAccessBit,
|
||||
internal::pointer_based_stl_iterator<const Derived>,
|
||||
internal::generic_randaccess_stl_iterator<const Derived>
|
||||
> const_iterator_type;
|
||||
|
||||
// Stl-style iterators are supported only for vectors.
|
||||
|
||||
typedef typename internal::conditional< IsVectorAtCompileTime,
|
||||
iterator_type,
|
||||
void
|
||||
>::type iterator;
|
||||
typedef std::conditional_t<IsVectorAtCompileTime, iterator_type, void> iterator;
|
||||
|
||||
typedef typename internal::conditional< IsVectorAtCompileTime,
|
||||
const_iterator_type,
|
||||
void
|
||||
>::type const_iterator;
|
||||
typedef std::conditional_t<IsVectorAtCompileTime, const_iterator_type, void> const_iterator;
|
||||
#endif
|
||||
|
||||
inline iterator begin();
|
||||
@@ -678,14 +670,13 @@ template<typename Derived> class DenseBase
|
||||
protected:
|
||||
EIGEN_DEFAULT_COPY_CONSTRUCTOR(DenseBase)
|
||||
/** Default constructor. Do nothing. */
|
||||
EIGEN_DEVICE_FUNC DenseBase()
|
||||
{
|
||||
EIGEN_DEVICE_FUNC constexpr DenseBase() {
|
||||
/* Just checks for self-consistency of the flags.
|
||||
* Only do it when debugging Eigen, as this borders on paranoia and could slow compilation down
|
||||
*/
|
||||
#ifdef EIGEN_INTERNAL_DEBUGGING
|
||||
EIGEN_STATIC_ASSERT((EIGEN_IMPLIES(MaxRowsAtCompileTime==1 && MaxColsAtCompileTime!=1, int(IsRowMajor))
|
||||
&& EIGEN_IMPLIES(MaxColsAtCompileTime==1 && MaxRowsAtCompileTime!=1, int(!IsRowMajor))),
|
||||
EIGEN_STATIC_ASSERT((internal::check_implication(MaxRowsAtCompileTime==1 && MaxColsAtCompileTime!=1, int(IsRowMajor))
|
||||
&& internal::check_implication(MaxColsAtCompileTime==1 && MaxRowsAtCompileTime!=1, int(!IsRowMajor))),
|
||||
INVALID_STORAGE_ORDER_FOR_THIS_VECTOR_EXPRESSION)
|
||||
#endif
|
||||
}
|
||||
|
||||
@@ -10,12 +10,14 @@
|
||||
#ifndef EIGEN_DENSECOEFFSBASE_H
|
||||
#define EIGEN_DENSECOEFFSBASE_H
|
||||
|
||||
#include "./InternalHeaderCheck.h"
|
||||
|
||||
namespace Eigen {
|
||||
|
||||
namespace internal {
|
||||
template<typename T> struct add_const_on_value_type_if_arithmetic
|
||||
{
|
||||
typedef typename conditional<is_arithmetic<T>::value, T, typename add_const_on_value_type<T>::type>::type type;
|
||||
typedef std::conditional_t<is_arithmetic<T>::value, T, add_const_on_value_type_t<T>> type;
|
||||
};
|
||||
}
|
||||
|
||||
@@ -43,13 +45,13 @@ class DenseCoeffsBase<Derived,ReadOnlyAccessors> : public EigenBase<Derived>
|
||||
// - This is the return type of the coeff() method.
|
||||
// - The LvalueBit means exactly that we can offer a coeffRef() method, which means exactly that we can get references
|
||||
// to coeffs, which means exactly that we can have coeff() return a const reference (as opposed to returning a value).
|
||||
// - The is_artihmetic check is required since "const int", "const double", etc. will cause warnings on some systems
|
||||
// - The is_arithmetic check is required since "const int", "const double", etc. will cause warnings on some systems
|
||||
// while the declaration of "const T", where T is a non arithmetic type does not. Always returning "const Scalar&" is
|
||||
// not possible, since the underlying expressions might not offer a valid address the reference could be referring to.
|
||||
typedef typename internal::conditional<bool(internal::traits<Derived>::Flags&LvalueBit),
|
||||
const Scalar&,
|
||||
typename internal::conditional<internal::is_arithmetic<Scalar>::value, Scalar, const Scalar>::type
|
||||
>::type CoeffReturnType;
|
||||
typedef std::conditional_t<bool(internal::traits<Derived>::Flags&LvalueBit),
|
||||
const Scalar&,
|
||||
std::conditional_t<internal::is_arithmetic<Scalar>::value, Scalar, const Scalar>
|
||||
> CoeffReturnType;
|
||||
|
||||
typedef typename internal::add_const_on_value_type_if_arithmetic<
|
||||
typename internal::packet_traits<Scalar>::type
|
||||
|
||||
@@ -18,20 +18,20 @@
|
||||
#define EIGEN_INTERNAL_DENSE_STORAGE_CTOR_PLUGIN(X)
|
||||
#endif
|
||||
|
||||
#include "./InternalHeaderCheck.h"
|
||||
|
||||
namespace Eigen {
|
||||
|
||||
namespace internal {
|
||||
|
||||
struct constructor_without_unaligned_array_assert {};
|
||||
|
||||
template<typename T, int Size>
|
||||
EIGEN_DEVICE_FUNC
|
||||
void check_static_allocation_size()
|
||||
{
|
||||
// if EIGEN_STACK_ALLOCATION_LIMIT is defined to 0, then no limit
|
||||
#if EIGEN_STACK_ALLOCATION_LIMIT
|
||||
template <typename T, int Size>
|
||||
EIGEN_DEVICE_FUNC constexpr void check_static_allocation_size() {
|
||||
// if EIGEN_STACK_ALLOCATION_LIMIT is defined to 0, then no limit
|
||||
#if EIGEN_STACK_ALLOCATION_LIMIT
|
||||
EIGEN_STATIC_ASSERT(Size * sizeof(T) <= EIGEN_STACK_ALLOCATION_LIMIT, OBJECT_ALLOCATED_ON_STACK_IS_TOO_BIG);
|
||||
#endif
|
||||
#endif
|
||||
}
|
||||
|
||||
/** \internal
|
||||
@@ -45,35 +45,30 @@ struct plain_array
|
||||
{
|
||||
T array[Size];
|
||||
|
||||
EIGEN_DEVICE_FUNC
|
||||
plain_array()
|
||||
{
|
||||
check_static_allocation_size<T,Size>();
|
||||
}
|
||||
EIGEN_DEVICE_FUNC constexpr plain_array() { check_static_allocation_size<T, Size>(); }
|
||||
|
||||
EIGEN_DEVICE_FUNC
|
||||
plain_array(constructor_without_unaligned_array_assert)
|
||||
{
|
||||
check_static_allocation_size<T,Size>();
|
||||
EIGEN_DEVICE_FUNC constexpr plain_array(constructor_without_unaligned_array_assert) {
|
||||
check_static_allocation_size<T, Size>();
|
||||
}
|
||||
};
|
||||
|
||||
#if defined(EIGEN_DISABLE_UNALIGNED_ARRAY_ASSERT)
|
||||
#define EIGEN_MAKE_UNALIGNED_ARRAY_ASSERT(sizemask)
|
||||
#elif EIGEN_GNUC_AT_LEAST(4,7)
|
||||
#elif EIGEN_COMP_GNUC
|
||||
// GCC 4.7 is too aggressive in its optimizations and remove the alignment test based on the fact the array is declared to be aligned.
|
||||
// See this bug report: http://gcc.gnu.org/bugzilla/show_bug.cgi?id=53900
|
||||
// Hiding the origin of the array pointer behind a function argument seems to do the trick even if the function is inlined:
|
||||
template<typename PtrType>
|
||||
EIGEN_ALWAYS_INLINE PtrType eigen_unaligned_array_assert_workaround_gcc47(PtrType array) { return array; }
|
||||
#define EIGEN_MAKE_UNALIGNED_ARRAY_ASSERT(sizemask) \
|
||||
eigen_assert((internal::UIntPtr(eigen_unaligned_array_assert_workaround_gcc47(array)) & (sizemask)) == 0 \
|
||||
eigen_assert((internal::is_constant_evaluated() \
|
||||
|| (internal::UIntPtr(eigen_unaligned_array_assert_workaround_gcc47(array)) & (sizemask)) == 0) \
|
||||
&& "this assertion is explained here: " \
|
||||
"http://eigen.tuxfamily.org/dox-devel/group__TopicUnalignedArrayAssert.html" \
|
||||
" **** READ THIS WEB PAGE !!! ****");
|
||||
#else
|
||||
#define EIGEN_MAKE_UNALIGNED_ARRAY_ASSERT(sizemask) \
|
||||
eigen_assert((internal::UIntPtr(array) & (sizemask)) == 0 \
|
||||
eigen_assert((internal::is_constant_evaluated() || (internal::UIntPtr(array) & (sizemask)) == 0) \
|
||||
&& "this assertion is explained here: " \
|
||||
"http://eigen.tuxfamily.org/dox-devel/group__TopicUnalignedArrayAssert.html" \
|
||||
" **** READ THIS WEB PAGE !!! ****");
|
||||
@@ -84,17 +79,13 @@ struct plain_array<T, Size, MatrixOrArrayOptions, 8>
|
||||
{
|
||||
EIGEN_ALIGN_TO_BOUNDARY(8) T array[Size];
|
||||
|
||||
EIGEN_DEVICE_FUNC
|
||||
plain_array()
|
||||
{
|
||||
EIGEN_DEVICE_FUNC constexpr plain_array() {
|
||||
EIGEN_MAKE_UNALIGNED_ARRAY_ASSERT(7);
|
||||
check_static_allocation_size<T,Size>();
|
||||
}
|
||||
|
||||
EIGEN_DEVICE_FUNC
|
||||
plain_array(constructor_without_unaligned_array_assert)
|
||||
{
|
||||
check_static_allocation_size<T,Size>();
|
||||
EIGEN_DEVICE_FUNC constexpr plain_array(constructor_without_unaligned_array_assert) {
|
||||
check_static_allocation_size<T, Size>();
|
||||
}
|
||||
};
|
||||
|
||||
@@ -103,17 +94,13 @@ struct plain_array<T, Size, MatrixOrArrayOptions, 16>
|
||||
{
|
||||
EIGEN_ALIGN_TO_BOUNDARY(16) T array[Size];
|
||||
|
||||
EIGEN_DEVICE_FUNC
|
||||
plain_array()
|
||||
{
|
||||
EIGEN_DEVICE_FUNC constexpr plain_array() {
|
||||
EIGEN_MAKE_UNALIGNED_ARRAY_ASSERT(15);
|
||||
check_static_allocation_size<T,Size>();
|
||||
}
|
||||
|
||||
EIGEN_DEVICE_FUNC
|
||||
plain_array(constructor_without_unaligned_array_assert)
|
||||
{
|
||||
check_static_allocation_size<T,Size>();
|
||||
EIGEN_DEVICE_FUNC constexpr plain_array(constructor_without_unaligned_array_assert) {
|
||||
check_static_allocation_size<T, Size>();
|
||||
}
|
||||
};
|
||||
|
||||
@@ -122,17 +109,13 @@ struct plain_array<T, Size, MatrixOrArrayOptions, 32>
|
||||
{
|
||||
EIGEN_ALIGN_TO_BOUNDARY(32) T array[Size];
|
||||
|
||||
EIGEN_DEVICE_FUNC
|
||||
plain_array()
|
||||
{
|
||||
EIGEN_DEVICE_FUNC constexpr plain_array() {
|
||||
EIGEN_MAKE_UNALIGNED_ARRAY_ASSERT(31);
|
||||
check_static_allocation_size<T,Size>();
|
||||
}
|
||||
|
||||
EIGEN_DEVICE_FUNC
|
||||
plain_array(constructor_without_unaligned_array_assert)
|
||||
{
|
||||
check_static_allocation_size<T,Size>();
|
||||
EIGEN_DEVICE_FUNC constexpr plain_array(constructor_without_unaligned_array_assert) {
|
||||
check_static_allocation_size<T, Size>();
|
||||
}
|
||||
};
|
||||
|
||||
@@ -141,17 +124,13 @@ struct plain_array<T, Size, MatrixOrArrayOptions, 64>
|
||||
{
|
||||
EIGEN_ALIGN_TO_BOUNDARY(64) T array[Size];
|
||||
|
||||
EIGEN_DEVICE_FUNC
|
||||
plain_array()
|
||||
{
|
||||
EIGEN_DEVICE_FUNC constexpr plain_array() {
|
||||
EIGEN_MAKE_UNALIGNED_ARRAY_ASSERT(63);
|
||||
check_static_allocation_size<T,Size>();
|
||||
}
|
||||
|
||||
EIGEN_DEVICE_FUNC
|
||||
plain_array(constructor_without_unaligned_array_assert)
|
||||
{
|
||||
check_static_allocation_size<T,Size>();
|
||||
EIGEN_DEVICE_FUNC constexpr plain_array(constructor_without_unaligned_array_assert) {
|
||||
check_static_allocation_size<T, Size>();
|
||||
}
|
||||
};
|
||||
|
||||
@@ -159,8 +138,8 @@ template <typename T, int MatrixOrArrayOptions, int Alignment>
|
||||
struct plain_array<T, 0, MatrixOrArrayOptions, Alignment>
|
||||
{
|
||||
T array[1];
|
||||
EIGEN_DEVICE_FUNC plain_array() {}
|
||||
EIGEN_DEVICE_FUNC plain_array(constructor_without_unaligned_array_assert) {}
|
||||
EIGEN_DEVICE_FUNC constexpr plain_array() {}
|
||||
EIGEN_DEVICE_FUNC constexpr plain_array(constructor_without_unaligned_array_assert) {}
|
||||
};
|
||||
|
||||
struct plain_array_helper {
|
||||
@@ -201,57 +180,32 @@ struct plain_array_helper {
|
||||
*
|
||||
* \sa Matrix
|
||||
*/
|
||||
template<typename T, int Size, int _Rows, int _Cols, int _Options> class DenseStorage;
|
||||
template<typename T, int Size, int Rows_, int Cols_, int Options_> class DenseStorage;
|
||||
|
||||
// purely fixed-size matrix
|
||||
template<typename T, int Size, int _Rows, int _Cols, int _Options> class DenseStorage
|
||||
template<typename T, int Size, int Rows_, int Cols_, int Options_> class DenseStorage
|
||||
{
|
||||
internal::plain_array<T,Size,_Options> m_data;
|
||||
internal::plain_array<T,Size,Options_> m_data;
|
||||
public:
|
||||
EIGEN_DEVICE_FUNC DenseStorage() {
|
||||
constexpr EIGEN_DEVICE_FUNC DenseStorage() {
|
||||
EIGEN_INTERNAL_DENSE_STORAGE_CTOR_PLUGIN(Index size = Size)
|
||||
}
|
||||
EIGEN_DEVICE_FUNC
|
||||
explicit DenseStorage(internal::constructor_without_unaligned_array_assert)
|
||||
EIGEN_DEVICE_FUNC explicit constexpr DenseStorage(internal::constructor_without_unaligned_array_assert)
|
||||
: m_data(internal::constructor_without_unaligned_array_assert()) {}
|
||||
#if !EIGEN_HAS_CXX11 || defined(EIGEN_DENSE_STORAGE_CTOR_PLUGIN)
|
||||
EIGEN_DEVICE_FUNC
|
||||
#if defined(EIGEN_DENSE_STORAGE_CTOR_PLUGIN)
|
||||
EIGEN_DEVICE_FUNC constexpr
|
||||
DenseStorage(const DenseStorage& other) : m_data(other.m_data) {
|
||||
EIGEN_INTERNAL_DENSE_STORAGE_CTOR_PLUGIN(Index size = Size)
|
||||
}
|
||||
#else
|
||||
EIGEN_DEVICE_FUNC DenseStorage(const DenseStorage&) = default;
|
||||
EIGEN_DEVICE_FUNC constexpr DenseStorage(const DenseStorage&) = default;
|
||||
#endif
|
||||
#if !EIGEN_HAS_CXX11
|
||||
EIGEN_DEVICE_FUNC
|
||||
DenseStorage& operator=(const DenseStorage& other)
|
||||
{
|
||||
if (this != &other) m_data = other.m_data;
|
||||
return *this;
|
||||
}
|
||||
#else
|
||||
EIGEN_DEVICE_FUNC DenseStorage& operator=(const DenseStorage&) = default;
|
||||
#endif
|
||||
#if EIGEN_HAS_RVALUE_REFERENCES
|
||||
#if !EIGEN_HAS_CXX11
|
||||
EIGEN_DEVICE_FUNC DenseStorage(DenseStorage&& other) EIGEN_NOEXCEPT
|
||||
: m_data(std::move(other.m_data))
|
||||
{
|
||||
}
|
||||
EIGEN_DEVICE_FUNC DenseStorage& operator=(DenseStorage&& other) EIGEN_NOEXCEPT
|
||||
{
|
||||
if (this != &other)
|
||||
m_data = std::move(other.m_data);
|
||||
return *this;
|
||||
}
|
||||
#else
|
||||
EIGEN_DEVICE_FUNC DenseStorage(DenseStorage&&) = default;
|
||||
EIGEN_DEVICE_FUNC DenseStorage& operator=(DenseStorage&&) = default;
|
||||
#endif
|
||||
#endif
|
||||
EIGEN_DEVICE_FUNC DenseStorage(Index size, Index rows, Index cols) {
|
||||
EIGEN_DEVICE_FUNC constexpr DenseStorage& operator=(const DenseStorage&) = default;
|
||||
EIGEN_DEVICE_FUNC constexpr DenseStorage(DenseStorage&&) = default;
|
||||
EIGEN_DEVICE_FUNC constexpr DenseStorage& operator=(DenseStorage&&) = default;
|
||||
EIGEN_DEVICE_FUNC constexpr DenseStorage(Index size, Index rows, Index cols) {
|
||||
EIGEN_INTERNAL_DENSE_STORAGE_CTOR_PLUGIN({})
|
||||
eigen_internal_assert(size==rows*cols && rows==_Rows && cols==_Cols);
|
||||
eigen_internal_assert(size == rows * cols && rows == Rows_ && cols == Cols_);
|
||||
EIGEN_UNUSED_VARIABLE(size);
|
||||
EIGEN_UNUSED_VARIABLE(rows);
|
||||
EIGEN_UNUSED_VARIABLE(cols);
|
||||
@@ -259,57 +213,148 @@ template<typename T, int Size, int _Rows, int _Cols, int _Options> class DenseSt
|
||||
EIGEN_DEVICE_FUNC void swap(DenseStorage& other) {
|
||||
numext::swap(m_data, other.m_data);
|
||||
}
|
||||
EIGEN_DEVICE_FUNC static EIGEN_CONSTEXPR Index rows(void) EIGEN_NOEXCEPT {return _Rows;}
|
||||
EIGEN_DEVICE_FUNC static EIGEN_CONSTEXPR Index cols(void) EIGEN_NOEXCEPT {return _Cols;}
|
||||
EIGEN_DEVICE_FUNC void conservativeResize(Index,Index,Index) {}
|
||||
EIGEN_DEVICE_FUNC void resize(Index,Index,Index) {}
|
||||
EIGEN_DEVICE_FUNC const T *data() const { return m_data.array; }
|
||||
EIGEN_DEVICE_FUNC T *data() { return m_data.array; }
|
||||
EIGEN_DEVICE_FUNC static constexpr Index rows(void) EIGEN_NOEXCEPT { return Rows_; }
|
||||
EIGEN_DEVICE_FUNC static constexpr Index cols(void) EIGEN_NOEXCEPT { return Cols_; }
|
||||
EIGEN_DEVICE_FUNC constexpr void conservativeResize(Index, Index, Index) {}
|
||||
EIGEN_DEVICE_FUNC constexpr void resize(Index, Index, Index) {}
|
||||
EIGEN_DEVICE_FUNC constexpr const T* data() const { return m_data.array; }
|
||||
EIGEN_DEVICE_FUNC constexpr T* data() { return m_data.array; }
|
||||
};
|
||||
|
||||
// null matrix
|
||||
template<typename T, int _Rows, int _Cols, int _Options> class DenseStorage<T, 0, _Rows, _Cols, _Options>
|
||||
template<typename T, int Rows_, int Cols_, int Options_>
|
||||
class DenseStorage<T, 0, Rows_, Cols_, Options_>
|
||||
{
|
||||
public:
|
||||
EIGEN_DEVICE_FUNC DenseStorage() {}
|
||||
EIGEN_DEVICE_FUNC explicit DenseStorage(internal::constructor_without_unaligned_array_assert) {}
|
||||
EIGEN_DEVICE_FUNC DenseStorage(const DenseStorage&) {}
|
||||
EIGEN_DEVICE_FUNC DenseStorage& operator=(const DenseStorage&) { return *this; }
|
||||
EIGEN_DEVICE_FUNC DenseStorage(Index,Index,Index) {}
|
||||
EIGEN_DEVICE_FUNC void swap(DenseStorage& ) {}
|
||||
EIGEN_DEVICE_FUNC static EIGEN_CONSTEXPR Index rows(void) EIGEN_NOEXCEPT {return _Rows;}
|
||||
EIGEN_DEVICE_FUNC static EIGEN_CONSTEXPR Index cols(void) EIGEN_NOEXCEPT {return _Cols;}
|
||||
EIGEN_DEVICE_FUNC void conservativeResize(Index,Index,Index) {}
|
||||
EIGEN_DEVICE_FUNC void resize(Index,Index,Index) {}
|
||||
EIGEN_DEVICE_FUNC const T *data() const { return 0; }
|
||||
EIGEN_DEVICE_FUNC T *data() { return 0; }
|
||||
static_assert(Rows_ * Cols_ == 0, "The fixed number of rows times columns must equal the storage size.");
|
||||
EIGEN_DEVICE_FUNC constexpr DenseStorage() {}
|
||||
EIGEN_DEVICE_FUNC explicit constexpr DenseStorage(internal::constructor_without_unaligned_array_assert) {}
|
||||
EIGEN_DEVICE_FUNC constexpr DenseStorage(const DenseStorage&) {}
|
||||
EIGEN_DEVICE_FUNC constexpr DenseStorage& operator=(const DenseStorage&) { return *this; }
|
||||
EIGEN_DEVICE_FUNC constexpr DenseStorage(Index,Index,Index) {}
|
||||
EIGEN_DEVICE_FUNC constexpr void swap(DenseStorage& ) {}
|
||||
EIGEN_DEVICE_FUNC static constexpr Index rows(void) EIGEN_NOEXCEPT {return Rows_;}
|
||||
EIGEN_DEVICE_FUNC static constexpr Index cols(void) EIGEN_NOEXCEPT {return Cols_;}
|
||||
EIGEN_DEVICE_FUNC constexpr void conservativeResize(Index,Index,Index) {}
|
||||
EIGEN_DEVICE_FUNC constexpr void resize(Index,Index,Index) {}
|
||||
EIGEN_DEVICE_FUNC constexpr const T *data() const { return 0; }
|
||||
EIGEN_DEVICE_FUNC constexpr T *data() { return 0; }
|
||||
};
|
||||
|
||||
// more specializations for null matrices; these are necessary to resolve ambiguities
|
||||
template<typename T, int _Options> class DenseStorage<T, 0, Dynamic, Dynamic, _Options>
|
||||
: public DenseStorage<T, 0, 0, 0, _Options> { };
|
||||
|
||||
template<typename T, int _Rows, int _Options> class DenseStorage<T, 0, _Rows, Dynamic, _Options>
|
||||
: public DenseStorage<T, 0, 0, 0, _Options> { };
|
||||
|
||||
template<typename T, int _Cols, int _Options> class DenseStorage<T, 0, Dynamic, _Cols, _Options>
|
||||
: public DenseStorage<T, 0, 0, 0, _Options> { };
|
||||
|
||||
// dynamic-size matrix with fixed-size storage
|
||||
template<typename T, int Size, int _Options> class DenseStorage<T, Size, Dynamic, Dynamic, _Options>
|
||||
{
|
||||
internal::plain_array<T,Size,_Options> m_data;
|
||||
template<typename T, int Options_>
|
||||
class DenseStorage<T, 0, Dynamic, Dynamic, Options_> {
|
||||
Index m_rows;
|
||||
Index m_cols;
|
||||
public:
|
||||
EIGEN_DEVICE_FUNC DenseStorage() : m_rows(0), m_cols(0) {}
|
||||
EIGEN_DEVICE_FUNC explicit DenseStorage(internal::constructor_without_unaligned_array_assert)
|
||||
: m_data(internal::constructor_without_unaligned_array_assert()), m_rows(0), m_cols(0) {}
|
||||
EIGEN_DEVICE_FUNC DenseStorage(const DenseStorage& other)
|
||||
: m_data(internal::constructor_without_unaligned_array_assert()), m_rows(other.m_rows), m_cols(other.m_cols)
|
||||
{
|
||||
internal::plain_array_helper::copy(other.m_data, m_rows * m_cols, m_data);
|
||||
EIGEN_DEVICE_FUNC explicit DenseStorage(internal::constructor_without_unaligned_array_assert) : DenseStorage() {}
|
||||
EIGEN_DEVICE_FUNC DenseStorage(const DenseStorage& other) : m_rows(other.m_rows), m_cols(other.m_cols) {}
|
||||
EIGEN_DEVICE_FUNC DenseStorage& operator=(const DenseStorage& other) {
|
||||
m_rows = other.m_rows;
|
||||
m_cols = other.m_cols;
|
||||
return *this;
|
||||
}
|
||||
EIGEN_DEVICE_FUNC DenseStorage(Index, Index rows, Index cols) : m_rows(rows), m_cols(cols) {
|
||||
eigen_assert(m_rows * m_cols == 0 && "The number of rows times columns must equal the storage size.");
|
||||
}
|
||||
EIGEN_DEVICE_FUNC void swap(DenseStorage& other) {
|
||||
numext::swap(m_rows,other.m_rows);
|
||||
numext::swap(m_cols,other.m_cols);
|
||||
}
|
||||
EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR Index rows() const EIGEN_NOEXCEPT {return m_rows;}
|
||||
EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR Index cols() const EIGEN_NOEXCEPT {return m_cols;}
|
||||
EIGEN_DEVICE_FUNC void conservativeResize(Index, Index rows, Index cols) {
|
||||
m_rows = rows;
|
||||
m_cols = cols;
|
||||
eigen_assert(m_rows * m_cols == 0 && "The number of rows times columns must equal the storage size.");
|
||||
}
|
||||
EIGEN_DEVICE_FUNC void resize(Index, Index rows, Index cols) {
|
||||
m_rows = rows;
|
||||
m_cols = cols;
|
||||
eigen_assert(m_rows * m_cols == 0 && "The number of rows times columns must equal the storage size.");
|
||||
}
|
||||
EIGEN_DEVICE_FUNC const T *data() const { return nullptr; }
|
||||
EIGEN_DEVICE_FUNC T *data() { return nullptr; }
|
||||
};
|
||||
|
||||
template<typename T, int Rows_, int Options_>
|
||||
class DenseStorage<T, 0, Rows_, Dynamic, Options_> {
|
||||
Index m_cols;
|
||||
public:
|
||||
EIGEN_DEVICE_FUNC DenseStorage() : m_cols(0) {}
|
||||
EIGEN_DEVICE_FUNC explicit DenseStorage(internal::constructor_without_unaligned_array_assert) : DenseStorage() {}
|
||||
EIGEN_DEVICE_FUNC DenseStorage(const DenseStorage& other) : m_cols(other.m_cols) {}
|
||||
EIGEN_DEVICE_FUNC DenseStorage& operator=(const DenseStorage& other) {
|
||||
m_cols = other.m_cols;
|
||||
return *this;
|
||||
}
|
||||
EIGEN_DEVICE_FUNC DenseStorage(Index, Index, Index cols) : m_cols(cols) {
|
||||
eigen_assert(Rows_ * m_cols == 0 && "The number of rows times columns must equal the storage size.");
|
||||
}
|
||||
EIGEN_DEVICE_FUNC void swap(DenseStorage& other) {
|
||||
numext::swap(m_cols, other.m_cols);
|
||||
}
|
||||
EIGEN_DEVICE_FUNC static EIGEN_CONSTEXPR Index rows(void) EIGEN_NOEXCEPT {return Rows_;}
|
||||
EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR Index cols(void) const EIGEN_NOEXCEPT {return m_cols;}
|
||||
EIGEN_DEVICE_FUNC void conservativeResize(Index, Index, Index cols) {
|
||||
m_cols = cols;
|
||||
eigen_assert(Rows_ * m_cols == 0 && "The number of rows times columns must equal the storage size.");
|
||||
}
|
||||
EIGEN_DEVICE_FUNC void resize(Index, Index, Index cols) {
|
||||
m_cols = cols;
|
||||
eigen_assert(Rows_ * m_cols == 0 && "The number of rows times columns must equal the storage size.");
|
||||
}
|
||||
EIGEN_DEVICE_FUNC const T *data() const { return nullptr; }
|
||||
EIGEN_DEVICE_FUNC T *data() { return nullptr; }
|
||||
};
|
||||
|
||||
template<typename T, int Cols_, int Options_>
|
||||
class DenseStorage<T, 0, Dynamic, Cols_, Options_> {
|
||||
Index m_rows;
|
||||
public:
|
||||
EIGEN_DEVICE_FUNC DenseStorage() : m_rows(0) {}
|
||||
EIGEN_DEVICE_FUNC explicit DenseStorage(internal::constructor_without_unaligned_array_assert) : DenseStorage() {}
|
||||
EIGEN_DEVICE_FUNC DenseStorage(const DenseStorage& other) : m_rows(other.m_rows) {}
|
||||
EIGEN_DEVICE_FUNC DenseStorage& operator=(const DenseStorage& other) {
|
||||
m_rows = other.m_rows;
|
||||
return *this;
|
||||
}
|
||||
EIGEN_DEVICE_FUNC DenseStorage(Index, Index rows, Index) : m_rows(rows) {
|
||||
eigen_assert(m_rows * Cols_ == 0 && "The number of rows times columns must equal the storage size.");
|
||||
}
|
||||
EIGEN_DEVICE_FUNC void swap(DenseStorage& other) {
|
||||
numext::swap(m_rows, other.m_rows);
|
||||
}
|
||||
EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR Index rows(void) const EIGEN_NOEXCEPT {return m_rows;}
|
||||
EIGEN_DEVICE_FUNC static EIGEN_CONSTEXPR Index cols(void) EIGEN_NOEXCEPT {return Cols_;}
|
||||
EIGEN_DEVICE_FUNC void conservativeResize(Index, Index rows, Index) {
|
||||
m_rows = rows;
|
||||
eigen_assert(m_rows * Cols_ == 0 && "The number of rows times columns must equal the storage size.");
|
||||
}
|
||||
EIGEN_DEVICE_FUNC void resize(Index, Index rows, Index) {
|
||||
m_rows = rows;
|
||||
eigen_assert(m_rows * Cols_ == 0 && "The number of rows times columns must equal the storage size.");
|
||||
}
|
||||
EIGEN_DEVICE_FUNC const T *data() const { return nullptr; }
|
||||
EIGEN_DEVICE_FUNC T *data() { return nullptr; }
|
||||
};
|
||||
|
||||
// dynamic-size matrix with fixed-size storage
|
||||
template<typename T, int Size, int Options_>
|
||||
class DenseStorage<T, Size, Dynamic, Dynamic, Options_>
|
||||
{
|
||||
internal::plain_array<T,Size,Options_> m_data;
|
||||
Index m_rows;
|
||||
Index m_cols;
|
||||
public:
|
||||
EIGEN_DEVICE_FUNC constexpr DenseStorage() : m_data(), m_rows(0), m_cols(0) {}
|
||||
EIGEN_DEVICE_FUNC explicit constexpr DenseStorage(internal::constructor_without_unaligned_array_assert)
|
||||
: m_data(internal::constructor_without_unaligned_array_assert()), m_rows(0), m_cols(0) {}
|
||||
EIGEN_DEVICE_FUNC constexpr DenseStorage(const DenseStorage& other)
|
||||
: m_data(internal::constructor_without_unaligned_array_assert()), m_rows(other.m_rows), m_cols(other.m_cols) {
|
||||
internal::plain_array_helper::copy(other.m_data, m_rows * m_cols, m_data);
|
||||
}
|
||||
EIGEN_DEVICE_FUNC DenseStorage& operator=(const DenseStorage& other)
|
||||
{
|
||||
if (this != &other)
|
||||
@@ -320,113 +365,121 @@ template<typename T, int Size, int _Options> class DenseStorage<T, Size, Dynamic
|
||||
}
|
||||
return *this;
|
||||
}
|
||||
EIGEN_DEVICE_FUNC DenseStorage(Index, Index rows, Index cols) : m_rows(rows), m_cols(cols) {}
|
||||
EIGEN_DEVICE_FUNC constexpr DenseStorage(Index, Index rows, Index cols) : m_rows(rows), m_cols(cols) {}
|
||||
EIGEN_DEVICE_FUNC void swap(DenseStorage& other)
|
||||
{
|
||||
internal::plain_array_helper::swap(m_data, m_rows * m_cols, other.m_data, other.m_rows * other.m_cols);
|
||||
numext::swap(m_rows,other.m_rows);
|
||||
numext::swap(m_cols,other.m_cols);
|
||||
}
|
||||
EIGEN_DEVICE_FUNC Index rows() const {return m_rows;}
|
||||
EIGEN_DEVICE_FUNC Index cols() const {return m_cols;}
|
||||
EIGEN_DEVICE_FUNC void conservativeResize(Index, Index rows, Index cols) { m_rows = rows; m_cols = cols; }
|
||||
EIGEN_DEVICE_FUNC void resize(Index, Index rows, Index cols) { m_rows = rows; m_cols = cols; }
|
||||
EIGEN_DEVICE_FUNC const T *data() const { return m_data.array; }
|
||||
EIGEN_DEVICE_FUNC T *data() { return m_data.array; }
|
||||
EIGEN_DEVICE_FUNC constexpr Index rows() const { return m_rows; }
|
||||
EIGEN_DEVICE_FUNC constexpr Index cols() const { return m_cols; }
|
||||
EIGEN_DEVICE_FUNC constexpr void conservativeResize(Index, Index rows, Index cols) {
|
||||
m_rows = rows;
|
||||
m_cols = cols;
|
||||
}
|
||||
EIGEN_DEVICE_FUNC constexpr void resize(Index, Index rows, Index cols) {
|
||||
m_rows = rows;
|
||||
m_cols = cols;
|
||||
}
|
||||
EIGEN_DEVICE_FUNC constexpr const T* data() const { return m_data.array; }
|
||||
EIGEN_DEVICE_FUNC constexpr T* data() { return m_data.array; }
|
||||
};
|
||||
|
||||
// dynamic-size matrix with fixed-size storage and fixed width
|
||||
template<typename T, int Size, int _Cols, int _Options> class DenseStorage<T, Size, Dynamic, _Cols, _Options>
|
||||
template<typename T, int Size, int Cols_, int Options_>
|
||||
class DenseStorage<T, Size, Dynamic, Cols_, Options_>
|
||||
{
|
||||
internal::plain_array<T,Size,_Options> m_data;
|
||||
internal::plain_array<T,Size,Options_> m_data;
|
||||
Index m_rows;
|
||||
public:
|
||||
EIGEN_DEVICE_FUNC DenseStorage() : m_rows(0) {}
|
||||
EIGEN_DEVICE_FUNC explicit DenseStorage(internal::constructor_without_unaligned_array_assert)
|
||||
: m_data(internal::constructor_without_unaligned_array_assert()), m_rows(0) {}
|
||||
EIGEN_DEVICE_FUNC DenseStorage(const DenseStorage& other)
|
||||
: m_data(internal::constructor_without_unaligned_array_assert()), m_rows(other.m_rows)
|
||||
{
|
||||
internal::plain_array_helper::copy(other.m_data, m_rows * _Cols, m_data);
|
||||
}
|
||||
|
||||
EIGEN_DEVICE_FUNC constexpr DenseStorage() : m_rows(0) {}
|
||||
EIGEN_DEVICE_FUNC explicit constexpr DenseStorage(internal::constructor_without_unaligned_array_assert)
|
||||
: m_data(internal::constructor_without_unaligned_array_assert()), m_rows(0) {}
|
||||
EIGEN_DEVICE_FUNC constexpr DenseStorage(const DenseStorage& other)
|
||||
: m_data(internal::constructor_without_unaligned_array_assert()), m_rows(other.m_rows) {
|
||||
internal::plain_array_helper::copy(other.m_data, m_rows * Cols_, m_data);
|
||||
}
|
||||
|
||||
EIGEN_DEVICE_FUNC DenseStorage& operator=(const DenseStorage& other)
|
||||
{
|
||||
if (this != &other)
|
||||
{
|
||||
m_rows = other.m_rows;
|
||||
internal::plain_array_helper::copy(other.m_data, m_rows * _Cols, m_data);
|
||||
internal::plain_array_helper::copy(other.m_data, m_rows * Cols_, m_data);
|
||||
}
|
||||
return *this;
|
||||
}
|
||||
EIGEN_DEVICE_FUNC DenseStorage(Index, Index rows, Index) : m_rows(rows) {}
|
||||
EIGEN_DEVICE_FUNC constexpr DenseStorage(Index, Index rows, Index) : m_rows(rows) {}
|
||||
EIGEN_DEVICE_FUNC void swap(DenseStorage& other)
|
||||
{
|
||||
internal::plain_array_helper::swap(m_data, m_rows * _Cols, other.m_data, other.m_rows * _Cols);
|
||||
internal::plain_array_helper::swap(m_data, m_rows * Cols_, other.m_data, other.m_rows * Cols_);
|
||||
numext::swap(m_rows, other.m_rows);
|
||||
}
|
||||
EIGEN_DEVICE_FUNC Index rows(void) const EIGEN_NOEXCEPT {return m_rows;}
|
||||
EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR Index cols(void) const EIGEN_NOEXCEPT {return _Cols;}
|
||||
EIGEN_DEVICE_FUNC void conservativeResize(Index, Index rows, Index) { m_rows = rows; }
|
||||
EIGEN_DEVICE_FUNC void resize(Index, Index rows, Index) { m_rows = rows; }
|
||||
EIGEN_DEVICE_FUNC const T *data() const { return m_data.array; }
|
||||
EIGEN_DEVICE_FUNC T *data() { return m_data.array; }
|
||||
EIGEN_DEVICE_FUNC constexpr Index rows(void) const EIGEN_NOEXCEPT { return m_rows; }
|
||||
EIGEN_DEVICE_FUNC constexpr Index cols(void) const EIGEN_NOEXCEPT { return Cols_; }
|
||||
EIGEN_DEVICE_FUNC constexpr void conservativeResize(Index, Index rows, Index) { m_rows = rows; }
|
||||
EIGEN_DEVICE_FUNC constexpr void resize(Index, Index rows, Index) { m_rows = rows; }
|
||||
EIGEN_DEVICE_FUNC constexpr const T* data() const { return m_data.array; }
|
||||
EIGEN_DEVICE_FUNC constexpr T* data() { return m_data.array; }
|
||||
};
|
||||
|
||||
// dynamic-size matrix with fixed-size storage and fixed height
|
||||
template<typename T, int Size, int _Rows, int _Options> class DenseStorage<T, Size, _Rows, Dynamic, _Options>
|
||||
template<typename T, int Size, int Rows_, int Options_>
|
||||
class DenseStorage<T, Size, Rows_, Dynamic, Options_>
|
||||
{
|
||||
internal::plain_array<T,Size,_Options> m_data;
|
||||
internal::plain_array<T,Size,Options_> m_data;
|
||||
Index m_cols;
|
||||
public:
|
||||
EIGEN_DEVICE_FUNC DenseStorage() : m_cols(0) {}
|
||||
EIGEN_DEVICE_FUNC explicit DenseStorage(internal::constructor_without_unaligned_array_assert)
|
||||
: m_data(internal::constructor_without_unaligned_array_assert()), m_cols(0) {}
|
||||
EIGEN_DEVICE_FUNC DenseStorage(const DenseStorage& other)
|
||||
: m_data(internal::constructor_without_unaligned_array_assert()), m_cols(other.m_cols)
|
||||
{
|
||||
internal::plain_array_helper::copy(other.m_data, _Rows * m_cols, m_data);
|
||||
}
|
||||
EIGEN_DEVICE_FUNC constexpr DenseStorage() : m_cols(0) {}
|
||||
EIGEN_DEVICE_FUNC explicit constexpr DenseStorage(internal::constructor_without_unaligned_array_assert)
|
||||
: m_data(internal::constructor_without_unaligned_array_assert()), m_cols(0) {}
|
||||
EIGEN_DEVICE_FUNC constexpr DenseStorage(const DenseStorage& other)
|
||||
: m_data(internal::constructor_without_unaligned_array_assert()), m_cols(other.m_cols) {
|
||||
internal::plain_array_helper::copy(other.m_data, Rows_ * m_cols, m_data);
|
||||
}
|
||||
EIGEN_DEVICE_FUNC DenseStorage& operator=(const DenseStorage& other)
|
||||
{
|
||||
if (this != &other)
|
||||
{
|
||||
m_cols = other.m_cols;
|
||||
internal::plain_array_helper::copy(other.m_data, _Rows * m_cols, m_data);
|
||||
internal::plain_array_helper::copy(other.m_data, Rows_ * m_cols, m_data);
|
||||
}
|
||||
return *this;
|
||||
}
|
||||
EIGEN_DEVICE_FUNC DenseStorage(Index, Index, Index cols) : m_cols(cols) {}
|
||||
EIGEN_DEVICE_FUNC void swap(DenseStorage& other) {
|
||||
internal::plain_array_helper::swap(m_data, _Rows * m_cols, other.m_data, _Rows * other.m_cols);
|
||||
internal::plain_array_helper::swap(m_data, Rows_ * m_cols, other.m_data, Rows_ * other.m_cols);
|
||||
numext::swap(m_cols, other.m_cols);
|
||||
}
|
||||
EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR Index rows(void) const EIGEN_NOEXCEPT {return _Rows;}
|
||||
EIGEN_DEVICE_FUNC Index cols(void) const EIGEN_NOEXCEPT {return m_cols;}
|
||||
EIGEN_DEVICE_FUNC void conservativeResize(Index, Index, Index cols) { m_cols = cols; }
|
||||
EIGEN_DEVICE_FUNC void resize(Index, Index, Index cols) { m_cols = cols; }
|
||||
EIGEN_DEVICE_FUNC const T *data() const { return m_data.array; }
|
||||
EIGEN_DEVICE_FUNC T *data() { return m_data.array; }
|
||||
EIGEN_DEVICE_FUNC constexpr Index rows(void) const EIGEN_NOEXCEPT { return Rows_; }
|
||||
EIGEN_DEVICE_FUNC constexpr Index cols(void) const EIGEN_NOEXCEPT { return m_cols; }
|
||||
EIGEN_DEVICE_FUNC constexpr void conservativeResize(Index, Index, Index cols) { m_cols = cols; }
|
||||
EIGEN_DEVICE_FUNC constexpr void resize(Index, Index, Index cols) { m_cols = cols; }
|
||||
EIGEN_DEVICE_FUNC constexpr const T* data() const { return m_data.array; }
|
||||
EIGEN_DEVICE_FUNC constexpr T* data() { return m_data.array; }
|
||||
};
|
||||
|
||||
// purely dynamic matrix.
|
||||
template<typename T, int _Options> class DenseStorage<T, Dynamic, Dynamic, Dynamic, _Options>
|
||||
template<typename T, int Options_>
|
||||
class DenseStorage<T, Dynamic, Dynamic, Dynamic, Options_>
|
||||
{
|
||||
T *m_data;
|
||||
Index m_rows;
|
||||
Index m_cols;
|
||||
public:
|
||||
EIGEN_DEVICE_FUNC DenseStorage() : m_data(0), m_rows(0), m_cols(0) {}
|
||||
EIGEN_DEVICE_FUNC explicit DenseStorage(internal::constructor_without_unaligned_array_assert)
|
||||
EIGEN_DEVICE_FUNC constexpr DenseStorage() : m_data(0), m_rows(0), m_cols(0) {}
|
||||
EIGEN_DEVICE_FUNC explicit constexpr DenseStorage(internal::constructor_without_unaligned_array_assert)
|
||||
: m_data(0), m_rows(0), m_cols(0) {}
|
||||
EIGEN_DEVICE_FUNC DenseStorage(Index size, Index rows, Index cols)
|
||||
: m_data(internal::conditional_aligned_new_auto<T,(_Options&DontAlign)==0>(size)), m_rows(rows), m_cols(cols)
|
||||
{
|
||||
EIGEN_DEVICE_FUNC DenseStorage(Index size, Index rows, Index cols)
|
||||
: m_data(internal::conditional_aligned_new_auto<T, (Options_ & DontAlign) == 0>(size)),
|
||||
m_rows(rows),
|
||||
m_cols(cols) {
|
||||
EIGEN_INTERNAL_DENSE_STORAGE_CTOR_PLUGIN({})
|
||||
eigen_internal_assert(size==rows*cols && rows>=0 && cols >=0);
|
||||
}
|
||||
}
|
||||
EIGEN_DEVICE_FUNC DenseStorage(const DenseStorage& other)
|
||||
: m_data(internal::conditional_aligned_new_auto<T,(_Options&DontAlign)==0>(other.m_rows*other.m_cols))
|
||||
: m_data(internal::conditional_aligned_new_auto<T,(Options_&DontAlign)==0>(other.m_rows*other.m_cols))
|
||||
, m_rows(other.m_rows)
|
||||
, m_cols(other.m_cols)
|
||||
{
|
||||
@@ -442,7 +495,6 @@ template<typename T, int _Options> class DenseStorage<T, Dynamic, Dynamic, Dynam
|
||||
}
|
||||
return *this;
|
||||
}
|
||||
#if EIGEN_HAS_RVALUE_REFERENCES
|
||||
EIGEN_DEVICE_FUNC
|
||||
DenseStorage(DenseStorage&& other) EIGEN_NOEXCEPT
|
||||
: m_data(std::move(other.m_data))
|
||||
@@ -461,8 +513,7 @@ template<typename T, int _Options> class DenseStorage<T, Dynamic, Dynamic, Dynam
|
||||
numext::swap(m_cols, other.m_cols);
|
||||
return *this;
|
||||
}
|
||||
#endif
|
||||
EIGEN_DEVICE_FUNC ~DenseStorage() { internal::conditional_aligned_delete_auto<T,(_Options&DontAlign)==0>(m_data, m_rows*m_cols); }
|
||||
EIGEN_DEVICE_FUNC ~DenseStorage() { internal::conditional_aligned_delete_auto<T,(Options_&DontAlign)==0>(m_data, m_rows*m_cols); }
|
||||
EIGEN_DEVICE_FUNC void swap(DenseStorage& other)
|
||||
{
|
||||
numext::swap(m_data,other.m_data);
|
||||
@@ -473,7 +524,7 @@ template<typename T, int _Options> class DenseStorage<T, Dynamic, Dynamic, Dynam
|
||||
EIGEN_DEVICE_FUNC Index cols(void) const EIGEN_NOEXCEPT {return m_cols;}
|
||||
void conservativeResize(Index size, Index rows, Index cols)
|
||||
{
|
||||
m_data = internal::conditional_aligned_realloc_new_auto<T,(_Options&DontAlign)==0>(m_data, size, m_rows*m_cols);
|
||||
m_data = internal::conditional_aligned_realloc_new_auto<T,(Options_&DontAlign)==0>(m_data, size, m_rows*m_cols);
|
||||
m_rows = rows;
|
||||
m_cols = cols;
|
||||
}
|
||||
@@ -481,9 +532,9 @@ template<typename T, int _Options> class DenseStorage<T, Dynamic, Dynamic, Dynam
|
||||
{
|
||||
if(size != m_rows*m_cols)
|
||||
{
|
||||
internal::conditional_aligned_delete_auto<T,(_Options&DontAlign)==0>(m_data, m_rows*m_cols);
|
||||
internal::conditional_aligned_delete_auto<T,(Options_&DontAlign)==0>(m_data, m_rows*m_cols);
|
||||
if (size>0) // >0 and not simply !=0 to let the compiler knows that size cannot be negative
|
||||
m_data = internal::conditional_aligned_new_auto<T,(_Options&DontAlign)==0>(size);
|
||||
m_data = internal::conditional_aligned_new_auto<T,(Options_&DontAlign)==0>(size);
|
||||
else
|
||||
m_data = 0;
|
||||
EIGEN_INTERNAL_DENSE_STORAGE_CTOR_PLUGIN({})
|
||||
@@ -496,25 +547,25 @@ template<typename T, int _Options> class DenseStorage<T, Dynamic, Dynamic, Dynam
|
||||
};
|
||||
|
||||
// matrix with dynamic width and fixed height (so that matrix has dynamic size).
|
||||
template<typename T, int _Rows, int _Options> class DenseStorage<T, Dynamic, _Rows, Dynamic, _Options>
|
||||
{
|
||||
template<typename T, int Rows_, int Options_>
|
||||
class DenseStorage<T, Dynamic, Rows_, Dynamic, Options_> {
|
||||
T *m_data;
|
||||
Index m_cols;
|
||||
public:
|
||||
EIGEN_DEVICE_FUNC DenseStorage() : m_data(0), m_cols(0) {}
|
||||
explicit DenseStorage(internal::constructor_without_unaligned_array_assert) : m_data(0), m_cols(0) {}
|
||||
EIGEN_DEVICE_FUNC DenseStorage(Index size, Index rows, Index cols) : m_data(internal::conditional_aligned_new_auto<T,(_Options&DontAlign)==0>(size)), m_cols(cols)
|
||||
{
|
||||
EIGEN_DEVICE_FUNC constexpr DenseStorage() : m_data(0), m_cols(0) {}
|
||||
explicit constexpr DenseStorage(internal::constructor_without_unaligned_array_assert) : m_data(0), m_cols(0) {}
|
||||
EIGEN_DEVICE_FUNC DenseStorage(Index size, Index rows, Index cols)
|
||||
: m_data(internal::conditional_aligned_new_auto<T, (Options_ & DontAlign) == 0>(size)), m_cols(cols) {
|
||||
EIGEN_INTERNAL_DENSE_STORAGE_CTOR_PLUGIN({})
|
||||
eigen_internal_assert(size==rows*cols && rows==_Rows && cols >=0);
|
||||
eigen_internal_assert(size==rows*cols && rows==Rows_ && cols >=0);
|
||||
EIGEN_UNUSED_VARIABLE(rows);
|
||||
}
|
||||
}
|
||||
EIGEN_DEVICE_FUNC DenseStorage(const DenseStorage& other)
|
||||
: m_data(internal::conditional_aligned_new_auto<T,(_Options&DontAlign)==0>(_Rows*other.m_cols))
|
||||
: m_data(internal::conditional_aligned_new_auto<T,(Options_&DontAlign)==0>(Rows_*other.m_cols))
|
||||
, m_cols(other.m_cols)
|
||||
{
|
||||
EIGEN_INTERNAL_DENSE_STORAGE_CTOR_PLUGIN(Index size = m_cols*_Rows)
|
||||
internal::smart_copy(other.m_data, other.m_data+_Rows*m_cols, m_data);
|
||||
EIGEN_INTERNAL_DENSE_STORAGE_CTOR_PLUGIN(Index size = m_cols*Rows_)
|
||||
internal::smart_copy(other.m_data, other.m_data+Rows_*m_cols, m_data);
|
||||
}
|
||||
EIGEN_DEVICE_FUNC DenseStorage& operator=(const DenseStorage& other)
|
||||
{
|
||||
@@ -525,7 +576,6 @@ template<typename T, int _Rows, int _Options> class DenseStorage<T, Dynamic, _Ro
|
||||
}
|
||||
return *this;
|
||||
}
|
||||
#if EIGEN_HAS_RVALUE_REFERENCES
|
||||
EIGEN_DEVICE_FUNC
|
||||
DenseStorage(DenseStorage&& other) EIGEN_NOEXCEPT
|
||||
: m_data(std::move(other.m_data))
|
||||
@@ -541,26 +591,25 @@ template<typename T, int _Rows, int _Options> class DenseStorage<T, Dynamic, _Ro
|
||||
numext::swap(m_cols, other.m_cols);
|
||||
return *this;
|
||||
}
|
||||
#endif
|
||||
EIGEN_DEVICE_FUNC ~DenseStorage() { internal::conditional_aligned_delete_auto<T,(_Options&DontAlign)==0>(m_data, _Rows*m_cols); }
|
||||
EIGEN_DEVICE_FUNC ~DenseStorage() { internal::conditional_aligned_delete_auto<T,(Options_&DontAlign)==0>(m_data, Rows_*m_cols); }
|
||||
EIGEN_DEVICE_FUNC void swap(DenseStorage& other) {
|
||||
numext::swap(m_data,other.m_data);
|
||||
numext::swap(m_cols,other.m_cols);
|
||||
}
|
||||
EIGEN_DEVICE_FUNC static EIGEN_CONSTEXPR Index rows(void) EIGEN_NOEXCEPT {return _Rows;}
|
||||
EIGEN_DEVICE_FUNC static constexpr Index rows(void) EIGEN_NOEXCEPT { return Rows_; }
|
||||
EIGEN_DEVICE_FUNC Index cols(void) const EIGEN_NOEXCEPT {return m_cols;}
|
||||
EIGEN_DEVICE_FUNC void conservativeResize(Index size, Index, Index cols)
|
||||
{
|
||||
m_data = internal::conditional_aligned_realloc_new_auto<T,(_Options&DontAlign)==0>(m_data, size, _Rows*m_cols);
|
||||
m_data = internal::conditional_aligned_realloc_new_auto<T,(Options_&DontAlign)==0>(m_data, size, Rows_*m_cols);
|
||||
m_cols = cols;
|
||||
}
|
||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void resize(Index size, Index, Index cols)
|
||||
{
|
||||
if(size != _Rows*m_cols)
|
||||
if(size != Rows_*m_cols)
|
||||
{
|
||||
internal::conditional_aligned_delete_auto<T,(_Options&DontAlign)==0>(m_data, _Rows*m_cols);
|
||||
internal::conditional_aligned_delete_auto<T,(Options_&DontAlign)==0>(m_data, Rows_*m_cols);
|
||||
if (size>0) // >0 and not simply !=0 to let the compiler knows that size cannot be negative
|
||||
m_data = internal::conditional_aligned_new_auto<T,(_Options&DontAlign)==0>(size);
|
||||
m_data = internal::conditional_aligned_new_auto<T,(Options_&DontAlign)==0>(size);
|
||||
else
|
||||
m_data = 0;
|
||||
EIGEN_INTERNAL_DENSE_STORAGE_CTOR_PLUGIN({})
|
||||
@@ -572,25 +621,26 @@ template<typename T, int _Rows, int _Options> class DenseStorage<T, Dynamic, _Ro
|
||||
};
|
||||
|
||||
// matrix with dynamic height and fixed width (so that matrix has dynamic size).
|
||||
template<typename T, int _Cols, int _Options> class DenseStorage<T, Dynamic, Dynamic, _Cols, _Options>
|
||||
template<typename T, int Cols_, int Options_>
|
||||
class DenseStorage<T, Dynamic, Dynamic, Cols_, Options_>
|
||||
{
|
||||
T *m_data;
|
||||
Index m_rows;
|
||||
public:
|
||||
EIGEN_DEVICE_FUNC DenseStorage() : m_data(0), m_rows(0) {}
|
||||
explicit DenseStorage(internal::constructor_without_unaligned_array_assert) : m_data(0), m_rows(0) {}
|
||||
EIGEN_DEVICE_FUNC DenseStorage(Index size, Index rows, Index cols) : m_data(internal::conditional_aligned_new_auto<T,(_Options&DontAlign)==0>(size)), m_rows(rows)
|
||||
{
|
||||
EIGEN_DEVICE_FUNC constexpr DenseStorage() : m_data(0), m_rows(0) {}
|
||||
explicit constexpr DenseStorage(internal::constructor_without_unaligned_array_assert) : m_data(0), m_rows(0) {}
|
||||
EIGEN_DEVICE_FUNC constexpr DenseStorage(Index size, Index rows, Index cols)
|
||||
: m_data(internal::conditional_aligned_new_auto<T, (Options_ & DontAlign) == 0>(size)), m_rows(rows) {
|
||||
EIGEN_INTERNAL_DENSE_STORAGE_CTOR_PLUGIN({})
|
||||
eigen_internal_assert(size==rows*cols && rows>=0 && cols == _Cols);
|
||||
eigen_internal_assert(size==rows*cols && rows>=0 && cols == Cols_);
|
||||
EIGEN_UNUSED_VARIABLE(cols);
|
||||
}
|
||||
}
|
||||
EIGEN_DEVICE_FUNC DenseStorage(const DenseStorage& other)
|
||||
: m_data(internal::conditional_aligned_new_auto<T,(_Options&DontAlign)==0>(other.m_rows*_Cols))
|
||||
: m_data(internal::conditional_aligned_new_auto<T,(Options_&DontAlign)==0>(other.m_rows*Cols_))
|
||||
, m_rows(other.m_rows)
|
||||
{
|
||||
EIGEN_INTERNAL_DENSE_STORAGE_CTOR_PLUGIN(Index size = m_rows*_Cols)
|
||||
internal::smart_copy(other.m_data, other.m_data+other.m_rows*_Cols, m_data);
|
||||
EIGEN_INTERNAL_DENSE_STORAGE_CTOR_PLUGIN(Index size = m_rows*Cols_)
|
||||
internal::smart_copy(other.m_data, other.m_data+other.m_rows*Cols_, m_data);
|
||||
}
|
||||
EIGEN_DEVICE_FUNC DenseStorage& operator=(const DenseStorage& other)
|
||||
{
|
||||
@@ -601,7 +651,6 @@ template<typename T, int _Cols, int _Options> class DenseStorage<T, Dynamic, Dyn
|
||||
}
|
||||
return *this;
|
||||
}
|
||||
#if EIGEN_HAS_RVALUE_REFERENCES
|
||||
EIGEN_DEVICE_FUNC
|
||||
DenseStorage(DenseStorage&& other) EIGEN_NOEXCEPT
|
||||
: m_data(std::move(other.m_data))
|
||||
@@ -617,26 +666,25 @@ template<typename T, int _Cols, int _Options> class DenseStorage<T, Dynamic, Dyn
|
||||
numext::swap(m_rows, other.m_rows);
|
||||
return *this;
|
||||
}
|
||||
#endif
|
||||
EIGEN_DEVICE_FUNC ~DenseStorage() { internal::conditional_aligned_delete_auto<T,(_Options&DontAlign)==0>(m_data, _Cols*m_rows); }
|
||||
EIGEN_DEVICE_FUNC ~DenseStorage() { internal::conditional_aligned_delete_auto<T,(Options_&DontAlign)==0>(m_data, Cols_*m_rows); }
|
||||
EIGEN_DEVICE_FUNC void swap(DenseStorage& other) {
|
||||
numext::swap(m_data,other.m_data);
|
||||
numext::swap(m_rows,other.m_rows);
|
||||
}
|
||||
EIGEN_DEVICE_FUNC Index rows(void) const EIGEN_NOEXCEPT {return m_rows;}
|
||||
EIGEN_DEVICE_FUNC static EIGEN_CONSTEXPR Index cols(void) {return _Cols;}
|
||||
EIGEN_DEVICE_FUNC static constexpr Index cols(void) { return Cols_; }
|
||||
void conservativeResize(Index size, Index rows, Index)
|
||||
{
|
||||
m_data = internal::conditional_aligned_realloc_new_auto<T,(_Options&DontAlign)==0>(m_data, size, m_rows*_Cols);
|
||||
m_data = internal::conditional_aligned_realloc_new_auto<T,(Options_&DontAlign)==0>(m_data, size, m_rows*Cols_);
|
||||
m_rows = rows;
|
||||
}
|
||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void resize(Index size, Index rows, Index)
|
||||
{
|
||||
if(size != m_rows*_Cols)
|
||||
if(size != m_rows*Cols_)
|
||||
{
|
||||
internal::conditional_aligned_delete_auto<T,(_Options&DontAlign)==0>(m_data, _Cols*m_rows);
|
||||
internal::conditional_aligned_delete_auto<T,(Options_&DontAlign)==0>(m_data, Cols_*m_rows);
|
||||
if (size>0) // >0 and not simply !=0 to let the compiler knows that size cannot be negative
|
||||
m_data = internal::conditional_aligned_new_auto<T,(_Options&DontAlign)==0>(size);
|
||||
m_data = internal::conditional_aligned_new_auto<T,(Options_&DontAlign)==0>(size);
|
||||
else
|
||||
m_data = 0;
|
||||
EIGEN_INTERNAL_DENSE_STORAGE_CTOR_PLUGIN({})
|
||||
|
||||
@@ -11,6 +11,8 @@
|
||||
#ifndef EIGEN_DIAGONAL_H
|
||||
#define EIGEN_DIAGONAL_H
|
||||
|
||||
#include "./InternalHeaderCheck.h"
|
||||
|
||||
namespace Eigen {
|
||||
|
||||
/** \class Diagonal
|
||||
@@ -18,8 +20,8 @@ namespace Eigen {
|
||||
*
|
||||
* \brief Expression of a diagonal/subdiagonal/superdiagonal in a matrix
|
||||
*
|
||||
* \param MatrixType the type of the object in which we are taking a sub/main/super diagonal
|
||||
* \param DiagIndex the index of the sub/super diagonal. The default is 0 and it means the main diagonal.
|
||||
* \tparam MatrixType the type of the object in which we are taking a sub/main/super diagonal
|
||||
* \tparam DiagIndex the index of the sub/super diagonal. The default is 0 and it means the main diagonal.
|
||||
* A positive value means a superdiagonal, a negative value means a subdiagonal.
|
||||
* You can also use DynamicIndex so the index can be set at runtime.
|
||||
*
|
||||
@@ -38,21 +40,21 @@ struct traits<Diagonal<MatrixType,DiagIndex> >
|
||||
: traits<MatrixType>
|
||||
{
|
||||
typedef typename ref_selector<MatrixType>::type MatrixTypeNested;
|
||||
typedef typename remove_reference<MatrixTypeNested>::type _MatrixTypeNested;
|
||||
typedef std::remove_reference_t<MatrixTypeNested> MatrixTypeNested_;
|
||||
typedef typename MatrixType::StorageKind StorageKind;
|
||||
enum {
|
||||
RowsAtCompileTime = (int(DiagIndex) == DynamicIndex || int(MatrixType::SizeAtCompileTime) == Dynamic) ? Dynamic
|
||||
: (EIGEN_PLAIN_ENUM_MIN(MatrixType::RowsAtCompileTime - EIGEN_PLAIN_ENUM_MAX(-DiagIndex, 0),
|
||||
MatrixType::ColsAtCompileTime - EIGEN_PLAIN_ENUM_MAX( DiagIndex, 0))),
|
||||
: (plain_enum_min(MatrixType::RowsAtCompileTime - plain_enum_max(-DiagIndex, 0),
|
||||
MatrixType::ColsAtCompileTime - plain_enum_max( DiagIndex, 0))),
|
||||
ColsAtCompileTime = 1,
|
||||
MaxRowsAtCompileTime = int(MatrixType::MaxSizeAtCompileTime) == Dynamic ? Dynamic
|
||||
: DiagIndex == DynamicIndex ? EIGEN_SIZE_MIN_PREFER_FIXED(MatrixType::MaxRowsAtCompileTime,
|
||||
MatrixType::MaxColsAtCompileTime)
|
||||
: (EIGEN_PLAIN_ENUM_MIN(MatrixType::MaxRowsAtCompileTime - EIGEN_PLAIN_ENUM_MAX(-DiagIndex, 0),
|
||||
MatrixType::MaxColsAtCompileTime - EIGEN_PLAIN_ENUM_MAX( DiagIndex, 0))),
|
||||
: DiagIndex == DynamicIndex ? min_size_prefer_fixed(MatrixType::MaxRowsAtCompileTime,
|
||||
MatrixType::MaxColsAtCompileTime)
|
||||
: (plain_enum_min(MatrixType::MaxRowsAtCompileTime - plain_enum_max(-DiagIndex, 0),
|
||||
MatrixType::MaxColsAtCompileTime - plain_enum_max( DiagIndex, 0))),
|
||||
MaxColsAtCompileTime = 1,
|
||||
MaskLvalueBit = is_lvalue<MatrixType>::value ? LvalueBit : 0,
|
||||
Flags = (unsigned int)_MatrixTypeNested::Flags & (RowMajorBit | MaskLvalueBit | DirectAccessBit) & ~RowMajorBit, // FIXME DirectAccessBit should not be handled by expressions
|
||||
Flags = (unsigned int)MatrixTypeNested_::Flags & (RowMajorBit | MaskLvalueBit | DirectAccessBit) & ~RowMajorBit, // FIXME DirectAccessBit should not be handled by expressions
|
||||
MatrixTypeOuterStride = outer_stride_at_compile_time<MatrixType>::ret,
|
||||
InnerStrideAtCompileTime = MatrixTypeOuterStride == Dynamic ? Dynamic : MatrixTypeOuterStride+1,
|
||||
OuterStrideAtCompileTime = 0
|
||||
@@ -60,12 +62,12 @@ struct traits<Diagonal<MatrixType,DiagIndex> >
|
||||
};
|
||||
}
|
||||
|
||||
template<typename MatrixType, int _DiagIndex> class Diagonal
|
||||
: public internal::dense_xpr_base< Diagonal<MatrixType,_DiagIndex> >::type
|
||||
template<typename MatrixType, int DiagIndex_> class Diagonal
|
||||
: public internal::dense_xpr_base< Diagonal<MatrixType,DiagIndex_> >::type
|
||||
{
|
||||
public:
|
||||
|
||||
enum { DiagIndex = _DiagIndex };
|
||||
enum { DiagIndex = DiagIndex_ };
|
||||
typedef typename internal::dense_xpr_base<Diagonal>::type Base;
|
||||
EIGEN_DENSE_PUBLIC_INTERFACE(Diagonal)
|
||||
|
||||
@@ -95,11 +97,11 @@ template<typename MatrixType, int _DiagIndex> class Diagonal
|
||||
EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR
|
||||
inline Index outerStride() const EIGEN_NOEXCEPT { return 0; }
|
||||
|
||||
typedef typename internal::conditional<
|
||||
internal::is_lvalue<MatrixType>::value,
|
||||
Scalar,
|
||||
const Scalar
|
||||
>::type ScalarWithConstIfNotLvalue;
|
||||
typedef std::conditional_t<
|
||||
internal::is_lvalue<MatrixType>::value,
|
||||
Scalar,
|
||||
const Scalar
|
||||
> ScalarWithConstIfNotLvalue;
|
||||
|
||||
EIGEN_DEVICE_FUNC
|
||||
inline ScalarWithConstIfNotLvalue* data() { return &(m_matrix.coeffRef(rowOffset(), colOffset())); }
|
||||
@@ -145,7 +147,7 @@ template<typename MatrixType, int _DiagIndex> class Diagonal
|
||||
}
|
||||
|
||||
EIGEN_DEVICE_FUNC
|
||||
inline const typename internal::remove_all<typename MatrixType::Nested>::type&
|
||||
inline const internal::remove_all_t<typename MatrixType::Nested>&
|
||||
nestedExpression() const
|
||||
{
|
||||
return m_matrix;
|
||||
@@ -191,7 +193,8 @@ MatrixBase<Derived>::diagonal()
|
||||
|
||||
/** This is the const version of diagonal(). */
|
||||
template<typename Derived>
|
||||
EIGEN_DEVICE_FUNC inline typename MatrixBase<Derived>::ConstDiagonalReturnType
|
||||
EIGEN_DEVICE_FUNC inline
|
||||
const typename MatrixBase<Derived>::ConstDiagonalReturnType
|
||||
MatrixBase<Derived>::diagonal() const
|
||||
{
|
||||
return ConstDiagonalReturnType(derived());
|
||||
@@ -209,18 +212,18 @@ MatrixBase<Derived>::diagonal() const
|
||||
*
|
||||
* \sa MatrixBase::diagonal(), class Diagonal */
|
||||
template<typename Derived>
|
||||
EIGEN_DEVICE_FUNC inline typename MatrixBase<Derived>::DiagonalDynamicIndexReturnType
|
||||
EIGEN_DEVICE_FUNC inline Diagonal<Derived, DynamicIndex>
|
||||
MatrixBase<Derived>::diagonal(Index index)
|
||||
{
|
||||
return DiagonalDynamicIndexReturnType(derived(), index);
|
||||
return Diagonal<Derived, DynamicIndex>(derived(), index);
|
||||
}
|
||||
|
||||
/** This is the const version of diagonal(Index). */
|
||||
template<typename Derived>
|
||||
EIGEN_DEVICE_FUNC inline typename MatrixBase<Derived>::ConstDiagonalDynamicIndexReturnType
|
||||
EIGEN_DEVICE_FUNC inline const Diagonal<const Derived, DynamicIndex>
|
||||
MatrixBase<Derived>::diagonal(Index index) const
|
||||
{
|
||||
return ConstDiagonalDynamicIndexReturnType(derived(), index);
|
||||
return Diagonal<const Derived, DynamicIndex>(derived(), index);
|
||||
}
|
||||
|
||||
/** \returns an expression of the \a DiagIndex-th sub or super diagonal of the matrix \c *this
|
||||
@@ -237,20 +240,20 @@ MatrixBase<Derived>::diagonal(Index index) const
|
||||
template<typename Derived>
|
||||
template<int Index_>
|
||||
EIGEN_DEVICE_FUNC
|
||||
inline typename MatrixBase<Derived>::template DiagonalIndexReturnType<Index_>::Type
|
||||
inline Diagonal<Derived, Index_>
|
||||
MatrixBase<Derived>::diagonal()
|
||||
{
|
||||
return typename DiagonalIndexReturnType<Index_>::Type(derived());
|
||||
return Diagonal<Derived, Index_>(derived());
|
||||
}
|
||||
|
||||
/** This is the const version of diagonal<int>(). */
|
||||
template<typename Derived>
|
||||
template<int Index_>
|
||||
EIGEN_DEVICE_FUNC
|
||||
inline typename MatrixBase<Derived>::template ConstDiagonalIndexReturnType<Index_>::Type
|
||||
inline const Diagonal<const Derived, Index_>
|
||||
MatrixBase<Derived>::diagonal() const
|
||||
{
|
||||
return typename ConstDiagonalIndexReturnType<Index_>::Type(derived());
|
||||
return Diagonal<const Derived, Index_>(derived());
|
||||
}
|
||||
|
||||
} // end namespace Eigen
|
||||
|
||||
@@ -11,9 +11,23 @@
|
||||
#ifndef EIGEN_DIAGONALMATRIX_H
|
||||
#define EIGEN_DIAGONALMATRIX_H
|
||||
|
||||
namespace Eigen {
|
||||
#include "./InternalHeaderCheck.h"
|
||||
|
||||
#ifndef EIGEN_PARSED_BY_DOXYGEN
|
||||
namespace Eigen {
|
||||
|
||||
/** \class DiagonalBase
|
||||
* \ingroup Core_Module
|
||||
*
|
||||
* \brief Base class for diagonal matrices and expressions
|
||||
*
|
||||
* This is the base class that is inherited by diagonal matrix and related expression
|
||||
* types, which internally use a vector for storing the diagonal entries. Diagonal
|
||||
* types always represent square matrices.
|
||||
*
|
||||
* \tparam Derived is the derived type, a DiagonalMatrix or DiagonalWrapper.
|
||||
*
|
||||
* \sa class DiagonalMatrix, class DiagonalWrapper
|
||||
*/
|
||||
template<typename Derived>
|
||||
class DiagonalBase : public EigenBase<Derived>
|
||||
{
|
||||
@@ -37,24 +51,35 @@ class DiagonalBase : public EigenBase<Derived>
|
||||
typedef DenseMatrixType DenseType;
|
||||
typedef DiagonalMatrix<Scalar,DiagonalVectorType::SizeAtCompileTime,DiagonalVectorType::MaxSizeAtCompileTime> PlainObject;
|
||||
|
||||
/** \returns a reference to the derived object. */
|
||||
EIGEN_DEVICE_FUNC
|
||||
inline const Derived& derived() const { return *static_cast<const Derived*>(this); }
|
||||
/** \returns a const reference to the derived object. */
|
||||
EIGEN_DEVICE_FUNC
|
||||
inline Derived& derived() { return *static_cast<Derived*>(this); }
|
||||
|
||||
/**
|
||||
* Constructs a dense matrix from \c *this. Note, this directly returns a dense matrix type,
|
||||
* not an expression.
|
||||
* \returns A dense matrix, with its diagonal entries set from the the derived object. */
|
||||
EIGEN_DEVICE_FUNC
|
||||
DenseMatrixType toDenseMatrix() const { return derived(); }
|
||||
|
||||
/** \returns a reference to the derived object's vector of diagonal coefficients. */
|
||||
EIGEN_DEVICE_FUNC
|
||||
inline const DiagonalVectorType& diagonal() const { return derived().diagonal(); }
|
||||
/** \returns a const reference to the derived object's vector of diagonal coefficients. */
|
||||
EIGEN_DEVICE_FUNC
|
||||
inline DiagonalVectorType& diagonal() { return derived().diagonal(); }
|
||||
|
||||
EIGEN_DEVICE_FUNC
|
||||
/** \returns the number of rows. */
|
||||
EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR
|
||||
inline Index rows() const { return diagonal().size(); }
|
||||
EIGEN_DEVICE_FUNC
|
||||
/** \returns the number of columns. */
|
||||
EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR
|
||||
inline Index cols() const { return diagonal().size(); }
|
||||
|
||||
/** \returns the diagonal matrix product of \c *this by the dense matrix, \a matrix */
|
||||
template<typename MatrixDerived>
|
||||
EIGEN_DEVICE_FUNC
|
||||
const Product<Derived,MatrixDerived,LazyProduct>
|
||||
@@ -63,88 +88,99 @@ class DiagonalBase : public EigenBase<Derived>
|
||||
return Product<Derived, MatrixDerived, LazyProduct>(derived(),matrix.derived());
|
||||
}
|
||||
|
||||
typedef DiagonalWrapper<const CwiseUnaryOp<internal::scalar_inverse_op<Scalar>, const DiagonalVectorType> > InverseReturnType;
|
||||
EIGEN_DEVICE_FUNC
|
||||
inline const InverseReturnType
|
||||
inverse() const
|
||||
{
|
||||
return InverseReturnType(diagonal().cwiseInverse());
|
||||
}
|
||||
|
||||
EIGEN_DEVICE_FUNC
|
||||
inline const DiagonalWrapper<const EIGEN_EXPR_BINARYOP_SCALAR_RETURN_TYPE(DiagonalVectorType,Scalar,product) >
|
||||
operator*(const Scalar& scalar) const
|
||||
{
|
||||
return DiagonalWrapper<const EIGEN_EXPR_BINARYOP_SCALAR_RETURN_TYPE(DiagonalVectorType,Scalar,product) >(diagonal() * scalar);
|
||||
}
|
||||
EIGEN_DEVICE_FUNC
|
||||
friend inline const DiagonalWrapper<const EIGEN_SCALAR_BINARYOP_EXPR_RETURN_TYPE(Scalar,DiagonalVectorType,product) >
|
||||
operator*(const Scalar& scalar, const DiagonalBase& other)
|
||||
{
|
||||
return DiagonalWrapper<const EIGEN_SCALAR_BINARYOP_EXPR_RETURN_TYPE(Scalar,DiagonalVectorType,product) >(scalar * other.diagonal());
|
||||
template <typename OtherDerived>
|
||||
using DiagonalProductReturnType = DiagonalWrapper<const EIGEN_CWISE_BINARY_RETURN_TYPE(
|
||||
DiagonalVectorType, typename OtherDerived::DiagonalVectorType, product)>;
|
||||
|
||||
/** \returns the diagonal matrix product of \c *this by the diagonal matrix \a other */
|
||||
template <typename OtherDerived>
|
||||
EIGEN_DEVICE_FUNC const DiagonalProductReturnType<OtherDerived> operator*(
|
||||
const DiagonalBase<OtherDerived>& other) const {
|
||||
return diagonal().cwiseProduct(other.diagonal()).asDiagonal();
|
||||
}
|
||||
|
||||
template<typename OtherDerived>
|
||||
using DiagonalInverseReturnType =
|
||||
DiagonalWrapper<const CwiseUnaryOp<internal::scalar_inverse_op<Scalar>, const DiagonalVectorType>>;
|
||||
|
||||
/** \returns the inverse \c *this. Computed as the coefficient-wise inverse of the diagonal. */
|
||||
EIGEN_DEVICE_FUNC
|
||||
#ifdef EIGEN_PARSED_BY_DOXYGEN
|
||||
inline unspecified_expression_type
|
||||
#else
|
||||
inline const DiagonalWrapper<const EIGEN_CWISE_BINARY_RETURN_TYPE(DiagonalVectorType,typename OtherDerived::DiagonalVectorType,sum) >
|
||||
#endif
|
||||
operator+(const DiagonalBase<OtherDerived>& other) const
|
||||
{
|
||||
inline const DiagonalInverseReturnType inverse() const { return diagonal().cwiseInverse().asDiagonal(); }
|
||||
|
||||
using DiagonalScaleReturnType =
|
||||
DiagonalWrapper<const EIGEN_EXPR_BINARYOP_SCALAR_RETURN_TYPE(DiagonalVectorType, Scalar, product)>;
|
||||
|
||||
/** \returns the product of \c *this by the scalar \a scalar */
|
||||
EIGEN_DEVICE_FUNC
|
||||
inline const DiagonalScaleReturnType operator*(const Scalar& scalar) const {
|
||||
return (diagonal() * scalar).asDiagonal();
|
||||
}
|
||||
|
||||
using ScaleDiagonalReturnType =
|
||||
DiagonalWrapper<const EIGEN_SCALAR_BINARYOP_EXPR_RETURN_TYPE(Scalar, DiagonalVectorType, product)>;
|
||||
|
||||
/** \returns the product of a scalar and the diagonal matrix \a other */
|
||||
EIGEN_DEVICE_FUNC
|
||||
friend inline const ScaleDiagonalReturnType operator*(const Scalar& scalar, const DiagonalBase& other) {
|
||||
return (scalar * other.diagonal()).asDiagonal();
|
||||
}
|
||||
|
||||
template <typename OtherDerived>
|
||||
using DiagonalSumReturnType = DiagonalWrapper<const EIGEN_CWISE_BINARY_RETURN_TYPE(
|
||||
DiagonalVectorType, typename OtherDerived::DiagonalVectorType, sum)>;
|
||||
|
||||
/** \returns the sum of \c *this and the diagonal matrix \a other */
|
||||
template <typename OtherDerived>
|
||||
EIGEN_DEVICE_FUNC inline const DiagonalSumReturnType<OtherDerived> operator+(
|
||||
const DiagonalBase<OtherDerived>& other) const {
|
||||
return (diagonal() + other.diagonal()).asDiagonal();
|
||||
}
|
||||
|
||||
template<typename OtherDerived>
|
||||
EIGEN_DEVICE_FUNC
|
||||
#ifdef EIGEN_PARSED_BY_DOXYGEN
|
||||
inline unspecified_expression_type
|
||||
#else
|
||||
inline const DiagonalWrapper<const EIGEN_CWISE_BINARY_RETURN_TYPE(DiagonalVectorType,typename OtherDerived::DiagonalVectorType,difference) >
|
||||
#endif
|
||||
operator-(const DiagonalBase<OtherDerived>& other) const
|
||||
{
|
||||
template <typename OtherDerived>
|
||||
using DiagonalDifferenceReturnType = DiagonalWrapper<const EIGEN_CWISE_BINARY_RETURN_TYPE(
|
||||
DiagonalVectorType, typename OtherDerived::DiagonalVectorType, difference)>;
|
||||
|
||||
/** \returns the difference of \c *this and the diagonal matrix \a other */
|
||||
template <typename OtherDerived>
|
||||
EIGEN_DEVICE_FUNC inline const DiagonalDifferenceReturnType<OtherDerived> operator-(
|
||||
const DiagonalBase<OtherDerived>& other) const {
|
||||
return (diagonal() - other.diagonal()).asDiagonal();
|
||||
}
|
||||
};
|
||||
|
||||
#endif
|
||||
|
||||
/** \class DiagonalMatrix
|
||||
* \ingroup Core_Module
|
||||
*
|
||||
* \brief Represents a diagonal matrix with its storage
|
||||
*
|
||||
* \param _Scalar the type of coefficients
|
||||
* \param SizeAtCompileTime the dimension of the matrix, or Dynamic
|
||||
* \param MaxSizeAtCompileTime the dimension of the matrix, or Dynamic. This parameter is optional and defaults
|
||||
* to SizeAtCompileTime. Most of the time, you do not need to specify it.
|
||||
*
|
||||
* \sa class DiagonalWrapper
|
||||
*/
|
||||
* \ingroup Core_Module
|
||||
*
|
||||
* \brief Represents a diagonal matrix with its storage
|
||||
*
|
||||
* \tparam Scalar_ the type of coefficients
|
||||
* \tparam SizeAtCompileTime the dimension of the matrix, or Dynamic
|
||||
* \tparam MaxSizeAtCompileTime the dimension of the matrix, or Dynamic. This parameter is optional and defaults
|
||||
* to SizeAtCompileTime. Most of the time, you do not need to specify it.
|
||||
*
|
||||
* \sa class DiagonalBase, class DiagonalWrapper
|
||||
*/
|
||||
|
||||
namespace internal {
|
||||
template<typename _Scalar, int SizeAtCompileTime, int MaxSizeAtCompileTime>
|
||||
struct traits<DiagonalMatrix<_Scalar,SizeAtCompileTime,MaxSizeAtCompileTime> >
|
||||
: traits<Matrix<_Scalar,SizeAtCompileTime,SizeAtCompileTime,0,MaxSizeAtCompileTime,MaxSizeAtCompileTime> >
|
||||
template<typename Scalar_, int SizeAtCompileTime, int MaxSizeAtCompileTime>
|
||||
struct traits<DiagonalMatrix<Scalar_,SizeAtCompileTime,MaxSizeAtCompileTime> >
|
||||
: traits<Matrix<Scalar_,SizeAtCompileTime,SizeAtCompileTime,0,MaxSizeAtCompileTime,MaxSizeAtCompileTime> >
|
||||
{
|
||||
typedef Matrix<_Scalar,SizeAtCompileTime,1,0,MaxSizeAtCompileTime,1> DiagonalVectorType;
|
||||
typedef Matrix<Scalar_,SizeAtCompileTime,1,0,MaxSizeAtCompileTime,1> DiagonalVectorType;
|
||||
typedef DiagonalShape StorageKind;
|
||||
enum {
|
||||
Flags = LvalueBit | NoPreferredStorageOrderBit
|
||||
Flags = LvalueBit | NoPreferredStorageOrderBit | NestByRefBit
|
||||
};
|
||||
};
|
||||
}
|
||||
template<typename _Scalar, int SizeAtCompileTime, int MaxSizeAtCompileTime>
|
||||
template<typename Scalar_, int SizeAtCompileTime, int MaxSizeAtCompileTime>
|
||||
class DiagonalMatrix
|
||||
: public DiagonalBase<DiagonalMatrix<_Scalar,SizeAtCompileTime,MaxSizeAtCompileTime> >
|
||||
: public DiagonalBase<DiagonalMatrix<Scalar_,SizeAtCompileTime,MaxSizeAtCompileTime> >
|
||||
{
|
||||
public:
|
||||
#ifndef EIGEN_PARSED_BY_DOXYGEN
|
||||
typedef typename internal::traits<DiagonalMatrix>::DiagonalVectorType DiagonalVectorType;
|
||||
typedef const DiagonalMatrix& Nested;
|
||||
typedef _Scalar Scalar;
|
||||
typedef Scalar_ Scalar;
|
||||
typedef typename internal::traits<DiagonalMatrix>::StorageKind StorageKind;
|
||||
typedef typename internal::traits<DiagonalMatrix>::StorageIndex StorageIndex;
|
||||
#endif
|
||||
@@ -178,10 +214,7 @@ class DiagonalMatrix
|
||||
EIGEN_DEVICE_FUNC
|
||||
inline DiagonalMatrix(const Scalar& x, const Scalar& y, const Scalar& z) : m_diagonal(x,y,z) {}
|
||||
|
||||
#if EIGEN_HAS_CXX11
|
||||
/** \brief Construct a diagonal matrix with fixed size from an arbitrary number of coefficients. \cpp11
|
||||
*
|
||||
* There exists C++98 anologue constructors for fixed-size diagonal matrices having 2 or 3 coefficients.
|
||||
/** \brief Construct a diagonal matrix with fixed size from an arbitrary number of coefficients.
|
||||
*
|
||||
* \warning To construct a diagonal matrix of fixed size, the number of values passed to this
|
||||
* constructor must match the fixed dimension of \c *this.
|
||||
@@ -200,7 +233,10 @@ class DiagonalMatrix
|
||||
EIGEN_DEVICE_FUNC
|
||||
explicit EIGEN_STRONG_INLINE DiagonalMatrix(const std::initializer_list<std::initializer_list<Scalar>>& list)
|
||||
: m_diagonal(list) {}
|
||||
#endif // EIGEN_HAS_CXX11
|
||||
|
||||
/** \brief Constructs a DiagonalMatrix from an r-value diagonal vector type */
|
||||
EIGEN_DEVICE_FUNC
|
||||
explicit inline DiagonalMatrix(DiagonalVectorType&& diag) : m_diagonal(std::move(diag)) {}
|
||||
|
||||
/** Copy constructor. */
|
||||
template<typename OtherDerived>
|
||||
@@ -239,6 +275,22 @@ class DiagonalMatrix
|
||||
}
|
||||
#endif
|
||||
|
||||
typedef DiagonalWrapper<const CwiseNullaryOp<internal::scalar_constant_op<Scalar>, DiagonalVectorType>>
|
||||
InitializeReturnType;
|
||||
|
||||
/** Initializes a diagonal matrix of size SizeAtCompileTime with coefficients set to zero */
|
||||
EIGEN_DEVICE_FUNC
|
||||
static const InitializeReturnType Zero() { return DiagonalVectorType::Zero().asDiagonal(); }
|
||||
/** Initializes a diagonal matrix of size dim with coefficients set to zero */
|
||||
EIGEN_DEVICE_FUNC
|
||||
static const InitializeReturnType Zero(Index size) { return DiagonalVectorType::Zero(size).asDiagonal(); }
|
||||
/** Initializes a identity matrix of size SizeAtCompileTime */
|
||||
EIGEN_DEVICE_FUNC
|
||||
static const InitializeReturnType Identity() { return DiagonalVectorType::Ones().asDiagonal(); }
|
||||
/** Initializes a identity matrix of size dim */
|
||||
EIGEN_DEVICE_FUNC
|
||||
static const InitializeReturnType Identity(Index size) { return DiagonalVectorType::Ones(size).asDiagonal(); }
|
||||
|
||||
/** Resizes to given size. */
|
||||
EIGEN_DEVICE_FUNC
|
||||
inline void resize(Index size) { m_diagonal.resize(size); }
|
||||
@@ -261,7 +313,7 @@ class DiagonalMatrix
|
||||
*
|
||||
* \brief Expression of a diagonal matrix
|
||||
*
|
||||
* \param _DiagonalVectorType the type of the vector of diagonal coefficients
|
||||
* \tparam DiagonalVectorType_ the type of the vector of diagonal coefficients
|
||||
*
|
||||
* This class is an expression of a diagonal matrix, but not storing its own vector of diagonal coefficients,
|
||||
* instead wrapping an existing vector expression. It is the return type of MatrixBase::asDiagonal()
|
||||
@@ -271,10 +323,10 @@ class DiagonalMatrix
|
||||
*/
|
||||
|
||||
namespace internal {
|
||||
template<typename _DiagonalVectorType>
|
||||
struct traits<DiagonalWrapper<_DiagonalVectorType> >
|
||||
template<typename DiagonalVectorType_>
|
||||
struct traits<DiagonalWrapper<DiagonalVectorType_> >
|
||||
{
|
||||
typedef _DiagonalVectorType DiagonalVectorType;
|
||||
typedef DiagonalVectorType_ DiagonalVectorType;
|
||||
typedef typename DiagonalVectorType::Scalar Scalar;
|
||||
typedef typename DiagonalVectorType::StorageIndex StorageIndex;
|
||||
typedef DiagonalShape StorageKind;
|
||||
@@ -289,13 +341,13 @@ struct traits<DiagonalWrapper<_DiagonalVectorType> >
|
||||
};
|
||||
}
|
||||
|
||||
template<typename _DiagonalVectorType>
|
||||
template<typename DiagonalVectorType_>
|
||||
class DiagonalWrapper
|
||||
: public DiagonalBase<DiagonalWrapper<_DiagonalVectorType> >, internal::no_assignment_operator
|
||||
: public DiagonalBase<DiagonalWrapper<DiagonalVectorType_> >, internal::no_assignment_operator
|
||||
{
|
||||
public:
|
||||
#ifndef EIGEN_PARSED_BY_DOXYGEN
|
||||
typedef _DiagonalVectorType DiagonalVectorType;
|
||||
typedef DiagonalVectorType_ DiagonalVectorType;
|
||||
typedef DiagonalWrapper Nested;
|
||||
#endif
|
||||
|
||||
@@ -386,6 +438,6 @@ struct Assignment<DstXprType, SrcXprType, Functor, Diagonal2Dense>
|
||||
|
||||
} // namespace internal
|
||||
|
||||
} // end namespace Eigen
|
||||
} // end namespace Eigen
|
||||
|
||||
#endif // EIGEN_DIAGONALMATRIX_H
|
||||
|
||||
@@ -11,6 +11,8 @@
|
||||
#ifndef EIGEN_DIAGONALPRODUCT_H
|
||||
#define EIGEN_DIAGONALPRODUCT_H
|
||||
|
||||
#include "./InternalHeaderCheck.h"
|
||||
|
||||
namespace Eigen {
|
||||
|
||||
/** \returns the diagonal matrix product of \c *this by the diagonal matrix \a diagonal.
|
||||
|
||||
@@ -10,6 +10,8 @@
|
||||
#ifndef EIGEN_DOT_H
|
||||
#define EIGEN_DOT_H
|
||||
|
||||
#include "./InternalHeaderCheck.h"
|
||||
|
||||
namespace Eigen {
|
||||
|
||||
namespace internal {
|
||||
@@ -18,14 +20,9 @@ namespace internal {
|
||||
// with mismatched types, the compiler emits errors about failing to instantiate cwiseProduct BEFORE
|
||||
// looking at the static assertions. Thus this is a trick to get better compile errors.
|
||||
template<typename T, typename U,
|
||||
// the NeedToTranspose condition here is taken straight from Assign.h
|
||||
bool NeedToTranspose = T::IsVectorAtCompileTime
|
||||
&& U::IsVectorAtCompileTime
|
||||
&& ((int(T::RowsAtCompileTime) == 1 && int(U::ColsAtCompileTime) == 1)
|
||||
| // FIXME | instead of || to please GCC 4.4.0 stupid warning "suggest parentheses around &&".
|
||||
// revert to || as soon as not needed anymore.
|
||||
(int(T::ColsAtCompileTime) == 1 && int(U::RowsAtCompileTime) == 1))
|
||||
>
|
||||
bool NeedToTranspose = T::IsVectorAtCompileTime && U::IsVectorAtCompileTime &&
|
||||
((int(T::RowsAtCompileTime) == 1 && int(U::ColsAtCompileTime) == 1) ||
|
||||
(int(T::ColsAtCompileTime) == 1 && int(U::RowsAtCompileTime) == 1))>
|
||||
struct dot_nocheck
|
||||
{
|
||||
typedef scalar_conj_product_op<typename traits<T>::Scalar,typename traits<U>::Scalar> conj_prod;
|
||||
@@ -123,8 +120,8 @@ template<typename Derived>
|
||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const typename MatrixBase<Derived>::PlainObject
|
||||
MatrixBase<Derived>::normalized() const
|
||||
{
|
||||
typedef typename internal::nested_eval<Derived,2>::type _Nested;
|
||||
_Nested n(derived());
|
||||
typedef typename internal::nested_eval<Derived,2>::type Nested_;
|
||||
Nested_ n(derived());
|
||||
RealScalar z = n.squaredNorm();
|
||||
// NOTE: after extensive benchmarking, this conditional does not impact performance, at least on recent x86 CPU
|
||||
if(z>RealScalar(0))
|
||||
@@ -166,8 +163,8 @@ template<typename Derived>
|
||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const typename MatrixBase<Derived>::PlainObject
|
||||
MatrixBase<Derived>::stableNormalized() const
|
||||
{
|
||||
typedef typename internal::nested_eval<Derived,3>::type _Nested;
|
||||
_Nested n(derived());
|
||||
typedef typename internal::nested_eval<Derived,3>::type Nested_;
|
||||
Nested_ n(derived());
|
||||
RealScalar w = n.cwiseAbs().maxCoeff();
|
||||
RealScalar z = (n/w).squaredNorm();
|
||||
if(z>RealScalar(0))
|
||||
|
||||
@@ -11,6 +11,8 @@
|
||||
#ifndef EIGEN_EIGENBASE_H
|
||||
#define EIGEN_EIGENBASE_H
|
||||
|
||||
#include "./InternalHeaderCheck.h"
|
||||
|
||||
namespace Eigen {
|
||||
|
||||
/** \class EigenBase
|
||||
|
||||
@@ -10,6 +10,8 @@
|
||||
#ifndef EIGEN_FORCEALIGNEDACCESS_H
|
||||
#define EIGEN_FORCEALIGNEDACCESS_H
|
||||
|
||||
#include "./InternalHeaderCheck.h"
|
||||
|
||||
namespace Eigen {
|
||||
|
||||
/** \class ForceAlignedAccess
|
||||
@@ -128,7 +130,7 @@ MatrixBase<Derived>::forceAlignedAccess()
|
||||
*/
|
||||
template<typename Derived>
|
||||
template<bool Enable>
|
||||
inline typename internal::add_const_on_value_type<typename internal::conditional<Enable,ForceAlignedAccess<Derived>,Derived&>::type>::type
|
||||
inline add_const_on_value_type_t<std::conditional_t<Enable,ForceAlignedAccess<Derived>,Derived&>>
|
||||
MatrixBase<Derived>::forceAlignedAccessIf() const
|
||||
{
|
||||
return derived(); // FIXME This should not work but apparently is never used
|
||||
@@ -139,7 +141,7 @@ MatrixBase<Derived>::forceAlignedAccessIf() const
|
||||
*/
|
||||
template<typename Derived>
|
||||
template<bool Enable>
|
||||
inline typename internal::conditional<Enable,ForceAlignedAccess<Derived>,Derived&>::type
|
||||
inline std::conditional_t<Enable,ForceAlignedAccess<Derived>,Derived&>
|
||||
MatrixBase<Derived>::forceAlignedAccessIf()
|
||||
{
|
||||
return derived(); // FIXME This should not work but apparently is never used
|
||||
|
||||
@@ -11,6 +11,8 @@
|
||||
#ifndef EIGEN_FUZZY_H
|
||||
#define EIGEN_FUZZY_H
|
||||
|
||||
#include "./InternalHeaderCheck.h"
|
||||
|
||||
namespace Eigen {
|
||||
|
||||
namespace internal
|
||||
|
||||
@@ -11,6 +11,8 @@
|
||||
#ifndef EIGEN_GENERAL_PRODUCT_H
|
||||
#define EIGEN_GENERAL_PRODUCT_H
|
||||
|
||||
#include "./InternalHeaderCheck.h"
|
||||
|
||||
namespace Eigen {
|
||||
|
||||
enum {
|
||||
@@ -50,17 +52,17 @@ template<int Size, int MaxSize> struct product_size_category
|
||||
|
||||
template<typename Lhs, typename Rhs> struct product_type
|
||||
{
|
||||
typedef typename remove_all<Lhs>::type _Lhs;
|
||||
typedef typename remove_all<Rhs>::type _Rhs;
|
||||
typedef remove_all_t<Lhs> Lhs_;
|
||||
typedef remove_all_t<Rhs> Rhs_;
|
||||
enum {
|
||||
MaxRows = traits<_Lhs>::MaxRowsAtCompileTime,
|
||||
Rows = traits<_Lhs>::RowsAtCompileTime,
|
||||
MaxCols = traits<_Rhs>::MaxColsAtCompileTime,
|
||||
Cols = traits<_Rhs>::ColsAtCompileTime,
|
||||
MaxDepth = EIGEN_SIZE_MIN_PREFER_FIXED(traits<_Lhs>::MaxColsAtCompileTime,
|
||||
traits<_Rhs>::MaxRowsAtCompileTime),
|
||||
Depth = EIGEN_SIZE_MIN_PREFER_FIXED(traits<_Lhs>::ColsAtCompileTime,
|
||||
traits<_Rhs>::RowsAtCompileTime)
|
||||
MaxRows = traits<Lhs_>::MaxRowsAtCompileTime,
|
||||
Rows = traits<Lhs_>::RowsAtCompileTime,
|
||||
MaxCols = traits<Rhs_>::MaxColsAtCompileTime,
|
||||
Cols = traits<Rhs_>::ColsAtCompileTime,
|
||||
MaxDepth = min_size_prefer_fixed(traits<Lhs_>::MaxColsAtCompileTime,
|
||||
traits<Rhs_>::MaxRowsAtCompileTime),
|
||||
Depth = min_size_prefer_fixed(traits<Lhs_>::ColsAtCompileTime,
|
||||
traits<Rhs_>::RowsAtCompileTime)
|
||||
};
|
||||
|
||||
// the splitting into different lines of code here, introducing the _select enums and the typedef below,
|
||||
@@ -180,12 +182,13 @@ struct gemv_static_vector_if<Scalar,Size,MaxSize,true>
|
||||
PacketSize = internal::packet_traits<Scalar>::size
|
||||
};
|
||||
#if EIGEN_MAX_STATIC_ALIGN_BYTES!=0
|
||||
internal::plain_array<Scalar,EIGEN_SIZE_MIN_PREFER_FIXED(Size,MaxSize),0,EIGEN_PLAIN_ENUM_MIN(AlignedMax,PacketSize)> m_data;
|
||||
internal::plain_array<Scalar, internal::min_size_prefer_fixed(Size, MaxSize), 0,
|
||||
internal::plain_enum_min(AlignedMax, PacketSize)> m_data;
|
||||
EIGEN_STRONG_INLINE Scalar* data() { return m_data.array; }
|
||||
#else
|
||||
// Some architectures cannot align on the stack,
|
||||
// => let's manually enforce alignment by allocating more data and return the address of the first aligned element.
|
||||
internal::plain_array<Scalar,EIGEN_SIZE_MIN_PREFER_FIXED(Size,MaxSize)+(ForceAlignment?EIGEN_MAX_ALIGN_BYTES:0),0> m_data;
|
||||
internal::plain_array<Scalar, internal::min_size_prefer_fixed(Size, MaxSize)+(ForceAlignment?EIGEN_MAX_ALIGN_BYTES:0),0> m_data;
|
||||
EIGEN_STRONG_INLINE Scalar* data() {
|
||||
return ForceAlignment
|
||||
? reinterpret_cast<Scalar*>((internal::UIntPtr(m_data.array) & ~(std::size_t(EIGEN_MAX_ALIGN_BYTES-1))) + EIGEN_MAX_ALIGN_BYTES)
|
||||
@@ -216,14 +219,13 @@ template<> struct gemv_dense_selector<OnTheRight,ColMajor,true>
|
||||
typedef typename Lhs::Scalar LhsScalar;
|
||||
typedef typename Rhs::Scalar RhsScalar;
|
||||
typedef typename Dest::Scalar ResScalar;
|
||||
typedef typename Dest::RealScalar RealScalar;
|
||||
|
||||
typedef internal::blas_traits<Lhs> LhsBlasTraits;
|
||||
typedef typename LhsBlasTraits::DirectLinearAccessType ActualLhsType;
|
||||
typedef internal::blas_traits<Rhs> RhsBlasTraits;
|
||||
typedef typename RhsBlasTraits::DirectLinearAccessType ActualRhsType;
|
||||
|
||||
typedef Map<Matrix<ResScalar,Dynamic,1>, EIGEN_PLAIN_ENUM_MIN(AlignedMax,internal::packet_traits<ResScalar>::size)> MappedDest;
|
||||
typedef Map<Matrix<ResScalar,Dynamic,1>, plain_enum_min(AlignedMax, internal::packet_traits<ResScalar>::size)> MappedDest;
|
||||
|
||||
ActualLhsType actualLhs = LhsBlasTraits::extract(lhs);
|
||||
ActualRhsType actualRhs = RhsBlasTraits::extract(rhs);
|
||||
@@ -231,7 +233,7 @@ template<> struct gemv_dense_selector<OnTheRight,ColMajor,true>
|
||||
ResScalar actualAlpha = combine_scalar_factors(alpha, lhs, rhs);
|
||||
|
||||
// make sure Dest is a compile-time vector type (bug 1166)
|
||||
typedef typename conditional<Dest::IsVectorAtCompileTime, Dest, typename Dest::ColXpr>::type ActualDest;
|
||||
typedef std::conditional_t<Dest::IsVectorAtCompileTime, Dest, typename Dest::ColXpr> ActualDest;
|
||||
|
||||
enum {
|
||||
// FIXME find a way to allow an inner stride on the result if packet_traits<Scalar>::size==1
|
||||
@@ -261,7 +263,7 @@ template<> struct gemv_dense_selector<OnTheRight,ColMajor,true>
|
||||
{
|
||||
gemv_static_vector_if<ResScalar,ActualDest::SizeAtCompileTime,ActualDest::MaxSizeAtCompileTime,MightCannotUseDest> static_dest;
|
||||
|
||||
const bool alphaIsCompatible = (!ComplexByReal) || (numext::imag(actualAlpha)==RealScalar(0));
|
||||
const bool alphaIsCompatible = (!ComplexByReal) || (numext::is_exactly_zero(numext::imag(actualAlpha)));
|
||||
const bool evalToDest = EvalToDestAtCompileTime && alphaIsCompatible;
|
||||
|
||||
ei_declare_aligned_stack_constructed_variable(ResScalar,actualDestPtr,dest.size(),
|
||||
@@ -314,10 +316,10 @@ template<> struct gemv_dense_selector<OnTheRight,RowMajor,true>
|
||||
typedef typename LhsBlasTraits::DirectLinearAccessType ActualLhsType;
|
||||
typedef internal::blas_traits<Rhs> RhsBlasTraits;
|
||||
typedef typename RhsBlasTraits::DirectLinearAccessType ActualRhsType;
|
||||
typedef typename internal::remove_all<ActualRhsType>::type ActualRhsTypeCleaned;
|
||||
typedef internal::remove_all_t<ActualRhsType> ActualRhsTypeCleaned;
|
||||
|
||||
typename add_const<ActualLhsType>::type actualLhs = LhsBlasTraits::extract(lhs);
|
||||
typename add_const<ActualRhsType>::type actualRhs = RhsBlasTraits::extract(rhs);
|
||||
std::add_const_t<ActualLhsType> actualLhs = LhsBlasTraits::extract(lhs);
|
||||
std::add_const_t<ActualRhsType> actualRhs = RhsBlasTraits::extract(rhs);
|
||||
|
||||
ResScalar actualAlpha = combine_scalar_factors(alpha, lhs, rhs);
|
||||
|
||||
|
||||
@@ -11,6 +11,8 @@
|
||||
#ifndef EIGEN_GENERIC_PACKET_MATH_H
|
||||
#define EIGEN_GENERIC_PACKET_MATH_H
|
||||
|
||||
#include "./InternalHeaderCheck.h"
|
||||
|
||||
namespace Eigen {
|
||||
|
||||
namespace internal {
|
||||
@@ -57,12 +59,14 @@ struct default_packet_traits
|
||||
HasMax = 1,
|
||||
HasConj = 1,
|
||||
HasSetLinear = 1,
|
||||
HasSign = 1,
|
||||
HasBlend = 0,
|
||||
// This flag is used to indicate whether packet comparison is supported.
|
||||
// pcmp_eq, pcmp_lt and pcmp_le should be defined for it to be true.
|
||||
HasCmp = 0,
|
||||
|
||||
HasDiv = 0,
|
||||
HasReciprocal = 0,
|
||||
HasSqrt = 0,
|
||||
HasRsqrt = 0,
|
||||
HasExp = 0,
|
||||
@@ -98,8 +102,7 @@ struct default_packet_traits
|
||||
HasRound = 0,
|
||||
HasRint = 0,
|
||||
HasFloor = 0,
|
||||
HasCeil = 0,
|
||||
HasSign = 0
|
||||
HasCeil = 0
|
||||
};
|
||||
};
|
||||
|
||||
@@ -160,7 +163,7 @@ struct eigen_packet_wrapper
|
||||
{
|
||||
EIGEN_ALWAYS_INLINE operator T&() { return m_val; }
|
||||
EIGEN_ALWAYS_INLINE operator const T&() const { return m_val; }
|
||||
EIGEN_ALWAYS_INLINE eigen_packet_wrapper() {}
|
||||
EIGEN_ALWAYS_INLINE eigen_packet_wrapper() = default;
|
||||
EIGEN_ALWAYS_INLINE eigen_packet_wrapper(const T &v) : m_val(v) {}
|
||||
EIGEN_ALWAYS_INLINE eigen_packet_wrapper& operator=(const T &v) {
|
||||
m_val = v;
|
||||
@@ -176,7 +179,7 @@ struct eigen_packet_wrapper
|
||||
*/
|
||||
template<typename Packet>
|
||||
struct is_scalar {
|
||||
typedef typename unpacket_traits<Packet>::type Scalar;
|
||||
using Scalar = typename unpacket_traits<Packet>::type;
|
||||
enum {
|
||||
value = internal::is_same<Packet, Scalar>::value
|
||||
};
|
||||
@@ -217,6 +220,15 @@ padd(const Packet& a, const Packet& b) { return a+b; }
|
||||
template<> EIGEN_DEVICE_FUNC inline bool
|
||||
padd(const bool& a, const bool& b) { return a || b; }
|
||||
|
||||
/** \internal \returns a packet version of \a *from, (un-aligned masked add)
|
||||
* There is no generic implementation. We only have implementations for specialized
|
||||
* cases. Generic case should not be called.
|
||||
*/
|
||||
template<typename Packet> EIGEN_DEVICE_FUNC inline
|
||||
std::enable_if_t<unpacket_traits<Packet>::masked_fpops_available, Packet>
|
||||
padd(const Packet& a, const Packet& b, typename unpacket_traits<Packet>::mask_t umask);
|
||||
|
||||
|
||||
/** \internal \returns a - b (coeff-wise) */
|
||||
template<typename Packet> EIGEN_DEVICE_FUNC inline Packet
|
||||
psub(const Packet& a, const Packet& b) { return a-b; }
|
||||
@@ -259,7 +271,7 @@ struct ptrue_impl {
|
||||
// have another option, since the scalar type requires initialization.
|
||||
template<typename T>
|
||||
struct ptrue_impl<T,
|
||||
typename internal::enable_if<is_scalar<T>::value && NumTraits<T>::RequireInitialization>::type > {
|
||||
std::enable_if_t<is_scalar<T>::value && NumTraits<T>::RequireInitialization> > {
|
||||
static EIGEN_DEVICE_FUNC inline T run(const T& /*a*/){
|
||||
return T(1);
|
||||
}
|
||||
@@ -285,7 +297,7 @@ struct pzero_impl {
|
||||
// for zero may not consist of all-zero bits.
|
||||
template<typename T>
|
||||
struct pzero_impl<T,
|
||||
typename internal::enable_if<is_scalar<T>::value>::type> {
|
||||
std::enable_if_t<is_scalar<T>::value>> {
|
||||
static EIGEN_DEVICE_FUNC inline T run(const T& /*a*/) {
|
||||
return T(0);
|
||||
}
|
||||
@@ -356,16 +368,16 @@ struct bytewise_bitwise_helper {
|
||||
EIGEN_DEVICE_FUNC static inline T bitwise_and(const T& a, const T& b) {
|
||||
return binary(a, b, bit_and<unsigned char>());
|
||||
}
|
||||
EIGEN_DEVICE_FUNC static inline T bitwise_or(const T& a, const T& b) {
|
||||
EIGEN_DEVICE_FUNC static inline T bitwise_or(const T& a, const T& b) {
|
||||
return binary(a, b, bit_or<unsigned char>());
|
||||
}
|
||||
EIGEN_DEVICE_FUNC static inline T bitwise_xor(const T& a, const T& b) {
|
||||
return binary(a, b, bit_xor<unsigned char>());
|
||||
}
|
||||
EIGEN_DEVICE_FUNC static inline T bitwise_not(const T& a) {
|
||||
EIGEN_DEVICE_FUNC static inline T bitwise_not(const T& a) {
|
||||
return unary(a,bit_not<unsigned char>());
|
||||
}
|
||||
|
||||
|
||||
private:
|
||||
template<typename Op>
|
||||
EIGEN_DEVICE_FUNC static inline T unary(const T& a, Op op) {
|
||||
@@ -398,8 +410,8 @@ struct bitwise_helper : public bytewise_bitwise_helper<T> {};
|
||||
// For integers or non-trivial scalars, use binary operators.
|
||||
template<typename T>
|
||||
struct bitwise_helper<T,
|
||||
typename internal::enable_if<
|
||||
is_scalar<T>::value && (NumTraits<T>::IsInteger || NumTraits<T>::RequireInitialization)>::type
|
||||
typename std::enable_if_t<
|
||||
is_scalar<T>::value && (NumTraits<T>::IsInteger || NumTraits<T>::RequireInitialization)>
|
||||
> : public operator_bitwise_helper<T> {};
|
||||
|
||||
/** \internal \returns the bitwise and of \a a and \a b */
|
||||
@@ -441,7 +453,7 @@ struct pselect_impl {
|
||||
// For scalars, use ternary select.
|
||||
template<typename Packet>
|
||||
struct pselect_impl<Packet,
|
||||
typename internal::enable_if<is_scalar<Packet>::value>::type > {
|
||||
std::enable_if_t<is_scalar<Packet>::value> > {
|
||||
static EIGEN_DEVICE_FUNC inline Packet run(const Packet& mask, const Packet& a, const Packet& b) {
|
||||
return numext::equal_strict(mask, Packet(0)) ? b : a;
|
||||
}
|
||||
@@ -551,13 +563,13 @@ template<typename Packet> EIGEN_DEVICE_FUNC inline Packet
|
||||
parg(const Packet& a) { using numext::arg; return arg(a); }
|
||||
|
||||
|
||||
/** \internal \returns \a a logically shifted by N bits to the right */
|
||||
/** \internal \returns \a a arithmetically shifted by N bits to the right */
|
||||
template<int N> EIGEN_DEVICE_FUNC inline int
|
||||
parithmetic_shift_right(const int& a) { return a >> N; }
|
||||
template<int N> EIGEN_DEVICE_FUNC inline long int
|
||||
parithmetic_shift_right(const long int& a) { return a >> N; }
|
||||
|
||||
/** \internal \returns \a a arithmetically shifted by N bits to the right */
|
||||
/** \internal \returns \a a logically shifted by N bits to the right */
|
||||
template<int N> EIGEN_DEVICE_FUNC inline int
|
||||
plogical_shift_right(const int& a) { return static_cast<int>(static_cast<unsigned int>(a) >> N); }
|
||||
template<int N> EIGEN_DEVICE_FUNC inline long int
|
||||
@@ -594,20 +606,52 @@ pldexp(const Packet &a, const Packet &exponent) {
|
||||
template<typename Packet> EIGEN_DEVICE_FUNC inline Packet
|
||||
pabsdiff(const Packet& a, const Packet& b) { return pselect(pcmp_lt(a, b), psub(b, a), psub(a, b)); }
|
||||
|
||||
/** \internal \returns a packet version of \a *from, from must be 16 bytes aligned */
|
||||
/** \internal \returns a packet version of \a *from, from must be properly aligned */
|
||||
template<typename Packet> EIGEN_DEVICE_FUNC inline Packet
|
||||
pload(const typename unpacket_traits<Packet>::type* from) { return *from; }
|
||||
|
||||
/** \internal \returns n elements of a packet version of \a *from, from must be properly aligned
|
||||
* offset indicates the starting element in which to load and
|
||||
* offset + n <= unpacket_traits::size
|
||||
* All elements before offset and after the last element loaded will initialized with zero */
|
||||
template<typename Packet> EIGEN_DEVICE_FUNC inline Packet
|
||||
pload_partial(const typename unpacket_traits<Packet>::type* from, const Index n, const Index offset = 0)
|
||||
{
|
||||
const Index packet_size = unpacket_traits<Packet>::size;
|
||||
eigen_assert(n + offset <= packet_size && "number of elements plus offset will read past end of packet");
|
||||
typedef typename unpacket_traits<Packet>::type Scalar;
|
||||
EIGEN_ALIGN_MAX Scalar elements[packet_size] = { Scalar(0) };
|
||||
for (Index i = offset; i < numext::mini(n+offset,packet_size); i++) {
|
||||
elements[i] = from[i-offset];
|
||||
}
|
||||
return pload<Packet>(elements);
|
||||
}
|
||||
|
||||
/** \internal \returns a packet version of \a *from, (un-aligned load) */
|
||||
template<typename Packet> EIGEN_DEVICE_FUNC inline Packet
|
||||
ploadu(const typename unpacket_traits<Packet>::type* from) { return *from; }
|
||||
|
||||
/** \internal \returns n elements of a packet version of \a *from, (un-aligned load)
|
||||
* All elements after the last element loaded will initialized with zero */
|
||||
template<typename Packet> EIGEN_DEVICE_FUNC inline Packet
|
||||
ploadu_partial(const typename unpacket_traits<Packet>::type* from, const Index n)
|
||||
{
|
||||
const Index packet_size = unpacket_traits<Packet>::size;
|
||||
eigen_assert(n <= packet_size && "number of elements will read past end of packet");
|
||||
typedef typename unpacket_traits<Packet>::type Scalar;
|
||||
EIGEN_ALIGN_MAX Scalar elements[packet_size] = { Scalar(0) };
|
||||
for (Index i = 0; i < numext::mini(n,packet_size); i++) {
|
||||
elements[i] = from[i];
|
||||
}
|
||||
return pload<Packet>(elements);
|
||||
}
|
||||
|
||||
/** \internal \returns a packet version of \a *from, (un-aligned masked load)
|
||||
* There is no generic implementation. We only have implementations for specialized
|
||||
* cases. Generic case should not be called.
|
||||
*/
|
||||
template<typename Packet> EIGEN_DEVICE_FUNC inline
|
||||
typename enable_if<unpacket_traits<Packet>::masked_load_available, Packet>::type
|
||||
std::enable_if_t<unpacket_traits<Packet>::masked_load_available, Packet>
|
||||
ploadu(const typename unpacket_traits<Packet>::type* from, typename unpacket_traits<Packet>::mask_t umask);
|
||||
|
||||
/** \internal \returns a packet with constant coefficients \a a, e.g.: (a,a,a,a) */
|
||||
@@ -692,28 +736,74 @@ peven_mask(const Packet& /*a*/) {
|
||||
}
|
||||
|
||||
|
||||
/** \internal copy the packet \a from to \a *to, \a to must be 16 bytes aligned */
|
||||
/** \internal copy the packet \a from to \a *to, \a to must be properly aligned */
|
||||
template<typename Scalar, typename Packet> EIGEN_DEVICE_FUNC inline void pstore(Scalar* to, const Packet& from)
|
||||
{ (*to) = from; }
|
||||
|
||||
/** \internal copy n elements of the packet \a from to \a *to, \a to must be properly aligned
|
||||
* offset indicates the starting element in which to store and
|
||||
* offset + n <= unpacket_traits::size */
|
||||
template<typename Scalar, typename Packet> EIGEN_DEVICE_FUNC inline void pstore_partial(Scalar* to, const Packet& from, const Index n, const Index offset = 0)
|
||||
{
|
||||
const Index packet_size = unpacket_traits<Packet>::size;
|
||||
eigen_assert(n + offset <= packet_size && "number of elements plus offset will write past end of packet");
|
||||
EIGEN_ALIGN_MAX Scalar elements[packet_size];
|
||||
pstore<Scalar>(elements, from);
|
||||
for (Index i = 0; i < numext::mini(n,packet_size-offset); i++) {
|
||||
to[i] = elements[i + offset];
|
||||
}
|
||||
}
|
||||
|
||||
/** \internal copy the packet \a from to \a *to, (un-aligned store) */
|
||||
template<typename Scalar, typename Packet> EIGEN_DEVICE_FUNC inline void pstoreu(Scalar* to, const Packet& from)
|
||||
{ (*to) = from; }
|
||||
|
||||
/** \internal copy n elements of the packet \a from to \a *to, (un-aligned store) */
|
||||
template<typename Scalar, typename Packet> EIGEN_DEVICE_FUNC inline void pstoreu_partial(Scalar* to, const Packet& from, const Index n)
|
||||
{
|
||||
const Index packet_size = unpacket_traits<Packet>::size;
|
||||
eigen_assert(n <= packet_size && "number of elements will write past end of packet");
|
||||
EIGEN_ALIGN_MAX Scalar elements[packet_size];
|
||||
pstore<Scalar>(elements, from);
|
||||
for (Index i = 0; i < numext::mini(n,packet_size); i++) {
|
||||
to[i] = elements[i];
|
||||
}
|
||||
}
|
||||
|
||||
/** \internal copy the packet \a from to \a *to, (un-aligned store with a mask)
|
||||
* There is no generic implementation. We only have implementations for specialized
|
||||
* cases. Generic case should not be called.
|
||||
*/
|
||||
template<typename Scalar, typename Packet>
|
||||
EIGEN_DEVICE_FUNC inline
|
||||
typename enable_if<unpacket_traits<Packet>::masked_store_available, void>::type
|
||||
std::enable_if_t<unpacket_traits<Packet>::masked_store_available, void>
|
||||
pstoreu(Scalar* to, const Packet& from, typename unpacket_traits<Packet>::mask_t umask);
|
||||
|
||||
template<typename Scalar, typename Packet> EIGEN_DEVICE_FUNC inline Packet pgather(const Scalar* from, Index /*stride*/)
|
||||
{ return ploadu<Packet>(from); }
|
||||
template<typename Scalar, typename Packet> EIGEN_DEVICE_FUNC inline Packet pgather(const Scalar* from, Index /*stride*/)
|
||||
{ return ploadu<Packet>(from); }
|
||||
|
||||
template<typename Scalar, typename Packet> EIGEN_DEVICE_FUNC inline void pscatter(Scalar* to, const Packet& from, Index /*stride*/)
|
||||
{ pstore(to, from); }
|
||||
template<typename Scalar, typename Packet> EIGEN_DEVICE_FUNC inline Packet pgather_partial(const Scalar* from, Index stride, const Index n)
|
||||
{
|
||||
const Index packet_size = unpacket_traits<Packet>::size;
|
||||
EIGEN_ALIGN_MAX Scalar elements[packet_size] = { Scalar(0) };
|
||||
for (Index i = 0; i < numext::mini(n,packet_size); i++) {
|
||||
elements[i] = from[i*stride];
|
||||
}
|
||||
return pload<Packet>(elements);
|
||||
}
|
||||
|
||||
template<typename Scalar, typename Packet> EIGEN_DEVICE_FUNC inline void pscatter(Scalar* to, const Packet& from, Index /*stride*/)
|
||||
{ pstore(to, from); }
|
||||
|
||||
template<typename Scalar, typename Packet> EIGEN_DEVICE_FUNC inline void pscatter_partial(Scalar* to, const Packet& from, Index stride, const Index n)
|
||||
{
|
||||
const Index packet_size = unpacket_traits<Packet>::size;
|
||||
EIGEN_ALIGN_MAX Scalar elements[packet_size];
|
||||
pstore<Scalar>(elements, from);
|
||||
for (Index i = 0; i < numext::mini(n,packet_size); i++) {
|
||||
to[i*stride] = elements[i];
|
||||
}
|
||||
}
|
||||
|
||||
/** \internal tries to do cache prefetching of \a addr */
|
||||
template<typename Scalar> EIGEN_DEVICE_FUNC inline void prefetch(const Scalar* addr)
|
||||
@@ -807,20 +897,13 @@ Packet plog10(const Packet& a) { EIGEN_USING_STD(log10); return log10(a); }
|
||||
template<typename Packet> EIGEN_DECLARE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS
|
||||
Packet plog2(const Packet& a) {
|
||||
typedef typename internal::unpacket_traits<Packet>::type Scalar;
|
||||
return pmul(pset1<Packet>(Scalar(EIGEN_LOG2E)), plog(a));
|
||||
return pmul(pset1<Packet>(Scalar(EIGEN_LOG2E)), plog(a));
|
||||
}
|
||||
|
||||
/** \internal \returns the square-root of \a a (coeff-wise) */
|
||||
template<typename Packet> EIGEN_DECLARE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS
|
||||
Packet psqrt(const Packet& a) { return numext::sqrt(a); }
|
||||
|
||||
/** \internal \returns the reciprocal square-root of \a a (coeff-wise) */
|
||||
template<typename Packet> EIGEN_DECLARE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS
|
||||
Packet prsqrt(const Packet& a) {
|
||||
typedef typename internal::unpacket_traits<Packet>::type Scalar;
|
||||
return pdiv(pset1<Packet>(Scalar(1)), psqrt(a));
|
||||
}
|
||||
|
||||
/** \internal \returns the rounded value of \a a (coeff-wise) */
|
||||
template<typename Packet> EIGEN_DECLARE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS
|
||||
Packet pround(const Packet& a) { using numext::round; return round(a); }
|
||||
@@ -838,6 +921,24 @@ Packet print(const Packet& a) { using numext::rint; return rint(a); }
|
||||
template<typename Packet> EIGEN_DECLARE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS
|
||||
Packet pceil(const Packet& a) { using numext::ceil; return ceil(a); }
|
||||
|
||||
template<typename Packet, typename EnableIf = void>
|
||||
struct psign_impl {
|
||||
static EIGEN_DEVICE_FUNC inline Packet run(const Packet& a) {
|
||||
return numext::sign(a);
|
||||
}
|
||||
};
|
||||
|
||||
/** \internal \returns the sign of \a a (coeff-wise) */
|
||||
template<typename Packet> EIGEN_DEVICE_FUNC inline Packet
|
||||
psign(const Packet& a) {
|
||||
return psign_impl<Packet>::run(a);
|
||||
}
|
||||
|
||||
template<> EIGEN_DEVICE_FUNC inline bool
|
||||
psign(const bool& a) {
|
||||
return a;
|
||||
}
|
||||
|
||||
/** \internal \returns the first element of a packet */
|
||||
template<typename Packet>
|
||||
EIGEN_DEVICE_FUNC inline typename unpacket_traits<Packet>::type
|
||||
@@ -849,7 +950,7 @@ pfirst(const Packet& a)
|
||||
* For packet-size smaller or equal to 4, this boils down to a noop.
|
||||
*/
|
||||
template<typename Packet>
|
||||
EIGEN_DEVICE_FUNC inline typename conditional<(unpacket_traits<Packet>::size%8)==0,typename unpacket_traits<Packet>::half,Packet>::type
|
||||
EIGEN_DEVICE_FUNC inline std::conditional_t<(unpacket_traits<Packet>::size%8)==0,typename unpacket_traits<Packet>::half,Packet>
|
||||
predux_half_dowto4(const Packet& a)
|
||||
{ return a; }
|
||||
|
||||
@@ -881,7 +982,7 @@ predux(const Packet& a)
|
||||
template <typename Packet>
|
||||
EIGEN_DEVICE_FUNC inline typename unpacket_traits<Packet>::type predux_mul(
|
||||
const Packet& a) {
|
||||
typedef typename unpacket_traits<Packet>::type Scalar;
|
||||
typedef typename unpacket_traits<Packet>::type Scalar;
|
||||
return predux_helper(a, EIGEN_BINARY_OP_NAN_PROPAGATION(Scalar, (pmul<Scalar>)));
|
||||
}
|
||||
|
||||
@@ -889,14 +990,14 @@ EIGEN_DEVICE_FUNC inline typename unpacket_traits<Packet>::type predux_mul(
|
||||
template <typename Packet>
|
||||
EIGEN_DEVICE_FUNC inline typename unpacket_traits<Packet>::type predux_min(
|
||||
const Packet &a) {
|
||||
typedef typename unpacket_traits<Packet>::type Scalar;
|
||||
typedef typename unpacket_traits<Packet>::type Scalar;
|
||||
return predux_helper(a, EIGEN_BINARY_OP_NAN_PROPAGATION(Scalar, (pmin<PropagateFast, Scalar>)));
|
||||
}
|
||||
|
||||
template <int NaNPropagation, typename Packet>
|
||||
EIGEN_DEVICE_FUNC inline typename unpacket_traits<Packet>::type predux_min(
|
||||
const Packet& a) {
|
||||
typedef typename unpacket_traits<Packet>::type Scalar;
|
||||
typedef typename unpacket_traits<Packet>::type Scalar;
|
||||
return predux_helper(a, EIGEN_BINARY_OP_NAN_PROPAGATION(Scalar, (pmin<NaNPropagation, Scalar>)));
|
||||
}
|
||||
|
||||
@@ -904,14 +1005,14 @@ EIGEN_DEVICE_FUNC inline typename unpacket_traits<Packet>::type predux_min(
|
||||
template <typename Packet>
|
||||
EIGEN_DEVICE_FUNC inline typename unpacket_traits<Packet>::type predux_max(
|
||||
const Packet &a) {
|
||||
typedef typename unpacket_traits<Packet>::type Scalar;
|
||||
typedef typename unpacket_traits<Packet>::type Scalar;
|
||||
return predux_helper(a, EIGEN_BINARY_OP_NAN_PROPAGATION(Scalar, (pmax<PropagateFast, Scalar>)));
|
||||
}
|
||||
|
||||
template <int NaNPropagation, typename Packet>
|
||||
EIGEN_DEVICE_FUNC inline typename unpacket_traits<Packet>::type predux_max(
|
||||
const Packet& a) {
|
||||
typedef typename unpacket_traits<Packet>::type Scalar;
|
||||
typedef typename unpacket_traits<Packet>::type Scalar;
|
||||
return predux_helper(a, EIGEN_BINARY_OP_NAN_PROPAGATION(Scalar, (pmax<NaNPropagation, Scalar>)));
|
||||
}
|
||||
|
||||
@@ -943,6 +1044,35 @@ template<typename Packet> EIGEN_DEVICE_FUNC inline bool predux_any(const Packet&
|
||||
* The following functions might not have to be overwritten for vectorized types
|
||||
***************************************************************************/
|
||||
|
||||
// FMA instructions.
|
||||
/** \internal \returns a * b + c (coeff-wise) */
|
||||
template <typename Packet>
|
||||
EIGEN_DEVICE_FUNC inline Packet pmadd(const Packet& a, const Packet& b,
|
||||
const Packet& c) {
|
||||
return padd(pmul(a, b), c);
|
||||
}
|
||||
|
||||
/** \internal \returns a * b - c (coeff-wise) */
|
||||
template <typename Packet>
|
||||
EIGEN_DEVICE_FUNC inline Packet pmsub(const Packet& a, const Packet& b,
|
||||
const Packet& c) {
|
||||
return psub(pmul(a, b), c);
|
||||
}
|
||||
|
||||
/** \internal \returns -(a * b) + c (coeff-wise) */
|
||||
template <typename Packet>
|
||||
EIGEN_DEVICE_FUNC inline Packet pnmadd(const Packet& a, const Packet& b,
|
||||
const Packet& c) {
|
||||
return padd(pnegate(pmul(a, b)), c);
|
||||
}
|
||||
|
||||
/** \internal \returns -(a * b) - c (coeff-wise) */
|
||||
template <typename Packet>
|
||||
EIGEN_DEVICE_FUNC inline Packet pnmsub(const Packet& a, const Packet& b,
|
||||
const Packet& c) {
|
||||
return psub(pnegate(pmul(a, b)), c);
|
||||
}
|
||||
|
||||
/** \internal copy a packet with constant coefficient \a a (e.g., [a,a,a,a]) to \a *to. \a to must be 16 bytes aligned */
|
||||
// NOTE: this function must really be templated on the packet type (think about different packet types for the same scalar type)
|
||||
template<typename Packet>
|
||||
@@ -951,13 +1081,6 @@ inline void pstore1(typename unpacket_traits<Packet>::type* to, const typename u
|
||||
pstore(to, pset1<Packet>(a));
|
||||
}
|
||||
|
||||
/** \internal \returns a * b + c (coeff-wise) */
|
||||
template<typename Packet> EIGEN_DEVICE_FUNC inline Packet
|
||||
pmadd(const Packet& a,
|
||||
const Packet& b,
|
||||
const Packet& c)
|
||||
{ return padd(pmul(a, b),c); }
|
||||
|
||||
/** \internal \returns a packet version of \a *from.
|
||||
* The pointer \a from must be aligned on a \a Alignment bytes boundary. */
|
||||
template<typename Packet, int Alignment>
|
||||
@@ -969,6 +1092,17 @@ EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE Packet ploadt(const typename unpacket_trai
|
||||
return ploadu<Packet>(from);
|
||||
}
|
||||
|
||||
/** \internal \returns n elements of a packet version of \a *from.
|
||||
* The pointer \a from must be aligned on a \a Alignment bytes boundary. */
|
||||
template<typename Packet, int Alignment>
|
||||
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE Packet ploadt_partial(const typename unpacket_traits<Packet>::type* from, const Index n, const Index offset = 0)
|
||||
{
|
||||
if(Alignment >= unpacket_traits<Packet>::alignment)
|
||||
return pload_partial<Packet>(from, n, offset);
|
||||
else
|
||||
return ploadu_partial<Packet>(from, n);
|
||||
}
|
||||
|
||||
/** \internal copy the packet \a from to \a *to.
|
||||
* The pointer \a from must be aligned on a \a Alignment bytes boundary. */
|
||||
template<typename Scalar, typename Packet, int Alignment>
|
||||
@@ -980,6 +1114,17 @@ EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE void pstoret(Scalar* to, const Packet& fro
|
||||
pstoreu(to, from);
|
||||
}
|
||||
|
||||
/** \internal copy n elements of the packet \a from to \a *to.
|
||||
* The pointer \a from must be aligned on a \a Alignment bytes boundary. */
|
||||
template<typename Scalar, typename Packet, int Alignment>
|
||||
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE void pstoret_partial(Scalar* to, const Packet& from, const Index n, const Index offset = 0)
|
||||
{
|
||||
if(Alignment >= unpacket_traits<Packet>::alignment)
|
||||
pstore_partial(to, from, n, offset);
|
||||
else
|
||||
pstoreu_partial(to, from, n);
|
||||
}
|
||||
|
||||
/** \internal \returns a packet version of \a *from.
|
||||
* Unlike ploadt, ploadt_ro takes advantage of the read-only memory path on the
|
||||
* hardware if available to speedup the loading of data that won't be modified
|
||||
@@ -1033,6 +1178,47 @@ pblend(const Selector<unpacket_traits<Packet>::size>& ifPacket, const Packet& th
|
||||
return ifPacket.select[0] ? thenPacket : elsePacket;
|
||||
}
|
||||
|
||||
/** \internal \returns 1 / a (coeff-wise) */
|
||||
template <typename Packet>
|
||||
EIGEN_DEVICE_FUNC inline Packet preciprocal(const Packet& a) {
|
||||
using Scalar = typename unpacket_traits<Packet>::type;
|
||||
return pdiv(pset1<Packet>(Scalar(1)), a);
|
||||
}
|
||||
|
||||
/** \internal \returns the reciprocal square-root of \a a (coeff-wise) */
|
||||
template<typename Packet> EIGEN_DECLARE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS
|
||||
Packet prsqrt(const Packet& a) {
|
||||
return preciprocal<Packet>(psqrt(a));
|
||||
}
|
||||
|
||||
template <typename Packet, bool IsScalar = is_scalar<Packet>::value,
|
||||
bool IsInteger = NumTraits<typename unpacket_traits<Packet>::type>::IsInteger>
|
||||
struct psignbit_impl;
|
||||
template <typename Packet, bool IsInteger>
|
||||
struct psignbit_impl<Packet, true, IsInteger> {
|
||||
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE static constexpr Packet run(const Packet& a) { return numext::signbit(a); }
|
||||
};
|
||||
template <typename Packet>
|
||||
struct psignbit_impl<Packet, false, false> {
|
||||
// generic implementation if not specialized in PacketMath.h
|
||||
// slower than arithmetic shift
|
||||
typedef typename unpacket_traits<Packet>::type Scalar;
|
||||
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE static Packet run(const Packet& a) {
|
||||
const Packet cst_pos_one = pset1<Packet>(Scalar(1));
|
||||
const Packet cst_neg_one = pset1<Packet>(Scalar(-1));
|
||||
return pcmp_eq(por(pand(a, cst_neg_one), cst_pos_one), cst_neg_one);
|
||||
}
|
||||
};
|
||||
template <typename Packet>
|
||||
struct psignbit_impl<Packet, false, true> {
|
||||
// generic implementation for integer packets
|
||||
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE static constexpr Packet run(const Packet& a) { return pcmp_lt(a, pzero(a)); }
|
||||
};
|
||||
/** \internal \returns the sign bit of \a a as a bitmask*/
|
||||
template <typename Packet>
|
||||
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE constexpr Packet
|
||||
psignbit(const Packet& a) { return psignbit_impl<Packet>::run(a); }
|
||||
|
||||
} // end namespace internal
|
||||
|
||||
} // end namespace Eigen
|
||||
|
||||
@@ -51,6 +51,8 @@
|
||||
} \
|
||||
};
|
||||
|
||||
#include "./InternalHeaderCheck.h"
|
||||
|
||||
namespace Eigen
|
||||
{
|
||||
EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(real,scalar_real_op,real part,\sa ArrayBase::real)
|
||||
@@ -66,11 +68,9 @@ namespace Eigen
|
||||
EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(sinh,scalar_sinh_op,hyperbolic sine,\sa ArrayBase::sinh)
|
||||
EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(cosh,scalar_cosh_op,hyperbolic cosine,\sa ArrayBase::cosh)
|
||||
EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(tanh,scalar_tanh_op,hyperbolic tangent,\sa ArrayBase::tanh)
|
||||
#if EIGEN_HAS_CXX11_MATH
|
||||
EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(asinh,scalar_asinh_op,inverse hyperbolic sine,\sa ArrayBase::asinh)
|
||||
EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(acosh,scalar_acosh_op,inverse hyperbolic cosine,\sa ArrayBase::acosh)
|
||||
EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(atanh,scalar_atanh_op,inverse hyperbolic tangent,\sa ArrayBase::atanh)
|
||||
#endif
|
||||
EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(logistic,scalar_logistic_op,logistic function,\sa ArrayBase::logistic)
|
||||
EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(lgamma,scalar_lgamma_op,natural logarithm of the gamma function,\sa ArrayBase::lgamma)
|
||||
EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(digamma,scalar_digamma_op,derivative of lgamma,\sa ArrayBase::digamma)
|
||||
@@ -99,31 +99,31 @@ namespace Eigen
|
||||
EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(isfinite,scalar_isfinite_op,finite value test,\sa Eigen::isinf DOXCOMMA Eigen::isnan DOXCOMMA ArrayBase::isfinite)
|
||||
EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(sign,scalar_sign_op,sign (or 0),\sa ArrayBase::sign)
|
||||
|
||||
template <typename Derived, typename ScalarExponent>
|
||||
using GlobalUnaryPowReturnType = std::enable_if_t<
|
||||
!internal::is_arithmetic<typename NumTraits<Derived>::Real>::value &&
|
||||
internal::is_arithmetic<typename NumTraits<ScalarExponent>::Real>::value,
|
||||
CwiseUnaryOp<internal::scalar_unary_pow_op<typename Derived::Scalar, ScalarExponent>, const Derived> >;
|
||||
|
||||
/** \returns an expression of the coefficient-wise power of \a x to the given constant \a exponent.
|
||||
*
|
||||
* \tparam ScalarExponent is the scalar type of \a exponent. It must be compatible with the scalar type of the given expression (\c Derived::Scalar).
|
||||
*
|
||||
* \sa ArrayBase::pow()
|
||||
*
|
||||
* \relates ArrayBase
|
||||
*/
|
||||
*
|
||||
* \tparam ScalarExponent is the scalar type of \a exponent. It must be compatible with the scalar type of the given
|
||||
* expression (\c Derived::Scalar).
|
||||
*
|
||||
* \sa ArrayBase::pow()
|
||||
*
|
||||
* \relates ArrayBase
|
||||
*/
|
||||
#ifdef EIGEN_PARSED_BY_DOXYGEN
|
||||
template<typename Derived,typename ScalarExponent>
|
||||
inline const CwiseBinaryOp<internal::scalar_pow_op<Derived::Scalar,ScalarExponent>,Derived,Constant<ScalarExponent> >
|
||||
pow(const Eigen::ArrayBase<Derived>& x, const ScalarExponent& exponent);
|
||||
template <typename Derived, typename ScalarExponent>
|
||||
EIGEN_DEVICE_FUNC inline const GlobalUnaryPowReturnType<Derived, ScalarExponent> pow(
|
||||
const Eigen::ArrayBase<Derived>& x, const ScalarExponent& exponent);
|
||||
#else
|
||||
template <typename Derived,typename ScalarExponent>
|
||||
EIGEN_DEVICE_FUNC inline
|
||||
EIGEN_MSVC10_WORKAROUND_BINARYOP_RETURN_TYPE(
|
||||
const EIGEN_EXPR_BINARYOP_SCALAR_RETURN_TYPE(Derived,typename internal::promote_scalar_arg<typename Derived::Scalar
|
||||
EIGEN_COMMA ScalarExponent EIGEN_COMMA
|
||||
EIGEN_SCALAR_BINARY_SUPPORTED(pow,typename Derived::Scalar,ScalarExponent)>::type,pow))
|
||||
pow(const Eigen::ArrayBase<Derived>& x, const ScalarExponent& exponent)
|
||||
{
|
||||
typedef typename internal::promote_scalar_arg<typename Derived::Scalar,ScalarExponent,
|
||||
EIGEN_SCALAR_BINARY_SUPPORTED(pow,typename Derived::Scalar,ScalarExponent)>::type PromotedExponent;
|
||||
return EIGEN_EXPR_BINARYOP_SCALAR_RETURN_TYPE(Derived,PromotedExponent,pow)(x.derived(),
|
||||
typename internal::plain_constant_type<Derived,PromotedExponent>::type(x.derived().rows(), x.derived().cols(), internal::scalar_constant_op<PromotedExponent>(exponent)));
|
||||
template <typename Derived, typename ScalarExponent>
|
||||
EIGEN_DEVICE_FUNC inline const GlobalUnaryPowReturnType<Derived, ScalarExponent> pow(
|
||||
const Eigen::ArrayBase<Derived>& x, const ScalarExponent& exponent) {
|
||||
return GlobalUnaryPowReturnType<Derived, ScalarExponent>(
|
||||
x.derived(), internal::scalar_unary_pow_op<typename Derived::Scalar, ScalarExponent>(exponent));
|
||||
}
|
||||
#endif
|
||||
|
||||
@@ -168,10 +168,9 @@ namespace Eigen
|
||||
#else
|
||||
template <typename Scalar, typename Derived>
|
||||
EIGEN_DEVICE_FUNC inline
|
||||
EIGEN_MSVC10_WORKAROUND_BINARYOP_RETURN_TYPE(
|
||||
const EIGEN_SCALAR_BINARYOP_EXPR_RETURN_TYPE(typename internal::promote_scalar_arg<typename Derived::Scalar
|
||||
EIGEN_COMMA Scalar EIGEN_COMMA
|
||||
EIGEN_SCALAR_BINARY_SUPPORTED(pow,Scalar,typename Derived::Scalar)>::type,Derived,pow))
|
||||
EIGEN_SCALAR_BINARY_SUPPORTED(pow,Scalar,typename Derived::Scalar)>::type,Derived,pow)
|
||||
pow(const Scalar& x, const Eigen::ArrayBase<Derived>& exponents) {
|
||||
typedef typename internal::promote_scalar_arg<typename Derived::Scalar,Scalar,
|
||||
EIGEN_SCALAR_BINARY_SUPPORTED(pow,Scalar,typename Derived::Scalar)>::type PromotedScalar;
|
||||
@@ -180,6 +179,25 @@ namespace Eigen
|
||||
}
|
||||
#endif
|
||||
|
||||
/** \returns an expression of the coefficient-wise atan2(\a x, \a y). \a x and \a y must be of the same type.
|
||||
*
|
||||
* This function computes the coefficient-wise atan2().
|
||||
*
|
||||
* \sa ArrayBase::atan2()
|
||||
*
|
||||
* \relates ArrayBase
|
||||
*/
|
||||
template <typename LhsDerived, typename RhsDerived>
|
||||
inline const std::enable_if_t<
|
||||
std::is_same<typename LhsDerived::Scalar, typename RhsDerived::Scalar>::value,
|
||||
Eigen::CwiseBinaryOp<Eigen::internal::scalar_atan2_op<typename LhsDerived::Scalar, typename RhsDerived::Scalar>, const LhsDerived, const RhsDerived>
|
||||
>
|
||||
atan2(const Eigen::ArrayBase<LhsDerived>& x, const Eigen::ArrayBase<RhsDerived>& exponents) {
|
||||
return Eigen::CwiseBinaryOp<Eigen::internal::scalar_atan2_op<typename LhsDerived::Scalar, typename RhsDerived::Scalar>, const LhsDerived, const RhsDerived>(
|
||||
x.derived(),
|
||||
exponents.derived()
|
||||
);
|
||||
}
|
||||
|
||||
namespace internal
|
||||
{
|
||||
|
||||
@@ -11,6 +11,8 @@
|
||||
#ifndef EIGEN_IO_H
|
||||
#define EIGEN_IO_H
|
||||
|
||||
#include "./InternalHeaderCheck.h"
|
||||
|
||||
namespace Eigen {
|
||||
|
||||
enum { DontAlignCols = 1 };
|
||||
@@ -131,7 +133,6 @@ template<typename Derived>
|
||||
std::ostream & print_matrix(std::ostream & s, const Derived& _m, const IOFormat& fmt)
|
||||
{
|
||||
using internal::is_same;
|
||||
using internal::conditional;
|
||||
|
||||
if(_m.size() == 0)
|
||||
{
|
||||
@@ -141,22 +142,21 @@ std::ostream & print_matrix(std::ostream & s, const Derived& _m, const IOFormat&
|
||||
|
||||
typename Derived::Nested m = _m;
|
||||
typedef typename Derived::Scalar Scalar;
|
||||
typedef typename
|
||||
conditional<
|
||||
typedef std::conditional_t<
|
||||
is_same<Scalar, char>::value ||
|
||||
is_same<Scalar, unsigned char>::value ||
|
||||
is_same<Scalar, numext::int8_t>::value ||
|
||||
is_same<Scalar, numext::uint8_t>::value,
|
||||
int,
|
||||
typename conditional<
|
||||
std::conditional_t<
|
||||
is_same<Scalar, std::complex<char> >::value ||
|
||||
is_same<Scalar, std::complex<unsigned char> >::value ||
|
||||
is_same<Scalar, std::complex<numext::int8_t> >::value ||
|
||||
is_same<Scalar, std::complex<numext::uint8_t> >::value,
|
||||
std::complex<int>,
|
||||
const Scalar&
|
||||
>::type
|
||||
>::type PrintType;
|
||||
>
|
||||
> PrintType;
|
||||
|
||||
Index width = 0;
|
||||
|
||||
|
||||
@@ -10,6 +10,8 @@
|
||||
#ifndef EIGEN_INDEXED_VIEW_H
|
||||
#define EIGEN_INDEXED_VIEW_H
|
||||
|
||||
#include "./InternalHeaderCheck.h"
|
||||
|
||||
namespace Eigen {
|
||||
|
||||
namespace internal {
|
||||
@@ -21,8 +23,8 @@ struct traits<IndexedView<XprType, RowIndices, ColIndices> >
|
||||
enum {
|
||||
RowsAtCompileTime = int(array_size<RowIndices>::value),
|
||||
ColsAtCompileTime = int(array_size<ColIndices>::value),
|
||||
MaxRowsAtCompileTime = RowsAtCompileTime != Dynamic ? int(RowsAtCompileTime) : Dynamic,
|
||||
MaxColsAtCompileTime = ColsAtCompileTime != Dynamic ? int(ColsAtCompileTime) : Dynamic,
|
||||
MaxRowsAtCompileTime = RowsAtCompileTime,
|
||||
MaxColsAtCompileTime = ColsAtCompileTime,
|
||||
|
||||
XprTypeIsRowMajor = (int(traits<XprType>::Flags)&RowMajorBit) != 0,
|
||||
IsRowMajor = (MaxRowsAtCompileTime==1&&MaxColsAtCompileTime!=1) ? 1
|
||||
@@ -40,10 +42,10 @@ struct traits<IndexedView<XprType, RowIndices, ColIndices> >
|
||||
|
||||
InnerSize = XprTypeIsRowMajor ? ColsAtCompileTime : RowsAtCompileTime,
|
||||
IsBlockAlike = InnerIncr==1 && OuterIncr==1,
|
||||
IsInnerPannel = HasSameStorageOrderAsXprType && is_same<AllRange<InnerSize>,typename conditional<XprTypeIsRowMajor,ColIndices,RowIndices>::type>::value,
|
||||
IsInnerPannel = HasSameStorageOrderAsXprType && is_same<AllRange<InnerSize>,std::conditional_t<XprTypeIsRowMajor,ColIndices,RowIndices>>::value,
|
||||
|
||||
InnerStrideAtCompileTime = InnerIncr<0 || InnerIncr==DynamicIndex || XprInnerStride==Dynamic ? Dynamic : XprInnerStride * InnerIncr,
|
||||
OuterStrideAtCompileTime = OuterIncr<0 || OuterIncr==DynamicIndex || XprOuterstride==Dynamic ? Dynamic : XprOuterstride * OuterIncr,
|
||||
InnerStrideAtCompileTime = InnerIncr<0 || InnerIncr==DynamicIndex || XprInnerStride==Dynamic || InnerIncr==UndefinedIncr ? Dynamic : XprInnerStride * InnerIncr,
|
||||
OuterStrideAtCompileTime = OuterIncr<0 || OuterIncr==DynamicIndex || XprOuterstride==Dynamic || OuterIncr==UndefinedIncr ? Dynamic : XprOuterstride * OuterIncr,
|
||||
|
||||
ReturnAsScalar = is_same<RowIndices,SingleRange>::value && is_same<ColIndices,SingleRange>::value,
|
||||
ReturnAsBlock = (!ReturnAsScalar) && IsBlockAlike,
|
||||
@@ -96,7 +98,7 @@ class IndexedViewImpl;
|
||||
* - decltype(ArrayXi::LinSpaced(...))
|
||||
* - Any view/expressions of the previous types
|
||||
* - Eigen::ArithmeticSequence
|
||||
* - Eigen::internal::AllRange (helper for Eigen::all)
|
||||
* - Eigen::internal::AllRange (helper for Eigen::placeholders::all)
|
||||
* - Eigen::internal::SingleRange (helper for single index)
|
||||
* - etc.
|
||||
*
|
||||
@@ -114,7 +116,7 @@ public:
|
||||
EIGEN_INHERIT_ASSIGNMENT_OPERATORS(IndexedView)
|
||||
|
||||
typedef typename internal::ref_selector<XprType>::non_const_type MatrixTypeNested;
|
||||
typedef typename internal::remove_all<XprType>::type NestedExpression;
|
||||
typedef internal::remove_all_t<XprType> NestedExpression;
|
||||
|
||||
template<typename T0, typename T1>
|
||||
IndexedView(XprType& xpr, const T0& rowIndices, const T1& colIndices)
|
||||
@@ -122,17 +124,17 @@ public:
|
||||
{}
|
||||
|
||||
/** \returns number of rows */
|
||||
Index rows() const { return internal::size(m_rowIndices); }
|
||||
Index rows() const { return internal::index_list_size(m_rowIndices); }
|
||||
|
||||
/** \returns number of columns */
|
||||
Index cols() const { return internal::size(m_colIndices); }
|
||||
Index cols() const { return internal::index_list_size(m_colIndices); }
|
||||
|
||||
/** \returns the nested expression */
|
||||
const typename internal::remove_all<XprType>::type&
|
||||
const internal::remove_all_t<XprType>&
|
||||
nestedExpression() const { return m_xpr; }
|
||||
|
||||
/** \returns the nested expression */
|
||||
typename internal::remove_reference<XprType>::type&
|
||||
std::remove_reference_t<XprType>&
|
||||
nestedExpression() { return m_xpr; }
|
||||
|
||||
/** \returns a const reference to the object storing/generating the row indices */
|
||||
@@ -189,12 +191,16 @@ struct unary_evaluator<IndexedView<ArgType, RowIndices, ColIndices>, IndexBased>
|
||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
|
||||
CoeffReturnType coeff(Index row, Index col) const
|
||||
{
|
||||
eigen_assert(m_xpr.rowIndices()[row] >= 0 && m_xpr.rowIndices()[row] < m_xpr.nestedExpression().rows()
|
||||
&& m_xpr.colIndices()[col] >= 0 && m_xpr.colIndices()[col] < m_xpr.nestedExpression().cols());
|
||||
return m_argImpl.coeff(m_xpr.rowIndices()[row], m_xpr.colIndices()[col]);
|
||||
}
|
||||
|
||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
|
||||
Scalar& coeffRef(Index row, Index col)
|
||||
{
|
||||
eigen_assert(m_xpr.rowIndices()[row] >= 0 && m_xpr.rowIndices()[row] < m_xpr.nestedExpression().rows()
|
||||
&& m_xpr.colIndices()[col] >= 0 && m_xpr.colIndices()[col] < m_xpr.nestedExpression().cols());
|
||||
return m_argImpl.coeffRef(m_xpr.rowIndices()[row], m_xpr.colIndices()[col]);
|
||||
}
|
||||
|
||||
@@ -204,6 +210,8 @@ struct unary_evaluator<IndexedView<ArgType, RowIndices, ColIndices>, IndexBased>
|
||||
EIGEN_STATIC_ASSERT_LVALUE(XprType)
|
||||
Index row = XprType::RowsAtCompileTime == 1 ? 0 : index;
|
||||
Index col = XprType::RowsAtCompileTime == 1 ? index : 0;
|
||||
eigen_assert(m_xpr.rowIndices()[row] >= 0 && m_xpr.rowIndices()[row] < m_xpr.nestedExpression().rows()
|
||||
&& m_xpr.colIndices()[col] >= 0 && m_xpr.colIndices()[col] < m_xpr.nestedExpression().cols());
|
||||
return m_argImpl.coeffRef( m_xpr.rowIndices()[row], m_xpr.colIndices()[col]);
|
||||
}
|
||||
|
||||
@@ -212,6 +220,8 @@ struct unary_evaluator<IndexedView<ArgType, RowIndices, ColIndices>, IndexBased>
|
||||
{
|
||||
Index row = XprType::RowsAtCompileTime == 1 ? 0 : index;
|
||||
Index col = XprType::RowsAtCompileTime == 1 ? index : 0;
|
||||
eigen_assert(m_xpr.rowIndices()[row] >= 0 && m_xpr.rowIndices()[row] < m_xpr.nestedExpression().rows()
|
||||
&& m_xpr.colIndices()[col] >= 0 && m_xpr.colIndices()[col] < m_xpr.nestedExpression().cols());
|
||||
return m_argImpl.coeffRef( m_xpr.rowIndices()[row], m_xpr.colIndices()[col]);
|
||||
}
|
||||
|
||||
@@ -220,6 +230,8 @@ struct unary_evaluator<IndexedView<ArgType, RowIndices, ColIndices>, IndexBased>
|
||||
{
|
||||
Index row = XprType::RowsAtCompileTime == 1 ? 0 : index;
|
||||
Index col = XprType::RowsAtCompileTime == 1 ? index : 0;
|
||||
eigen_assert(m_xpr.rowIndices()[row] >= 0 && m_xpr.rowIndices()[row] < m_xpr.nestedExpression().rows()
|
||||
&& m_xpr.colIndices()[col] >= 0 && m_xpr.colIndices()[col] < m_xpr.nestedExpression().cols());
|
||||
return m_argImpl.coeff( m_xpr.rowIndices()[row], m_xpr.colIndices()[col]);
|
||||
}
|
||||
|
||||
|
||||
3
libs/eigen/Eigen/src/Core/InternalHeaderCheck.h
Normal file
3
libs/eigen/Eigen/src/Core/InternalHeaderCheck.h
Normal file
@@ -0,0 +1,3 @@
|
||||
#ifndef EIGEN_CORE_MODULE_H
|
||||
#error "Please include Eigen/Core instead of including headers inside the src directory directly."
|
||||
#endif
|
||||
@@ -10,6 +10,8 @@
|
||||
#ifndef EIGEN_INVERSE_H
|
||||
#define EIGEN_INVERSE_H
|
||||
|
||||
#include "./InternalHeaderCheck.h"
|
||||
|
||||
namespace Eigen {
|
||||
|
||||
template<typename XprType,typename StorageKind> class InverseImpl;
|
||||
@@ -46,9 +48,9 @@ public:
|
||||
typedef typename XprType::StorageIndex StorageIndex;
|
||||
typedef typename XprType::Scalar Scalar;
|
||||
typedef typename internal::ref_selector<XprType>::type XprTypeNested;
|
||||
typedef typename internal::remove_all<XprTypeNested>::type XprTypeNestedCleaned;
|
||||
typedef internal::remove_all_t<XprTypeNested> XprTypeNestedCleaned;
|
||||
typedef typename internal::ref_selector<Inverse>::type Nested;
|
||||
typedef typename internal::remove_all<XprType>::type NestedExpression;
|
||||
typedef internal::remove_all_t<XprType> NestedExpression;
|
||||
|
||||
explicit EIGEN_DEVICE_FUNC Inverse(const XprType &xpr)
|
||||
: m_xpr(xpr)
|
||||
@@ -102,7 +104,7 @@ struct unary_evaluator<Inverse<ArgType> >
|
||||
unary_evaluator(const InverseType& inv_xpr)
|
||||
: m_result(inv_xpr.rows(), inv_xpr.cols())
|
||||
{
|
||||
::new (static_cast<Base*>(this)) Base(m_result);
|
||||
internal::construct_at<Base>(this, m_result);
|
||||
internal::call_assignment_no_alias(m_result, inv_xpr);
|
||||
}
|
||||
|
||||
|
||||
@@ -11,6 +11,8 @@
|
||||
#ifndef EIGEN_MAP_H
|
||||
#define EIGEN_MAP_H
|
||||
|
||||
#include "./InternalHeaderCheck.h"
|
||||
|
||||
namespace Eigen {
|
||||
|
||||
namespace internal {
|
||||
@@ -129,7 +131,6 @@ template<typename PlainObjectType, int MapOptions, typename StrideType> class Ma
|
||||
explicit inline Map(PointerArgType dataPtr, const StrideType& stride = StrideType())
|
||||
: Base(cast_to_pointer_type(dataPtr)), m_stride(stride)
|
||||
{
|
||||
PlainObjectType::Base::_check_template_params();
|
||||
}
|
||||
|
||||
/** Constructor in the dynamic-size vector case.
|
||||
@@ -142,7 +143,6 @@ template<typename PlainObjectType, int MapOptions, typename StrideType> class Ma
|
||||
inline Map(PointerArgType dataPtr, Index size, const StrideType& stride = StrideType())
|
||||
: Base(cast_to_pointer_type(dataPtr), size), m_stride(stride)
|
||||
{
|
||||
PlainObjectType::Base::_check_template_params();
|
||||
}
|
||||
|
||||
/** Constructor in the dynamic-size matrix case.
|
||||
@@ -156,7 +156,6 @@ template<typename PlainObjectType, int MapOptions, typename StrideType> class Ma
|
||||
inline Map(PointerArgType dataPtr, Index rows, Index cols, const StrideType& stride = StrideType())
|
||||
: Base(cast_to_pointer_type(dataPtr), rows, cols), m_stride(stride)
|
||||
{
|
||||
PlainObjectType::Base::_check_template_params();
|
||||
}
|
||||
|
||||
EIGEN_INHERIT_ASSIGNMENT_OPERATORS(Map)
|
||||
|
||||
@@ -15,6 +15,8 @@
|
||||
EIGEN_STATIC_ASSERT((int(internal::evaluator<Derived>::Flags) & LinearAccessBit) || Derived::IsVectorAtCompileTime, \
|
||||
YOU_ARE_TRYING_TO_USE_AN_INDEX_BASED_ACCESSOR_ON_AN_EXPRESSION_THAT_DOES_NOT_SUPPORT_THAT)
|
||||
|
||||
#include "./InternalHeaderCheck.h"
|
||||
|
||||
namespace Eigen {
|
||||
|
||||
/** \ingroup Core_Module
|
||||
@@ -51,11 +53,11 @@ template<typename Derived> class MapBase<Derived, ReadOnlyAccessors>
|
||||
typedef typename internal::traits<Derived>::Scalar Scalar;
|
||||
typedef typename internal::packet_traits<Scalar>::type PacketScalar;
|
||||
typedef typename NumTraits<Scalar>::Real RealScalar;
|
||||
typedef typename internal::conditional<
|
||||
bool(internal::is_lvalue<Derived>::value),
|
||||
Scalar *,
|
||||
const Scalar *>::type
|
||||
PointerType;
|
||||
typedef std::conditional_t<
|
||||
bool(internal::is_lvalue<Derived>::value),
|
||||
Scalar *,
|
||||
const Scalar *>
|
||||
PointerType;
|
||||
|
||||
using Base::derived;
|
||||
// using Base::RowsAtCompileTime;
|
||||
@@ -189,7 +191,7 @@ template<typename Derived> class MapBase<Derived, ReadOnlyAccessors>
|
||||
|
||||
template<typename T>
|
||||
EIGEN_DEVICE_FUNC
|
||||
void checkSanity(typename internal::enable_if<(internal::traits<T>::Alignment>0),void*>::type = 0) const
|
||||
void checkSanity(std::enable_if_t<(internal::traits<T>::Alignment>0),void*> = 0) const
|
||||
{
|
||||
#if EIGEN_MAX_ALIGN_BYTES>0
|
||||
// innerStride() is not set yet when this function is called, so we optimistically assume the lowest plausible value:
|
||||
@@ -202,7 +204,7 @@ template<typename Derived> class MapBase<Derived, ReadOnlyAccessors>
|
||||
|
||||
template<typename T>
|
||||
EIGEN_DEVICE_FUNC
|
||||
void checkSanity(typename internal::enable_if<internal::traits<T>::Alignment==0,void*>::type = 0) const
|
||||
void checkSanity(std::enable_if_t<internal::traits<T>::Alignment==0,void*> = 0) const
|
||||
{}
|
||||
|
||||
PointerType m_data;
|
||||
@@ -245,11 +247,11 @@ template<typename Derived> class MapBase<Derived, WriteAccessors>
|
||||
using Base::rowStride;
|
||||
using Base::colStride;
|
||||
|
||||
typedef typename internal::conditional<
|
||||
typedef std::conditional_t<
|
||||
internal::is_lvalue<Derived>::value,
|
||||
Scalar,
|
||||
const Scalar
|
||||
>::type ScalarWithConstIfNotLvalue;
|
||||
> ScalarWithConstIfNotLvalue;
|
||||
|
||||
EIGEN_DEVICE_FUNC
|
||||
inline const Scalar* data() const { return this->m_data; }
|
||||
|
||||
@@ -17,16 +17,9 @@
|
||||
#define EIGEN_LOG2E 1.442695040888963407359924681001892137426645954152985934135449406931109219L
|
||||
#define EIGEN_LN2 0.693147180559945309417232121458176568075500134360255254120680009493393621L
|
||||
|
||||
namespace Eigen {
|
||||
#include "./InternalHeaderCheck.h"
|
||||
|
||||
// On WINCE, std::abs is defined for int only, so let's defined our own overloads:
|
||||
// This issue has been confirmed with MSVC 2008 only, but the issue might exist for more recent versions too.
|
||||
#if EIGEN_OS_WINCE && EIGEN_COMP_MSVC && EIGEN_COMP_MSVC<=1500
|
||||
long abs(long x) { return (labs(x)); }
|
||||
double abs(double x) { return (fabs(x)); }
|
||||
float abs(float x) { return (fabsf(x)); }
|
||||
long double abs(long double x) { return (fabsl(x)); }
|
||||
#endif
|
||||
namespace Eigen {
|
||||
|
||||
namespace internal {
|
||||
|
||||
@@ -236,6 +229,63 @@ struct imag_ref_retval
|
||||
typedef typename NumTraits<Scalar>::Real & type;
|
||||
};
|
||||
|
||||
|
||||
/****************************************************************************
|
||||
* Implementation of sign *
|
||||
****************************************************************************/
|
||||
template<typename Scalar, bool IsComplex = (NumTraits<Scalar>::IsComplex!=0),
|
||||
bool IsInteger = (NumTraits<Scalar>::IsInteger!=0)>
|
||||
struct sign_impl
|
||||
{
|
||||
EIGEN_DEVICE_FUNC
|
||||
static inline Scalar run(const Scalar& a)
|
||||
{
|
||||
return Scalar( (a>Scalar(0)) - (a<Scalar(0)) );
|
||||
}
|
||||
};
|
||||
|
||||
template<typename Scalar>
|
||||
struct sign_impl<Scalar, false, false>
|
||||
{
|
||||
EIGEN_DEVICE_FUNC
|
||||
static inline Scalar run(const Scalar& a)
|
||||
{
|
||||
return (std::isnan)(a) ? a : Scalar( (a>Scalar(0)) - (a<Scalar(0)) );
|
||||
}
|
||||
};
|
||||
|
||||
template<typename Scalar, bool IsInteger>
|
||||
struct sign_impl<Scalar, true, IsInteger>
|
||||
{
|
||||
EIGEN_DEVICE_FUNC
|
||||
static inline Scalar run(const Scalar& a)
|
||||
{
|
||||
using real_type = typename NumTraits<Scalar>::Real;
|
||||
real_type aa = std::abs(a);
|
||||
if (aa==real_type(0))
|
||||
return Scalar(0);
|
||||
aa = real_type(1)/aa;
|
||||
return Scalar(a.real()*aa, a.imag()*aa );
|
||||
}
|
||||
};
|
||||
|
||||
// The sign function for bool is the identity.
|
||||
template<>
|
||||
struct sign_impl<bool, false, true>
|
||||
{
|
||||
EIGEN_DEVICE_FUNC
|
||||
static inline bool run(const bool& a)
|
||||
{
|
||||
return a;
|
||||
}
|
||||
};
|
||||
|
||||
template<typename Scalar>
|
||||
struct sign_retval
|
||||
{
|
||||
typedef Scalar type;
|
||||
};
|
||||
|
||||
/****************************************************************************
|
||||
* Implementation of conj *
|
||||
****************************************************************************/
|
||||
@@ -441,9 +491,9 @@ struct cast_impl
|
||||
// generating warnings on clang. Here we explicitly cast the real component.
|
||||
template<typename OldType, typename NewType>
|
||||
struct cast_impl<OldType, NewType,
|
||||
typename internal::enable_if<
|
||||
typename std::enable_if_t<
|
||||
!NumTraits<OldType>::IsComplex && NumTraits<NewType>::IsComplex
|
||||
>::type>
|
||||
>>
|
||||
{
|
||||
EIGEN_DEVICE_FUNC
|
||||
static inline NewType run(const OldType& x)
|
||||
@@ -469,57 +519,16 @@ inline NewType cast(const OldType& x)
|
||||
template<typename Scalar>
|
||||
struct round_impl
|
||||
{
|
||||
EIGEN_STATIC_ASSERT((!NumTraits<Scalar>::IsComplex), NUMERIC_TYPE_MUST_BE_REAL)
|
||||
|
||||
EIGEN_DEVICE_FUNC
|
||||
static inline Scalar run(const Scalar& x)
|
||||
{
|
||||
EIGEN_STATIC_ASSERT((!NumTraits<Scalar>::IsComplex), NUMERIC_TYPE_MUST_BE_REAL)
|
||||
#if EIGEN_HAS_CXX11_MATH
|
||||
EIGEN_USING_STD(round);
|
||||
#endif
|
||||
return Scalar(round(x));
|
||||
}
|
||||
};
|
||||
|
||||
#if !EIGEN_HAS_CXX11_MATH
|
||||
#if EIGEN_HAS_C99_MATH
|
||||
// Use ::roundf for float.
|
||||
template<>
|
||||
struct round_impl<float> {
|
||||
EIGEN_DEVICE_FUNC
|
||||
static inline float run(const float& x)
|
||||
{
|
||||
return ::roundf(x);
|
||||
}
|
||||
};
|
||||
#else
|
||||
template<typename Scalar>
|
||||
struct round_using_floor_ceil_impl
|
||||
{
|
||||
EIGEN_DEVICE_FUNC
|
||||
static inline Scalar run(const Scalar& x)
|
||||
{
|
||||
EIGEN_STATIC_ASSERT((!NumTraits<Scalar>::IsComplex), NUMERIC_TYPE_MUST_BE_REAL)
|
||||
// Without C99 round/roundf, resort to floor/ceil.
|
||||
EIGEN_USING_STD(floor);
|
||||
EIGEN_USING_STD(ceil);
|
||||
// If not enough precision to resolve a decimal at all, return the input.
|
||||
// Otherwise, adding 0.5 can trigger an increment by 1.
|
||||
const Scalar limit = Scalar(1ull << (NumTraits<Scalar>::digits() - 1));
|
||||
if (x >= limit || x <= -limit) {
|
||||
return x;
|
||||
}
|
||||
return (x > Scalar(0)) ? Scalar(floor(x + Scalar(0.5))) : Scalar(ceil(x - Scalar(0.5)));
|
||||
}
|
||||
};
|
||||
|
||||
template<>
|
||||
struct round_impl<float> : round_using_floor_ceil_impl<float> {};
|
||||
|
||||
template<>
|
||||
struct round_impl<double> : round_using_floor_ceil_impl<double> {};
|
||||
#endif // EIGEN_HAS_C99_MATH
|
||||
#endif // !EIGEN_HAS_CXX11_MATH
|
||||
|
||||
template<typename Scalar>
|
||||
struct round_retval
|
||||
{
|
||||
@@ -532,36 +541,16 @@ struct round_retval
|
||||
|
||||
template<typename Scalar>
|
||||
struct rint_impl {
|
||||
EIGEN_STATIC_ASSERT((!NumTraits<Scalar>::IsComplex), NUMERIC_TYPE_MUST_BE_REAL)
|
||||
|
||||
EIGEN_DEVICE_FUNC
|
||||
static inline Scalar run(const Scalar& x)
|
||||
{
|
||||
EIGEN_STATIC_ASSERT((!NumTraits<Scalar>::IsComplex), NUMERIC_TYPE_MUST_BE_REAL)
|
||||
#if EIGEN_HAS_CXX11_MATH
|
||||
EIGEN_USING_STD(rint);
|
||||
#endif
|
||||
EIGEN_USING_STD(rint);
|
||||
return rint(x);
|
||||
}
|
||||
};
|
||||
|
||||
#if !EIGEN_HAS_CXX11_MATH
|
||||
template<>
|
||||
struct rint_impl<double> {
|
||||
EIGEN_DEVICE_FUNC
|
||||
static inline double run(const double& x)
|
||||
{
|
||||
return ::rint(x);
|
||||
}
|
||||
};
|
||||
template<>
|
||||
struct rint_impl<float> {
|
||||
EIGEN_DEVICE_FUNC
|
||||
static inline float run(const float& x)
|
||||
{
|
||||
return ::rintf(x);
|
||||
}
|
||||
};
|
||||
#endif
|
||||
|
||||
template<typename Scalar>
|
||||
struct rint_retval
|
||||
{
|
||||
@@ -574,7 +563,7 @@ struct rint_retval
|
||||
|
||||
// Visual Studio 2017 has a bug where arg(float) returns 0 for negative inputs.
|
||||
// This seems to be fixed in VS 2019.
|
||||
#if EIGEN_HAS_CXX11_MATH && (!EIGEN_COMP_MSVC || EIGEN_COMP_MSVC >= 1920)
|
||||
#if (!EIGEN_COMP_MSVC || EIGEN_COMP_MSVC >= 1920)
|
||||
// std::arg is only defined for types of std::complex, or integer types or float/double/long double
|
||||
template<typename Scalar,
|
||||
bool HasStdImpl = NumTraits<Scalar>::IsComplex || is_integral<Scalar>::value
|
||||
@@ -675,11 +664,7 @@ struct expm1_impl {
|
||||
EIGEN_DEVICE_FUNC static inline Scalar run(const Scalar& x)
|
||||
{
|
||||
EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar)
|
||||
#if EIGEN_HAS_CXX11_MATH
|
||||
using std::expm1;
|
||||
#else
|
||||
using std_fallback::expm1;
|
||||
#endif
|
||||
return expm1(x);
|
||||
}
|
||||
};
|
||||
@@ -736,14 +721,11 @@ namespace std_fallback {
|
||||
|
||||
template<typename Scalar>
|
||||
struct log1p_impl {
|
||||
EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar)
|
||||
|
||||
EIGEN_DEVICE_FUNC static inline Scalar run(const Scalar& x)
|
||||
{
|
||||
EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar)
|
||||
#if EIGEN_HAS_CXX11_MATH
|
||||
using std::log1p;
|
||||
#else
|
||||
using std_fallback::log1p;
|
||||
#endif
|
||||
return log1p(x);
|
||||
}
|
||||
};
|
||||
@@ -751,9 +733,10 @@ struct log1p_impl {
|
||||
// Specialization for complex types that are not supported by std::log1p.
|
||||
template <typename RealScalar>
|
||||
struct log1p_impl<std::complex<RealScalar> > {
|
||||
EIGEN_STATIC_ASSERT_NON_INTEGER(RealScalar)
|
||||
|
||||
EIGEN_DEVICE_FUNC static inline std::complex<RealScalar> run(
|
||||
const std::complex<RealScalar>& x) {
|
||||
EIGEN_STATIC_ASSERT_NON_INTEGER(RealScalar)
|
||||
return std_fallback::log1p(x);
|
||||
}
|
||||
};
|
||||
@@ -893,7 +876,7 @@ struct random_default_impl<Scalar, false, true>
|
||||
// ScalarX is the widest of ScalarU and unsigned int.
|
||||
// We'll deal only with ScalarX and unsigned int below thus avoiding signed
|
||||
// types and arithmetic and signed overflows (which are undefined behavior).
|
||||
typedef typename conditional<(ScalarU(-1) > unsigned(-1)), ScalarU, unsigned>::type ScalarX;
|
||||
typedef std::conditional_t<(ScalarU(-1) > unsigned(-1)), ScalarU, unsigned> ScalarX;
|
||||
// The following difference doesn't overflow, provided our integer types are two's
|
||||
// complement and have the same number of padding bits in signed and unsigned variants.
|
||||
// This is the case in most modern implementations of C++.
|
||||
@@ -918,8 +901,8 @@ struct random_default_impl<Scalar, false, true>
|
||||
#else
|
||||
enum { rand_bits = meta_floor_log2<(unsigned int)(RAND_MAX)+1>::value,
|
||||
scalar_bits = sizeof(Scalar) * CHAR_BIT,
|
||||
shift = EIGEN_PLAIN_ENUM_MAX(0, int(rand_bits) - int(scalar_bits)),
|
||||
offset = NumTraits<Scalar>::IsSigned ? (1 << (EIGEN_PLAIN_ENUM_MIN(rand_bits,scalar_bits)-1)) : 0
|
||||
shift = plain_enum_max(0, int(rand_bits) - int(scalar_bits)),
|
||||
offset = NumTraits<Scalar>::IsSigned ? (1 << (plain_enum_min(rand_bits, scalar_bits)-1)) : 0
|
||||
};
|
||||
return Scalar((std::rand() >> shift) - offset);
|
||||
#endif
|
||||
@@ -956,7 +939,7 @@ inline EIGEN_MATHFUNC_RETVAL(random, Scalar) random()
|
||||
// Implementation of is* functions
|
||||
|
||||
// std::is* do not work with fast-math and gcc, std::is* are available on MSVC 2013 and newer, as well as in clang.
|
||||
#if (EIGEN_HAS_CXX11_MATH && !(EIGEN_COMP_GNUC_STRICT && __FINITE_MATH_ONLY__)) || (EIGEN_COMP_MSVC>=1800) || (EIGEN_COMP_CLANG)
|
||||
#if (!(EIGEN_COMP_GNUC_STRICT && __FINITE_MATH_ONLY__)) || (EIGEN_COMP_MSVC) || (EIGEN_COMP_CLANG)
|
||||
#define EIGEN_USE_STD_FPCLASSIFY 1
|
||||
#else
|
||||
#define EIGEN_USE_STD_FPCLASSIFY 0
|
||||
@@ -964,22 +947,22 @@ inline EIGEN_MATHFUNC_RETVAL(random, Scalar) random()
|
||||
|
||||
template<typename T>
|
||||
EIGEN_DEVICE_FUNC
|
||||
typename internal::enable_if<internal::is_integral<T>::value,bool>::type
|
||||
std::enable_if_t<internal::is_integral<T>::value,bool>
|
||||
isnan_impl(const T&) { return false; }
|
||||
|
||||
template<typename T>
|
||||
EIGEN_DEVICE_FUNC
|
||||
typename internal::enable_if<internal::is_integral<T>::value,bool>::type
|
||||
std::enable_if_t<internal::is_integral<T>::value,bool>
|
||||
isinf_impl(const T&) { return false; }
|
||||
|
||||
template<typename T>
|
||||
EIGEN_DEVICE_FUNC
|
||||
typename internal::enable_if<internal::is_integral<T>::value,bool>::type
|
||||
std::enable_if_t<internal::is_integral<T>::value,bool>
|
||||
isfinite_impl(const T&) { return true; }
|
||||
|
||||
template<typename T>
|
||||
EIGEN_DEVICE_FUNC
|
||||
typename internal::enable_if<(!internal::is_integral<T>::value)&&(!NumTraits<T>::IsComplex),bool>::type
|
||||
std::enable_if_t<(!internal::is_integral<T>::value)&&(!NumTraits<T>::IsComplex),bool>
|
||||
isfinite_impl(const T& x)
|
||||
{
|
||||
#if defined(EIGEN_GPU_COMPILE_PHASE)
|
||||
@@ -994,7 +977,7 @@ isfinite_impl(const T& x)
|
||||
|
||||
template<typename T>
|
||||
EIGEN_DEVICE_FUNC
|
||||
typename internal::enable_if<(!internal::is_integral<T>::value)&&(!NumTraits<T>::IsComplex),bool>::type
|
||||
std::enable_if_t<(!internal::is_integral<T>::value)&&(!NumTraits<T>::IsComplex),bool>
|
||||
isinf_impl(const T& x)
|
||||
{
|
||||
#if defined(EIGEN_GPU_COMPILE_PHASE)
|
||||
@@ -1009,7 +992,7 @@ isinf_impl(const T& x)
|
||||
|
||||
template<typename T>
|
||||
EIGEN_DEVICE_FUNC
|
||||
typename internal::enable_if<(!internal::is_integral<T>::value)&&(!NumTraits<T>::IsComplex),bool>::type
|
||||
std::enable_if_t<(!internal::is_integral<T>::value)&&(!NumTraits<T>::IsComplex),bool>
|
||||
isnan_impl(const T& x)
|
||||
{
|
||||
#if defined(EIGEN_GPU_COMPILE_PHASE)
|
||||
@@ -1042,7 +1025,7 @@ EIGEN_DEVICE_FUNC inline bool isinf_impl(const float& x) { return isinf_ms
|
||||
|
||||
#elif (defined __FINITE_MATH_ONLY__ && __FINITE_MATH_ONLY__ && EIGEN_COMP_GNUC)
|
||||
|
||||
#if EIGEN_GNUC_AT_LEAST(5,0)
|
||||
#if EIGEN_COMP_GNUC
|
||||
#define EIGEN_TMP_NOOPT_ATTRIB EIGEN_DEVICE_FUNC inline __attribute__((optimize("no-finite-math-only")))
|
||||
#else
|
||||
// NOTE the inline qualifier and noinline attribute are both needed: the former is to avoid linking issue (duplicate symbol),
|
||||
@@ -1234,7 +1217,7 @@ inline EIGEN_MATHFUNC_RETVAL(real, Scalar) real(const Scalar& x)
|
||||
|
||||
template<typename Scalar>
|
||||
EIGEN_DEVICE_FUNC
|
||||
inline typename internal::add_const_on_value_type< EIGEN_MATHFUNC_RETVAL(real_ref, Scalar) >::type real_ref(const Scalar& x)
|
||||
inline internal::add_const_on_value_type_t< EIGEN_MATHFUNC_RETVAL(real_ref, Scalar) > real_ref(const Scalar& x)
|
||||
{
|
||||
return internal::real_ref_impl<Scalar>::run(x);
|
||||
}
|
||||
@@ -1262,7 +1245,7 @@ inline EIGEN_MATHFUNC_RETVAL(arg, Scalar) arg(const Scalar& x)
|
||||
|
||||
template<typename Scalar>
|
||||
EIGEN_DEVICE_FUNC
|
||||
inline typename internal::add_const_on_value_type< EIGEN_MATHFUNC_RETVAL(imag_ref, Scalar) >::type imag_ref(const Scalar& x)
|
||||
inline internal::add_const_on_value_type_t< EIGEN_MATHFUNC_RETVAL(imag_ref, Scalar) > imag_ref(const Scalar& x)
|
||||
{
|
||||
return internal::imag_ref_impl<Scalar>::run(x);
|
||||
}
|
||||
@@ -1281,6 +1264,13 @@ inline EIGEN_MATHFUNC_RETVAL(conj, Scalar) conj(const Scalar& x)
|
||||
return EIGEN_MATHFUNC_IMPL(conj, Scalar)::run(x);
|
||||
}
|
||||
|
||||
template<typename Scalar>
|
||||
EIGEN_DEVICE_FUNC
|
||||
inline EIGEN_MATHFUNC_RETVAL(sign, Scalar) sign(const Scalar& x)
|
||||
{
|
||||
return EIGEN_MATHFUNC_IMPL(sign, Scalar)::run(x);
|
||||
}
|
||||
|
||||
template<typename Scalar>
|
||||
EIGEN_DEVICE_FUNC
|
||||
inline EIGEN_MATHFUNC_RETVAL(abs2, Scalar) abs2(const Scalar& x)
|
||||
@@ -1505,7 +1495,7 @@ double log(const double &x) { return ::log(x); }
|
||||
|
||||
template<typename T>
|
||||
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
|
||||
typename internal::enable_if<NumTraits<T>::IsSigned || NumTraits<T>::IsComplex,typename NumTraits<T>::Real>::type
|
||||
std::enable_if_t<NumTraits<T>::IsSigned || NumTraits<T>::IsComplex,typename NumTraits<T>::Real>
|
||||
abs(const T &x) {
|
||||
EIGEN_USING_STD(abs);
|
||||
return abs(x);
|
||||
@@ -1513,7 +1503,7 @@ abs(const T &x) {
|
||||
|
||||
template<typename T>
|
||||
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
|
||||
typename internal::enable_if<!(NumTraits<T>::IsSigned || NumTraits<T>::IsComplex),typename NumTraits<T>::Real>::type
|
||||
std::enable_if_t<!(NumTraits<T>::IsSigned || NumTraits<T>::IsComplex),typename NumTraits<T>::Real>
|
||||
abs(const T &x) {
|
||||
return x;
|
||||
}
|
||||
@@ -1541,6 +1531,37 @@ double abs(const std::complex<double>& x) {
|
||||
}
|
||||
#endif
|
||||
|
||||
template <typename Scalar, bool IsInteger = NumTraits<Scalar>::IsInteger, bool IsSigned = NumTraits<Scalar>::IsSigned>
|
||||
struct signbit_impl;
|
||||
template <typename Scalar>
|
||||
struct signbit_impl<Scalar, false, true> {
|
||||
static constexpr size_t Size = sizeof(Scalar);
|
||||
static constexpr size_t Shift = (CHAR_BIT * Size) - 1;
|
||||
using intSize_t = typename get_integer_by_size<Size>::signed_type;
|
||||
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE static Scalar run(const Scalar& x) {
|
||||
intSize_t a = bit_cast<intSize_t, Scalar>(x);
|
||||
a = a >> Shift;
|
||||
Scalar result = bit_cast<Scalar, intSize_t>(a);
|
||||
return result;
|
||||
}
|
||||
};
|
||||
template <typename Scalar>
|
||||
struct signbit_impl<Scalar, true, true> {
|
||||
static constexpr size_t Size = sizeof(Scalar);
|
||||
static constexpr size_t Shift = (CHAR_BIT * Size) - 1;
|
||||
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE static constexpr Scalar run(const Scalar& x) { return x >> Shift; }
|
||||
};
|
||||
template <typename Scalar>
|
||||
struct signbit_impl<Scalar, true, false> {
|
||||
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE static constexpr Scalar run(const Scalar& ) {
|
||||
return Scalar(0);
|
||||
}
|
||||
};
|
||||
template <typename Scalar>
|
||||
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE static constexpr Scalar signbit(const Scalar& x) {
|
||||
return signbit_impl<Scalar>::run(x);
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
|
||||
T exp(const T &x) {
|
||||
@@ -1659,14 +1680,12 @@ T acos(const T &x) {
|
||||
return acos(x);
|
||||
}
|
||||
|
||||
#if EIGEN_HAS_CXX11_MATH
|
||||
template<typename T>
|
||||
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
|
||||
T acosh(const T &x) {
|
||||
EIGEN_USING_STD(acosh);
|
||||
return static_cast<T>(acosh(x));
|
||||
}
|
||||
#endif
|
||||
|
||||
#if defined(SYCL_DEVICE_ONLY)
|
||||
SYCL_SPECIALIZE_FLOATING_TYPES_UNARY(acos, acos)
|
||||
@@ -1688,14 +1707,12 @@ T asin(const T &x) {
|
||||
return asin(x);
|
||||
}
|
||||
|
||||
#if EIGEN_HAS_CXX11_MATH
|
||||
template<typename T>
|
||||
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
|
||||
T asinh(const T &x) {
|
||||
EIGEN_USING_STD(asinh);
|
||||
return static_cast<T>(asinh(x));
|
||||
}
|
||||
#endif
|
||||
|
||||
#if defined(SYCL_DEVICE_ONLY)
|
||||
SYCL_SPECIALIZE_FLOATING_TYPES_UNARY(asin, asin)
|
||||
@@ -1717,14 +1734,12 @@ T atan(const T &x) {
|
||||
return static_cast<T>(atan(x));
|
||||
}
|
||||
|
||||
#if EIGEN_HAS_CXX11_MATH
|
||||
template<typename T>
|
||||
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
|
||||
T atanh(const T &x) {
|
||||
EIGEN_USING_STD(atanh);
|
||||
return static_cast<T>(atanh(x));
|
||||
}
|
||||
#endif
|
||||
|
||||
#if defined(SYCL_DEVICE_ONLY)
|
||||
SYCL_SPECIALIZE_FLOATING_TYPES_UNARY(atan, atan)
|
||||
@@ -2006,9 +2021,10 @@ namespace internal {
|
||||
// Specialization for complex types that are not supported by std::expm1.
|
||||
template <typename RealScalar>
|
||||
struct expm1_impl<std::complex<RealScalar> > {
|
||||
EIGEN_STATIC_ASSERT_NON_INTEGER(RealScalar)
|
||||
|
||||
EIGEN_DEVICE_FUNC static inline std::complex<RealScalar> run(
|
||||
const std::complex<RealScalar>& x) {
|
||||
EIGEN_STATIC_ASSERT_NON_INTEGER(RealScalar)
|
||||
RealScalar xr = x.real();
|
||||
RealScalar xi = x.imag();
|
||||
// expm1(z) = exp(z) - 1
|
||||
|
||||
@@ -11,17 +11,152 @@
|
||||
#ifndef EIGEN_MATHFUNCTIONSIMPL_H
|
||||
#define EIGEN_MATHFUNCTIONSIMPL_H
|
||||
|
||||
#include "./InternalHeaderCheck.h"
|
||||
|
||||
namespace Eigen {
|
||||
|
||||
namespace internal {
|
||||
|
||||
/** \internal Fast reciprocal using Newton-Raphson's method.
|
||||
|
||||
Preconditions:
|
||||
1. The starting guess provided in approx_a_recip must have at least half
|
||||
the leading mantissa bits in the correct result, such that a single
|
||||
Newton-Raphson step is sufficient to get within 1-2 ulps of the currect
|
||||
result.
|
||||
2. If a is zero, approx_a_recip must be infinite with the same sign as a.
|
||||
3. If a is infinite, approx_a_recip must be zero with the same sign as a.
|
||||
|
||||
If the preconditions are satisfied, which they are for for the _*_rcp_ps
|
||||
instructions on x86, the result has a maximum relative error of 2 ulps,
|
||||
and correctly handles reciprocals of zero, infinity, and NaN.
|
||||
*/
|
||||
template <typename Packet, int Steps>
|
||||
struct generic_reciprocal_newton_step {
|
||||
static_assert(Steps > 0, "Steps must be at least 1.");
|
||||
EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE Packet
|
||||
run(const Packet& a, const Packet& approx_a_recip) {
|
||||
using Scalar = typename unpacket_traits<Packet>::type;
|
||||
const Packet two = pset1<Packet>(Scalar(2));
|
||||
// Refine the approximation using one Newton-Raphson step:
|
||||
// x_{i} = x_{i-1} * (2 - a * x_{i-1})
|
||||
const Packet x =
|
||||
generic_reciprocal_newton_step<Packet,Steps - 1>::run(a, approx_a_recip);
|
||||
const Packet tmp = pnmadd(a, x, two);
|
||||
// If tmp is NaN, it means that a is either +/-0 or +/-Inf.
|
||||
// In this case return the approximation directly.
|
||||
const Packet is_not_nan = pcmp_eq(tmp, tmp);
|
||||
return pselect(is_not_nan, pmul(x, tmp), x);
|
||||
}
|
||||
};
|
||||
|
||||
template<typename Packet>
|
||||
struct generic_reciprocal_newton_step<Packet, 0> {
|
||||
EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE Packet
|
||||
run(const Packet& /*unused*/, const Packet& approx_rsqrt) {
|
||||
return approx_rsqrt;
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
/** \internal Fast reciprocal sqrt using Newton-Raphson's method.
|
||||
|
||||
Preconditions:
|
||||
1. The starting guess provided in approx_a_recip must have at least half
|
||||
the leading mantissa bits in the correct result, such that a single
|
||||
Newton-Raphson step is sufficient to get within 1-2 ulps of the currect
|
||||
result.
|
||||
2. If a is zero, approx_a_recip must be infinite with the same sign as a.
|
||||
3. If a is infinite, approx_a_recip must be zero with the same sign as a.
|
||||
|
||||
If the preconditions are satisfied, which they are for for the _*_rcp_ps
|
||||
instructions on x86, the result has a maximum relative error of 2 ulps,
|
||||
and correctly handles zero, infinity, and NaN. Positive denormals are
|
||||
treated as zero.
|
||||
*/
|
||||
template <typename Packet, int Steps>
|
||||
struct generic_rsqrt_newton_step {
|
||||
static_assert(Steps > 0, "Steps must be at least 1.");
|
||||
|
||||
EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE Packet
|
||||
run(const Packet& a, const Packet& approx_rsqrt) {
|
||||
using Scalar = typename unpacket_traits<Packet>::type;
|
||||
const Packet one_point_five = pset1<Packet>(Scalar(1.5));
|
||||
const Packet minus_half = pset1<Packet>(Scalar(-0.5));
|
||||
|
||||
// Refine the approximation using one Newton-Raphson step:
|
||||
// x_{n+1} = x_n * (1.5 + (-0.5 * x_n) * (a * x_n)).
|
||||
// The approximation is expressed this way to avoid over/under-flows.
|
||||
Packet x_newton = pmul(approx_rsqrt, pmadd(pmul(minus_half, approx_rsqrt), pmul(a, approx_rsqrt), one_point_five));
|
||||
for (int step = 1; step < Steps; ++step) {
|
||||
x_newton = pmul(x_newton, pmadd(pmul(minus_half, x_newton), pmul(a, x_newton), one_point_five));
|
||||
}
|
||||
|
||||
// If approx_rsqrt is 0 or +/-inf, we should return it as is. Note:
|
||||
// on intel, approx_rsqrt can be inf for small denormal values.
|
||||
const Packet return_approx = por(pcmp_eq(approx_rsqrt, pzero(a)),
|
||||
pcmp_eq(pabs(approx_rsqrt), pset1<Packet>(NumTraits<Scalar>::infinity())));
|
||||
return pselect(return_approx, approx_rsqrt, x_newton);
|
||||
}
|
||||
};
|
||||
|
||||
template<typename Packet>
|
||||
struct generic_rsqrt_newton_step<Packet, 0> {
|
||||
EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE Packet
|
||||
run(const Packet& /*unused*/, const Packet& approx_rsqrt) {
|
||||
return approx_rsqrt;
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
/** \internal Fast sqrt using Newton-Raphson's method.
|
||||
|
||||
Preconditions:
|
||||
1. The starting guess for the reciprocal sqrt provided in approx_rsqrt must
|
||||
have at least half the leading mantissa bits in the correct result, such
|
||||
that a single Newton-Raphson step is sufficient to get within 1-2 ulps of
|
||||
the currect result.
|
||||
2. If a is zero, approx_rsqrt must be infinite.
|
||||
3. If a is infinite, approx_rsqrt must be zero.
|
||||
|
||||
If the preconditions are satisfied, which they are for for the _*_rsqrt_ps
|
||||
instructions on x86, the result has a maximum relative error of 2 ulps,
|
||||
and correctly handles zero and infinity, and NaN. Positive denormal inputs
|
||||
are treated as zero.
|
||||
*/
|
||||
template <typename Packet, int Steps=1>
|
||||
struct generic_sqrt_newton_step {
|
||||
static_assert(Steps > 0, "Steps must be at least 1.");
|
||||
|
||||
EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE Packet
|
||||
run(const Packet& a, const Packet& approx_rsqrt) {
|
||||
using Scalar = typename unpacket_traits<Packet>::type;
|
||||
const Packet one_point_five = pset1<Packet>(Scalar(1.5));
|
||||
const Packet minus_half = pset1<Packet>(Scalar(-0.5));
|
||||
// If a is inf or zero, return a directly.
|
||||
const Packet inf_mask = pcmp_eq(a, pset1<Packet>(NumTraits<Scalar>::infinity()));
|
||||
const Packet return_a = por(pcmp_eq(a, pzero(a)), inf_mask);
|
||||
// Do a single step of Newton's iteration for reciprocal square root:
|
||||
// x_{n+1} = x_n * (1.5 + (-0.5 * x_n) * (a * x_n))).
|
||||
// The Newton's step is computed this way to avoid over/under-flows.
|
||||
Packet rsqrt = pmul(approx_rsqrt, pmadd(pmul(minus_half, approx_rsqrt), pmul(a, approx_rsqrt), one_point_five));
|
||||
for (int step = 1; step < Steps; ++step) {
|
||||
rsqrt = pmul(rsqrt, pmadd(pmul(minus_half, rsqrt), pmul(a, rsqrt), one_point_five));
|
||||
}
|
||||
|
||||
// Return sqrt(x) = x * rsqrt(x) for non-zero finite positive arguments.
|
||||
// Return a itself for 0 or +inf, NaN for negative arguments.
|
||||
return pselect(return_a, a, pmul(a, rsqrt));
|
||||
}
|
||||
};
|
||||
|
||||
/** \internal \returns the hyperbolic tan of \a a (coeff-wise)
|
||||
Doesn't do anything fancy, just a 13/6-degree rational interpolant which
|
||||
is accurate up to a couple of ulps in the (approximate) range [-8, 8],
|
||||
outside of which tanh(x) = +/-1 in single precision. The input is clamped
|
||||
to the range [-c, c]. The value c is chosen as the smallest value where
|
||||
the approximation evaluates to exactly 1. In the reange [-0.0004, 0.0004]
|
||||
the approxmation tanh(x) ~= x is used for better accuracy as x tends to zero.
|
||||
the approximation tanh(x) ~= x is used for better accuracy as x tends to zero.
|
||||
|
||||
This implementation works on both scalars and packets.
|
||||
*/
|
||||
@@ -88,7 +223,7 @@ RealScalar positive_real_hypot(const RealScalar& x, const RealScalar& y)
|
||||
EIGEN_USING_STD(sqrt);
|
||||
RealScalar p, qp;
|
||||
p = numext::maxi(x,y);
|
||||
if(p==RealScalar(0)) return RealScalar(0);
|
||||
if(numext::is_exactly_zero(p)) return RealScalar(0);
|
||||
qp = numext::mini(y,x) / p;
|
||||
return p * sqrt(RealScalar(1) + qp*qp);
|
||||
}
|
||||
@@ -138,8 +273,8 @@ EIGEN_DEVICE_FUNC std::complex<T> complex_sqrt(const std::complex<T>& z) {
|
||||
|
||||
return
|
||||
(numext::isinf)(y) ? std::complex<T>(NumTraits<T>::infinity(), y)
|
||||
: x == zero ? std::complex<T>(w, y < zero ? -w : w)
|
||||
: x > zero ? std::complex<T>(w, y / (2 * w))
|
||||
: numext::is_exactly_zero(x) ? std::complex<T>(w, y < zero ? -w : w)
|
||||
: x > zero ? std::complex<T>(w, y / (2 * w))
|
||||
: std::complex<T>(numext::abs(y) / (2 * w), y < zero ? -w : w );
|
||||
}
|
||||
|
||||
@@ -177,10 +312,10 @@ EIGEN_DEVICE_FUNC std::complex<T> complex_rsqrt(const std::complex<T>& z) {
|
||||
const T woz = w / abs_z;
|
||||
// Corner cases consistent with 1/sqrt(z) on gcc/clang.
|
||||
return
|
||||
abs_z == zero ? std::complex<T>(NumTraits<T>::infinity(), NumTraits<T>::quiet_NaN())
|
||||
: ((numext::isinf)(x) || (numext::isinf)(y)) ? std::complex<T>(zero, zero)
|
||||
: x == zero ? std::complex<T>(woz, y < zero ? woz : -woz)
|
||||
: x > zero ? std::complex<T>(woz, -y / (2 * w * abs_z))
|
||||
numext::is_exactly_zero(abs_z) ? std::complex<T>(NumTraits<T>::infinity(), NumTraits<T>::quiet_NaN())
|
||||
: ((numext::isinf)(x) || (numext::isinf)(y)) ? std::complex<T>(zero, zero)
|
||||
: numext::is_exactly_zero(x) ? std::complex<T>(woz, y < zero ? woz : -woz)
|
||||
: x > zero ? std::complex<T>(woz, -y / (2 * w * abs_z))
|
||||
: std::complex<T>(numext::abs(y) / (2 * w * abs_z), y < zero ? woz : -woz );
|
||||
}
|
||||
|
||||
|
||||
@@ -11,37 +11,39 @@
|
||||
#ifndef EIGEN_MATRIX_H
|
||||
#define EIGEN_MATRIX_H
|
||||
|
||||
#include "./InternalHeaderCheck.h"
|
||||
|
||||
namespace Eigen {
|
||||
|
||||
namespace internal {
|
||||
template<typename _Scalar, int _Rows, int _Cols, int _Options, int _MaxRows, int _MaxCols>
|
||||
struct traits<Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols> >
|
||||
template<typename Scalar_, int Rows_, int Cols_, int Options_, int MaxRows_, int MaxCols_>
|
||||
struct traits<Matrix<Scalar_, Rows_, Cols_, Options_, MaxRows_, MaxCols_> >
|
||||
{
|
||||
private:
|
||||
enum { size = internal::size_at_compile_time<_Rows,_Cols>::ret };
|
||||
typedef typename find_best_packet<_Scalar,size>::type PacketScalar;
|
||||
constexpr static int size = internal::size_at_compile_time(Rows_,Cols_);
|
||||
typedef typename find_best_packet<Scalar_,size>::type PacketScalar;
|
||||
enum {
|
||||
row_major_bit = _Options&RowMajor ? RowMajorBit : 0,
|
||||
is_dynamic_size_storage = _MaxRows==Dynamic || _MaxCols==Dynamic,
|
||||
max_size = is_dynamic_size_storage ? Dynamic : _MaxRows*_MaxCols,
|
||||
default_alignment = compute_default_alignment<_Scalar,max_size>::value,
|
||||
actual_alignment = ((_Options&DontAlign)==0) ? default_alignment : 0,
|
||||
row_major_bit = Options_&RowMajor ? RowMajorBit : 0,
|
||||
is_dynamic_size_storage = MaxRows_==Dynamic || MaxCols_==Dynamic,
|
||||
max_size = is_dynamic_size_storage ? Dynamic : MaxRows_*MaxCols_,
|
||||
default_alignment = compute_default_alignment<Scalar_,max_size>::value,
|
||||
actual_alignment = ((Options_&DontAlign)==0) ? default_alignment : 0,
|
||||
required_alignment = unpacket_traits<PacketScalar>::alignment,
|
||||
packet_access_bit = (packet_traits<_Scalar>::Vectorizable && (EIGEN_UNALIGNED_VECTORIZE || (actual_alignment>=required_alignment))) ? PacketAccessBit : 0
|
||||
packet_access_bit = (packet_traits<Scalar_>::Vectorizable && (EIGEN_UNALIGNED_VECTORIZE || (actual_alignment>=required_alignment))) ? PacketAccessBit : 0
|
||||
};
|
||||
|
||||
public:
|
||||
typedef _Scalar Scalar;
|
||||
typedef Scalar_ Scalar;
|
||||
typedef Dense StorageKind;
|
||||
typedef Eigen::Index StorageIndex;
|
||||
typedef MatrixXpr XprKind;
|
||||
enum {
|
||||
RowsAtCompileTime = _Rows,
|
||||
ColsAtCompileTime = _Cols,
|
||||
MaxRowsAtCompileTime = _MaxRows,
|
||||
MaxColsAtCompileTime = _MaxCols,
|
||||
Flags = compute_matrix_flags<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>::ret,
|
||||
Options = _Options,
|
||||
RowsAtCompileTime = Rows_,
|
||||
ColsAtCompileTime = Cols_,
|
||||
MaxRowsAtCompileTime = MaxRows_,
|
||||
MaxColsAtCompileTime = MaxCols_,
|
||||
Flags = compute_matrix_flags(Options_),
|
||||
Options = Options_,
|
||||
InnerStrideAtCompileTime = 1,
|
||||
OuterStrideAtCompileTime = (Options&RowMajor) ? ColsAtCompileTime : RowsAtCompileTime,
|
||||
|
||||
@@ -63,18 +65,18 @@ public:
|
||||
* The %Matrix class encompasses \em both fixed-size and dynamic-size objects (\ref fixedsize "note").
|
||||
*
|
||||
* The first three template parameters are required:
|
||||
* \tparam _Scalar Numeric type, e.g. float, double, int or std::complex<float>.
|
||||
* \tparam Scalar_ Numeric type, e.g. float, double, int or std::complex<float>.
|
||||
* User defined scalar types are supported as well (see \ref user_defined_scalars "here").
|
||||
* \tparam _Rows Number of rows, or \b Dynamic
|
||||
* \tparam _Cols Number of columns, or \b Dynamic
|
||||
* \tparam Rows_ Number of rows, or \b Dynamic
|
||||
* \tparam Cols_ Number of columns, or \b Dynamic
|
||||
*
|
||||
* The remaining template parameters are optional -- in most cases you don't have to worry about them.
|
||||
* \tparam _Options A combination of either \b #RowMajor or \b #ColMajor, and of either
|
||||
* \tparam Options_ A combination of either \b #RowMajor or \b #ColMajor, and of either
|
||||
* \b #AutoAlign or \b #DontAlign.
|
||||
* The former controls \ref TopicStorageOrders "storage order", and defaults to column-major. The latter controls alignment, which is required
|
||||
* for vectorization. It defaults to aligning matrices except for fixed sizes that aren't a multiple of the packet size.
|
||||
* \tparam _MaxRows Maximum number of rows. Defaults to \a _Rows (\ref maxrows "note").
|
||||
* \tparam _MaxCols Maximum number of columns. Defaults to \a _Cols (\ref maxrows "note").
|
||||
* \tparam MaxRows_ Maximum number of rows. Defaults to \a Rows_ (\ref maxrows "note").
|
||||
* \tparam MaxCols_ Maximum number of columns. Defaults to \a Cols_ (\ref maxrows "note").
|
||||
*
|
||||
* Eigen provides a number of typedefs covering the usual cases. Here are some examples:
|
||||
*
|
||||
@@ -128,12 +130,12 @@ public:
|
||||
* Note that \em dense matrices, be they Fixed-size or Dynamic-size, <em>do not</em> expand dynamically in the sense of a std::map.
|
||||
* If you want this behavior, see the Sparse module.</dd>
|
||||
*
|
||||
* <dt><b>\anchor maxrows _MaxRows and _MaxCols:</b></dt>
|
||||
* <dt><b>\anchor maxrows MaxRows_ and MaxCols_:</b></dt>
|
||||
* <dd>In most cases, one just leaves these parameters to the default values.
|
||||
* These parameters mean the maximum size of rows and columns that the matrix may have. They are useful in cases
|
||||
* when the exact numbers of rows and columns are not known are compile-time, but it is known at compile-time that they cannot
|
||||
* exceed a certain value. This happens when taking dynamic-size blocks inside fixed-size matrices: in this case _MaxRows and _MaxCols
|
||||
* are the dimensions of the original matrix, while _Rows and _Cols are Dynamic.</dd>
|
||||
* exceed a certain value. This happens when taking dynamic-size blocks inside fixed-size matrices: in this case MaxRows_ and MaxCols_
|
||||
* are the dimensions of the original matrix, while Rows_ and Cols_ are Dynamic.</dd>
|
||||
* </dl>
|
||||
*
|
||||
* <i><b>ABI and storage layout</b></i>
|
||||
@@ -174,9 +176,9 @@ public:
|
||||
* \ref TopicStorageOrders
|
||||
*/
|
||||
|
||||
template<typename _Scalar, int _Rows, int _Cols, int _Options, int _MaxRows, int _MaxCols>
|
||||
template<typename Scalar_, int Rows_, int Cols_, int Options_, int MaxRows_, int MaxCols_>
|
||||
class Matrix
|
||||
: public PlainObjectBase<Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols> >
|
||||
: public PlainObjectBase<Matrix<Scalar_, Rows_, Cols_, Options_, MaxRows_, MaxCols_> >
|
||||
{
|
||||
public:
|
||||
|
||||
@@ -185,7 +187,7 @@ class Matrix
|
||||
*/
|
||||
typedef PlainObjectBase<Matrix> Base;
|
||||
|
||||
enum { Options = _Options };
|
||||
enum { Options = Options_ };
|
||||
|
||||
EIGEN_DENSE_PUBLIC_INTERFACE(Matrix)
|
||||
|
||||
@@ -258,7 +260,6 @@ class Matrix
|
||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
|
||||
Matrix() : Base()
|
||||
{
|
||||
Base::_check_template_params();
|
||||
EIGEN_INITIALIZE_COEFFS_IF_THAT_OPTION_IS_ENABLED
|
||||
}
|
||||
|
||||
@@ -266,24 +267,18 @@ class Matrix
|
||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
|
||||
explicit Matrix(internal::constructor_without_unaligned_array_assert)
|
||||
: Base(internal::constructor_without_unaligned_array_assert())
|
||||
{ Base::_check_template_params(); EIGEN_INITIALIZE_COEFFS_IF_THAT_OPTION_IS_ENABLED }
|
||||
{ EIGEN_INITIALIZE_COEFFS_IF_THAT_OPTION_IS_ENABLED }
|
||||
|
||||
#if EIGEN_HAS_RVALUE_REFERENCES
|
||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
|
||||
Matrix(Matrix&& other) EIGEN_NOEXCEPT_IF(std::is_nothrow_move_constructible<Scalar>::value)
|
||||
: Base(std::move(other))
|
||||
{
|
||||
Base::_check_template_params();
|
||||
}
|
||||
: Base(std::move(other)) {}
|
||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
|
||||
Matrix& operator=(Matrix&& other) EIGEN_NOEXCEPT_IF(std::is_nothrow_move_assignable<Scalar>::value)
|
||||
{
|
||||
Base::operator=(std::move(other));
|
||||
return *this;
|
||||
}
|
||||
#endif
|
||||
|
||||
#if EIGEN_HAS_CXX11
|
||||
/** \copydoc PlainObjectBase(const Scalar&, const Scalar&, const Scalar&, const Scalar&, const ArgTypes&... args)
|
||||
*
|
||||
* Example: \include Matrix_variadic_ctor_cxx11.cpp
|
||||
@@ -317,9 +312,9 @@ class Matrix
|
||||
*
|
||||
* \sa Matrix(const Scalar& a0, const Scalar& a1, const Scalar& a2, const Scalar& a3, const ArgTypes&... args)
|
||||
*/
|
||||
EIGEN_DEVICE_FUNC
|
||||
explicit EIGEN_STRONG_INLINE Matrix(const std::initializer_list<std::initializer_list<Scalar>>& list) : Base(list) {}
|
||||
#endif // end EIGEN_HAS_CXX11
|
||||
EIGEN_DEVICE_FUNC explicit constexpr EIGEN_STRONG_INLINE Matrix(
|
||||
const std::initializer_list<std::initializer_list<Scalar>>& list)
|
||||
: Base(list) {}
|
||||
|
||||
#ifndef EIGEN_PARSED_BY_DOXYGEN
|
||||
|
||||
@@ -328,7 +323,6 @@ class Matrix
|
||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
|
||||
explicit Matrix(const T& x)
|
||||
{
|
||||
Base::_check_template_params();
|
||||
Base::template _init1<T>(x);
|
||||
}
|
||||
|
||||
@@ -336,7 +330,6 @@ class Matrix
|
||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
|
||||
Matrix(const T0& x, const T1& y)
|
||||
{
|
||||
Base::_check_template_params();
|
||||
Base::template _init2<T0,T1>(x, y);
|
||||
}
|
||||
|
||||
@@ -388,7 +381,6 @@ class Matrix
|
||||
EIGEN_DEVICE_FUNC
|
||||
EIGEN_STRONG_INLINE Matrix(const Scalar& x, const Scalar& y, const Scalar& z)
|
||||
{
|
||||
Base::_check_template_params();
|
||||
EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(Matrix, 3)
|
||||
m_storage.data()[0] = x;
|
||||
m_storage.data()[1] = y;
|
||||
@@ -400,7 +392,6 @@ class Matrix
|
||||
EIGEN_DEVICE_FUNC
|
||||
EIGEN_STRONG_INLINE Matrix(const Scalar& x, const Scalar& y, const Scalar& z, const Scalar& w)
|
||||
{
|
||||
Base::_check_template_params();
|
||||
EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(Matrix, 4)
|
||||
m_storage.data()[0] = x;
|
||||
m_storage.data()[1] = y;
|
||||
@@ -480,16 +471,21 @@ class Matrix
|
||||
|
||||
#define EIGEN_MAKE_TYPEDEFS(Type, TypeSuffix, Size, SizeSuffix) \
|
||||
/** \ingroup matrixtypedefs */ \
|
||||
/** \brief `Size`×`Size` matrix of type `Type`. */ \
|
||||
typedef Matrix<Type, Size, Size> Matrix##SizeSuffix##TypeSuffix; \
|
||||
/** \ingroup matrixtypedefs */ \
|
||||
/** \brief `Size`×`1` vector of type `Type`. */ \
|
||||
typedef Matrix<Type, Size, 1> Vector##SizeSuffix##TypeSuffix; \
|
||||
/** \ingroup matrixtypedefs */ \
|
||||
/** \brief `1`×`Size` vector of type `Type`. */ \
|
||||
typedef Matrix<Type, 1, Size> RowVector##SizeSuffix##TypeSuffix;
|
||||
|
||||
#define EIGEN_MAKE_FIXED_TYPEDEFS(Type, TypeSuffix, Size) \
|
||||
/** \ingroup matrixtypedefs */ \
|
||||
/** \brief `Size`×`Dynamic` matrix of type `Type`. */ \
|
||||
typedef Matrix<Type, Size, Dynamic> Matrix##Size##X##TypeSuffix; \
|
||||
/** \ingroup matrixtypedefs */ \
|
||||
/** \brief `Dynamic`×`Size` matrix of type `Type`. */ \
|
||||
typedef Matrix<Type, Dynamic, Size> Matrix##X##Size##TypeSuffix;
|
||||
|
||||
#define EIGEN_MAKE_TYPEDEFS_ALL_SIZES(Type, TypeSuffix) \
|
||||
@@ -511,30 +507,28 @@ EIGEN_MAKE_TYPEDEFS_ALL_SIZES(std::complex<double>, cd)
|
||||
#undef EIGEN_MAKE_TYPEDEFS
|
||||
#undef EIGEN_MAKE_FIXED_TYPEDEFS
|
||||
|
||||
#if EIGEN_HAS_CXX11
|
||||
|
||||
#define EIGEN_MAKE_TYPEDEFS(Size, SizeSuffix) \
|
||||
/** \ingroup matrixtypedefs */ \
|
||||
/** \brief \cpp11 */ \
|
||||
template <typename Type> \
|
||||
using Matrix##SizeSuffix = Matrix<Type, Size, Size>; \
|
||||
/** \ingroup matrixtypedefs */ \
|
||||
/** \brief \cpp11 */ \
|
||||
template <typename Type> \
|
||||
using Vector##SizeSuffix = Matrix<Type, Size, 1>; \
|
||||
/** \ingroup matrixtypedefs */ \
|
||||
/** \brief \cpp11 */ \
|
||||
template <typename Type> \
|
||||
#define EIGEN_MAKE_TYPEDEFS(Size, SizeSuffix) \
|
||||
/** \ingroup matrixtypedefs */ \
|
||||
/** \brief \cpp11 `Size`×`Size` matrix of type `Type`.*/ \
|
||||
template <typename Type> \
|
||||
using Matrix##SizeSuffix = Matrix<Type, Size, Size>; \
|
||||
/** \ingroup matrixtypedefs */ \
|
||||
/** \brief \cpp11 `Size`×`1` vector of type `Type`.*/ \
|
||||
template <typename Type> \
|
||||
using Vector##SizeSuffix = Matrix<Type, Size, 1>; \
|
||||
/** \ingroup matrixtypedefs */ \
|
||||
/** \brief \cpp11 `1`×`Size` vector of type `Type`.*/ \
|
||||
template <typename Type> \
|
||||
using RowVector##SizeSuffix = Matrix<Type, 1, Size>;
|
||||
|
||||
#define EIGEN_MAKE_FIXED_TYPEDEFS(Size) \
|
||||
/** \ingroup matrixtypedefs */ \
|
||||
/** \brief \cpp11 */ \
|
||||
template <typename Type> \
|
||||
using Matrix##Size##X = Matrix<Type, Size, Dynamic>; \
|
||||
/** \ingroup matrixtypedefs */ \
|
||||
/** \brief \cpp11 */ \
|
||||
template <typename Type> \
|
||||
#define EIGEN_MAKE_FIXED_TYPEDEFS(Size) \
|
||||
/** \ingroup matrixtypedefs */ \
|
||||
/** \brief \cpp11 `Size`×`Dynamic` matrix of type `Type` */ \
|
||||
template <typename Type> \
|
||||
using Matrix##Size##X = Matrix<Type, Size, Dynamic>; \
|
||||
/** \ingroup matrixtypedefs */ \
|
||||
/** \brief \cpp11 `Dynamic`×`Size` matrix of type `Type`. */ \
|
||||
template <typename Type> \
|
||||
using Matrix##X##Size = Matrix<Type, Dynamic, Size>;
|
||||
|
||||
EIGEN_MAKE_TYPEDEFS(2, 2)
|
||||
@@ -546,20 +540,18 @@ EIGEN_MAKE_FIXED_TYPEDEFS(3)
|
||||
EIGEN_MAKE_FIXED_TYPEDEFS(4)
|
||||
|
||||
/** \ingroup matrixtypedefs
|
||||
* \brief \cpp11 */
|
||||
* \brief \cpp11 `Size`×`1` vector of type `Type`. */
|
||||
template <typename Type, int Size>
|
||||
using Vector = Matrix<Type, Size, 1>;
|
||||
|
||||
/** \ingroup matrixtypedefs
|
||||
* \brief \cpp11 */
|
||||
* \brief \cpp11 `1`×`Size` vector of type `Type`. */
|
||||
template <typename Type, int Size>
|
||||
using RowVector = Matrix<Type, 1, Size>;
|
||||
|
||||
#undef EIGEN_MAKE_TYPEDEFS
|
||||
#undef EIGEN_MAKE_FIXED_TYPEDEFS
|
||||
|
||||
#endif // EIGEN_HAS_CXX11
|
||||
|
||||
} // end namespace Eigen
|
||||
|
||||
#endif // EIGEN_MATRIX_H
|
||||
|
||||
@@ -11,6 +11,8 @@
|
||||
#ifndef EIGEN_MATRIXBASE_H
|
||||
#define EIGEN_MATRIXBASE_H
|
||||
|
||||
#include "./InternalHeaderCheck.h"
|
||||
|
||||
namespace Eigen {
|
||||
|
||||
/** \class MatrixBase
|
||||
@@ -92,8 +94,8 @@ template<typename Derived> class MatrixBase
|
||||
|
||||
#ifndef EIGEN_PARSED_BY_DOXYGEN
|
||||
/** type of the equivalent square matrix */
|
||||
typedef Matrix<Scalar,EIGEN_SIZE_MAX(RowsAtCompileTime,ColsAtCompileTime),
|
||||
EIGEN_SIZE_MAX(RowsAtCompileTime,ColsAtCompileTime)> SquareMatrixType;
|
||||
typedef Matrix<Scalar, internal::max_size_prefer_dynamic(RowsAtCompileTime, ColsAtCompileTime),
|
||||
internal::max_size_prefer_dynamic(RowsAtCompileTime, ColsAtCompileTime)> SquareMatrixType;
|
||||
#endif // not EIGEN_PARSED_BY_DOXYGEN
|
||||
|
||||
/** \returns the size of the main diagonal, which is min(rows(),cols()).
|
||||
@@ -107,10 +109,10 @@ template<typename Derived> class MatrixBase
|
||||
/** \internal Represents a matrix with all coefficients equal to one another*/
|
||||
typedef CwiseNullaryOp<internal::scalar_constant_op<Scalar>,PlainObject> ConstantReturnType;
|
||||
/** \internal the return type of MatrixBase::adjoint() */
|
||||
typedef typename internal::conditional<NumTraits<Scalar>::IsComplex,
|
||||
CwiseUnaryOp<internal::scalar_conjugate_op<Scalar>, ConstTransposeReturnType>,
|
||||
ConstTransposeReturnType
|
||||
>::type AdjointReturnType;
|
||||
typedef std::conditional_t<NumTraits<Scalar>::IsComplex,
|
||||
CwiseUnaryOp<internal::scalar_conjugate_op<Scalar>, ConstTransposeReturnType>,
|
||||
ConstTransposeReturnType
|
||||
> AdjointReturnType;
|
||||
/** \internal Return type of eigenvalues() */
|
||||
typedef Matrix<std::complex<RealScalar>, internal::traits<Derived>::ColsAtCompileTime, 1, ColMajor> EigenvaluesReturnType;
|
||||
/** \internal the return type of identity */
|
||||
@@ -184,6 +186,11 @@ template<typename Derived> class MatrixBase
|
||||
const Product<Derived, DiagonalDerived, LazyProduct>
|
||||
operator*(const DiagonalBase<DiagonalDerived> &diagonal) const;
|
||||
|
||||
template<typename SkewDerived>
|
||||
EIGEN_DEVICE_FUNC
|
||||
const Product<Derived, SkewDerived, LazyProduct>
|
||||
operator*(const SkewSymmetricBase<SkewDerived> &skew) const;
|
||||
|
||||
template<typename OtherDerived>
|
||||
EIGEN_DEVICE_FUNC
|
||||
typename ScalarBinaryOpTraits<typename internal::traits<Derived>::Scalar,typename internal::traits<OtherDerived>::Scalar>::ReturnType
|
||||
@@ -206,28 +213,22 @@ template<typename Derived> class MatrixBase
|
||||
EIGEN_DEVICE_FUNC
|
||||
DiagonalReturnType diagonal();
|
||||
|
||||
typedef typename internal::add_const<Diagonal<const Derived> >::type ConstDiagonalReturnType;
|
||||
typedef Diagonal<const Derived> ConstDiagonalReturnType;
|
||||
EIGEN_DEVICE_FUNC
|
||||
ConstDiagonalReturnType diagonal() const;
|
||||
|
||||
template<int Index> struct DiagonalIndexReturnType { typedef Diagonal<Derived,Index> Type; };
|
||||
template<int Index> struct ConstDiagonalIndexReturnType { typedef const Diagonal<const Derived,Index> Type; };
|
||||
const ConstDiagonalReturnType diagonal() const;
|
||||
|
||||
template<int Index>
|
||||
EIGEN_DEVICE_FUNC
|
||||
typename DiagonalIndexReturnType<Index>::Type diagonal();
|
||||
Diagonal<Derived, Index> diagonal();
|
||||
|
||||
template<int Index>
|
||||
EIGEN_DEVICE_FUNC
|
||||
typename ConstDiagonalIndexReturnType<Index>::Type diagonal() const;
|
||||
|
||||
typedef Diagonal<Derived,DynamicIndex> DiagonalDynamicIndexReturnType;
|
||||
typedef typename internal::add_const<Diagonal<const Derived,DynamicIndex> >::type ConstDiagonalDynamicIndexReturnType;
|
||||
const Diagonal<const Derived, Index> diagonal() const;
|
||||
|
||||
EIGEN_DEVICE_FUNC
|
||||
DiagonalDynamicIndexReturnType diagonal(Index index);
|
||||
Diagonal<Derived, DynamicIndex> diagonal(Index index);
|
||||
EIGEN_DEVICE_FUNC
|
||||
ConstDiagonalDynamicIndexReturnType diagonal(Index index) const;
|
||||
const Diagonal<const Derived, DynamicIndex> diagonal(Index index) const;
|
||||
|
||||
template<unsigned int Mode> struct TriangularViewReturnType { typedef TriangularView<Derived, Mode> Type; };
|
||||
template<unsigned int Mode> struct ConstTriangularViewReturnType { typedef const TriangularView<const Derived, Mode> Type; };
|
||||
@@ -263,6 +264,8 @@ template<typename Derived> class MatrixBase
|
||||
EIGEN_DEVICE_FUNC
|
||||
const DiagonalWrapper<const Derived> asDiagonal() const;
|
||||
const PermutationWrapper<const Derived> asPermutation() const;
|
||||
EIGEN_DEVICE_FUNC
|
||||
const SkewSymmetricWrapper<const Derived> asSkewSymmetric() const;
|
||||
|
||||
EIGEN_DEVICE_FUNC
|
||||
Derived& setIdentity();
|
||||
@@ -277,6 +280,8 @@ template<typename Derived> class MatrixBase
|
||||
bool isUpperTriangular(const RealScalar& prec = NumTraits<Scalar>::dummy_precision()) const;
|
||||
bool isLowerTriangular(const RealScalar& prec = NumTraits<Scalar>::dummy_precision()) const;
|
||||
|
||||
bool isSkewSymmetric(const RealScalar& prec = NumTraits<Scalar>::dummy_precision()) const;
|
||||
|
||||
template<typename OtherDerived>
|
||||
bool isOrthogonal(const MatrixBase<OtherDerived>& other,
|
||||
const RealScalar& prec = NumTraits<Scalar>::dummy_precision()) const;
|
||||
@@ -368,25 +373,23 @@ template<typename Derived> class MatrixBase
|
||||
|
||||
/////////// SVD module ///////////
|
||||
|
||||
inline JacobiSVD<PlainObject> jacobiSvd(unsigned int computationOptions = 0) const;
|
||||
inline BDCSVD<PlainObject> bdcSvd(unsigned int computationOptions = 0) const;
|
||||
template<int Options = 0>
|
||||
inline JacobiSVD<PlainObject, Options> jacobiSvd() const;
|
||||
template<int Options = 0>
|
||||
EIGEN_DEPRECATED
|
||||
inline JacobiSVD<PlainObject, Options> jacobiSvd(unsigned int computationOptions) const;
|
||||
|
||||
template<int Options = 0>
|
||||
inline BDCSVD<PlainObject, Options> bdcSvd() const;
|
||||
template<int Options = 0>
|
||||
EIGEN_DEPRECATED
|
||||
inline BDCSVD<PlainObject, Options> bdcSvd(unsigned int computationOptions) const;
|
||||
|
||||
/////////// Geometry module ///////////
|
||||
|
||||
#ifndef EIGEN_PARSED_BY_DOXYGEN
|
||||
/// \internal helper struct to form the return type of the cross product
|
||||
template<typename OtherDerived> struct cross_product_return_type {
|
||||
typedef typename ScalarBinaryOpTraits<typename internal::traits<Derived>::Scalar,typename internal::traits<OtherDerived>::Scalar>::ReturnType Scalar;
|
||||
typedef Matrix<Scalar,MatrixBase::RowsAtCompileTime,MatrixBase::ColsAtCompileTime> type;
|
||||
};
|
||||
#endif // EIGEN_PARSED_BY_DOXYGEN
|
||||
template<typename OtherDerived>
|
||||
EIGEN_DEVICE_FUNC
|
||||
#ifndef EIGEN_PARSED_BY_DOXYGEN
|
||||
inline typename cross_product_return_type<OtherDerived>::type
|
||||
#else
|
||||
inline PlainObject
|
||||
#endif
|
||||
inline typename internal::cross_impl<Derived, OtherDerived>::return_type
|
||||
cross(const MatrixBase<OtherDerived>& other) const;
|
||||
|
||||
template<typename OtherDerived>
|
||||
@@ -468,11 +471,9 @@ template<typename Derived> class MatrixBase
|
||||
const MatrixFunctionReturnValue<Derived> matrixFunction(StemFunction f) const;
|
||||
EIGEN_MATRIX_FUNCTION(MatrixFunctionReturnValue, cosh, hyperbolic cosine)
|
||||
EIGEN_MATRIX_FUNCTION(MatrixFunctionReturnValue, sinh, hyperbolic sine)
|
||||
#if EIGEN_HAS_CXX11_MATH
|
||||
EIGEN_MATRIX_FUNCTION(MatrixFunctionReturnValue, atanh, inverse hyperbolic cosine)
|
||||
EIGEN_MATRIX_FUNCTION(MatrixFunctionReturnValue, acosh, inverse hyperbolic cosine)
|
||||
EIGEN_MATRIX_FUNCTION(MatrixFunctionReturnValue, asinh, inverse hyperbolic sine)
|
||||
#endif
|
||||
EIGEN_MATRIX_FUNCTION(MatrixFunctionReturnValue, cos, cosine)
|
||||
EIGEN_MATRIX_FUNCTION(MatrixFunctionReturnValue, sin, sine)
|
||||
EIGEN_MATRIX_FUNCTION(MatrixSquareRootReturnValue, sqrt, square root)
|
||||
|
||||
@@ -11,6 +11,8 @@
|
||||
#ifndef EIGEN_NESTBYVALUE_H
|
||||
#define EIGEN_NESTBYVALUE_H
|
||||
|
||||
#include "./InternalHeaderCheck.h"
|
||||
|
||||
namespace Eigen {
|
||||
|
||||
namespace internal {
|
||||
@@ -41,6 +43,8 @@ template<typename ExpressionType> class NestByValue
|
||||
public:
|
||||
|
||||
typedef typename internal::dense_xpr_base<NestByValue>::type Base;
|
||||
static constexpr bool HasDirectAccess = internal::has_direct_access<ExpressionType>::ret;
|
||||
|
||||
EIGEN_DENSE_PUBLIC_INTERFACE(NestByValue)
|
||||
|
||||
EIGEN_DEVICE_FUNC explicit inline NestByValue(const ExpressionType& matrix) : m_expression(matrix) {}
|
||||
@@ -52,6 +56,18 @@ template<typename ExpressionType> class NestByValue
|
||||
|
||||
EIGEN_DEVICE_FUNC const ExpressionType& nestedExpression() const { return m_expression; }
|
||||
|
||||
EIGEN_DEVICE_FUNC typename std::enable_if<HasDirectAccess, const Scalar*>::type data() const {
|
||||
return m_expression.data();
|
||||
}
|
||||
|
||||
EIGEN_DEVICE_FUNC typename std::enable_if<HasDirectAccess, Index>::type innerStride() const {
|
||||
return m_expression.innerStride();
|
||||
}
|
||||
|
||||
EIGEN_DEVICE_FUNC typename std::enable_if<HasDirectAccess, Index>::type outerStride() const {
|
||||
return m_expression.outerStride();
|
||||
}
|
||||
|
||||
protected:
|
||||
const ExpressionType m_expression;
|
||||
};
|
||||
|
||||
@@ -10,6 +10,8 @@
|
||||
#ifndef EIGEN_NOALIAS_H
|
||||
#define EIGEN_NOALIAS_H
|
||||
|
||||
#include "./InternalHeaderCheck.h"
|
||||
|
||||
namespace Eigen {
|
||||
|
||||
/** \class NoAlias
|
||||
|
||||
@@ -10,6 +10,8 @@
|
||||
#ifndef EIGEN_NUMTRAITS_H
|
||||
#define EIGEN_NUMTRAITS_H
|
||||
|
||||
#include "./InternalHeaderCheck.h"
|
||||
|
||||
namespace Eigen {
|
||||
|
||||
namespace internal {
|
||||
@@ -61,10 +63,10 @@ struct default_digits_impl<T,false,false> // Floating point
|
||||
{
|
||||
EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR
|
||||
static int run() {
|
||||
using std::log;
|
||||
using std::log2;
|
||||
using std::ceil;
|
||||
typedef typename NumTraits<T>::Real Real;
|
||||
return int(ceil(-log(NumTraits<Real>::epsilon())/log(static_cast<Real>(2))));
|
||||
return int(ceil(-log2(NumTraits<Real>::epsilon())));
|
||||
}
|
||||
};
|
||||
|
||||
@@ -83,17 +85,17 @@ namespace numext {
|
||||
// TODO: Replace by std::bit_cast (available in C++20)
|
||||
template <typename Tgt, typename Src>
|
||||
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC Tgt bit_cast(const Src& src) {
|
||||
#if EIGEN_HAS_TYPE_TRAITS
|
||||
// The behaviour of memcpy is not specified for non-trivially copyable types
|
||||
EIGEN_STATIC_ASSERT(std::is_trivially_copyable<Src>::value, THIS_TYPE_IS_NOT_SUPPORTED);
|
||||
EIGEN_STATIC_ASSERT(std::is_trivially_copyable<Tgt>::value && std::is_default_constructible<Tgt>::value,
|
||||
THIS_TYPE_IS_NOT_SUPPORTED);
|
||||
#endif
|
||||
|
||||
EIGEN_STATIC_ASSERT(sizeof(Src) == sizeof(Tgt), THIS_TYPE_IS_NOT_SUPPORTED);
|
||||
|
||||
Tgt tgt;
|
||||
// Load src into registers first. This allows the memcpy to be elided by CUDA.
|
||||
const Src staged = src;
|
||||
EIGEN_USING_STD(memcpy)
|
||||
memcpy(&tgt, &src, sizeof(Tgt));
|
||||
memcpy(static_cast<void*>(&tgt),static_cast<const void*>(&staged), sizeof(Tgt));
|
||||
return tgt;
|
||||
}
|
||||
} // namespace numext
|
||||
@@ -162,11 +164,7 @@ template<typename T> struct GenericNumTraits
|
||||
};
|
||||
|
||||
typedef T Real;
|
||||
typedef typename internal::conditional<
|
||||
IsInteger,
|
||||
typename internal::conditional<sizeof(T)<=2, float, double>::type,
|
||||
T
|
||||
>::type NonInteger;
|
||||
typedef std::conditional_t<IsInteger, std::conditional_t<sizeof(T)<=2, float, double>, T> NonInteger;
|
||||
typedef T Nested;
|
||||
typedef T Literal;
|
||||
|
||||
@@ -252,15 +250,15 @@ template<> struct NumTraits<long double>
|
||||
static inline long double dummy_precision() { return 1e-15l; }
|
||||
};
|
||||
|
||||
template<typename _Real> struct NumTraits<std::complex<_Real> >
|
||||
: GenericNumTraits<std::complex<_Real> >
|
||||
template<typename Real_> struct NumTraits<std::complex<Real_> >
|
||||
: GenericNumTraits<std::complex<Real_> >
|
||||
{
|
||||
typedef _Real Real;
|
||||
typedef typename NumTraits<_Real>::Literal Literal;
|
||||
typedef Real_ Real;
|
||||
typedef typename NumTraits<Real_>::Literal Literal;
|
||||
enum {
|
||||
IsComplex = 1,
|
||||
RequireInitialization = NumTraits<_Real>::RequireInitialization,
|
||||
ReadCost = 2 * NumTraits<_Real>::ReadCost,
|
||||
RequireInitialization = NumTraits<Real_>::RequireInitialization,
|
||||
ReadCost = 2 * NumTraits<Real_>::ReadCost,
|
||||
AddCost = 2 * NumTraits<Real>::AddCost,
|
||||
MulCost = 4 * NumTraits<Real>::MulCost + 2 * NumTraits<Real>::AddCost
|
||||
};
|
||||
|
||||
@@ -10,6 +10,8 @@
|
||||
#ifndef EIGEN_PARTIALREDUX_H
|
||||
#define EIGEN_PARTIALREDUX_H
|
||||
|
||||
#include "./InternalHeaderCheck.h"
|
||||
|
||||
namespace Eigen {
|
||||
|
||||
namespace internal {
|
||||
@@ -29,7 +31,7 @@ namespace internal {
|
||||
* some (optional) processing of the outcome, e.g., division by n for mean.
|
||||
*
|
||||
* For the vectorized path let's observe that the packet-size and outer-unrolling
|
||||
* are both decided by the assignement logic. So all we have to do is to decide
|
||||
* are both decided by the assignment logic. So all we have to do is to decide
|
||||
* on the inner unrolling.
|
||||
*
|
||||
* For the unrolling, we can reuse "internal::redux_vec_unroller" from Redux.h,
|
||||
@@ -54,12 +56,17 @@ struct packetwise_redux_traits
|
||||
/* Value to be returned when size==0 , by default let's return 0 */
|
||||
template<typename PacketType,typename Func>
|
||||
EIGEN_DEVICE_FUNC
|
||||
PacketType packetwise_redux_empty_value(const Func& ) { return pset1<PacketType>(0); }
|
||||
PacketType packetwise_redux_empty_value(const Func& ) {
|
||||
const typename unpacket_traits<PacketType>::type zero(0);
|
||||
return pset1<PacketType>(zero);
|
||||
}
|
||||
|
||||
/* For products the default is 1 */
|
||||
template<typename PacketType,typename Scalar>
|
||||
EIGEN_DEVICE_FUNC
|
||||
PacketType packetwise_redux_empty_value(const scalar_product_op<Scalar,Scalar>& ) { return pset1<PacketType>(1); }
|
||||
PacketType packetwise_redux_empty_value(const scalar_product_op<Scalar,Scalar>& ) {
|
||||
return pset1<PacketType>(Scalar(1));
|
||||
}
|
||||
|
||||
/* Perform the actual reduction */
|
||||
template<typename Func, typename Evaluator,
|
||||
@@ -134,8 +141,8 @@ struct evaluator<PartialReduxExpr<ArgType, MemberOp, Direction> >
|
||||
{
|
||||
typedef PartialReduxExpr<ArgType, MemberOp, Direction> XprType;
|
||||
typedef typename internal::nested_eval<ArgType,1>::type ArgTypeNested;
|
||||
typedef typename internal::add_const_on_value_type<ArgTypeNested>::type ConstArgTypeNested;
|
||||
typedef typename internal::remove_all<ArgTypeNested>::type ArgTypeNestedCleaned;
|
||||
typedef add_const_on_value_type_t<ArgTypeNested> ConstArgTypeNested;
|
||||
typedef internal::remove_all_t<ArgTypeNested> ArgTypeNestedCleaned;
|
||||
typedef typename ArgType::Scalar InputScalar;
|
||||
typedef typename XprType::Scalar Scalar;
|
||||
enum {
|
||||
@@ -147,16 +154,16 @@ struct evaluator<PartialReduxExpr<ArgType, MemberOp, Direction> >
|
||||
: TraversalSize==0 ? 1
|
||||
: int(TraversalSize) * int(evaluator<ArgType>::CoeffReadCost) + int(CostOpType::value),
|
||||
|
||||
_ArgFlags = evaluator<ArgType>::Flags,
|
||||
ArgFlags_ = evaluator<ArgType>::Flags,
|
||||
|
||||
_Vectorizable = bool(int(_ArgFlags)&PacketAccessBit)
|
||||
Vectorizable_ = bool(int(ArgFlags_)&PacketAccessBit)
|
||||
&& bool(MemberOp::Vectorizable)
|
||||
&& (Direction==int(Vertical) ? bool(_ArgFlags&RowMajorBit) : (_ArgFlags&RowMajorBit)==0)
|
||||
&& (Direction==int(Vertical) ? bool(ArgFlags_&RowMajorBit) : (ArgFlags_&RowMajorBit)==0)
|
||||
&& (TraversalSize!=0),
|
||||
|
||||
Flags = (traits<XprType>::Flags&RowMajorBit)
|
||||
| (evaluator<ArgType>::Flags&(HereditaryBits&(~RowMajorBit)))
|
||||
| (_Vectorizable ? PacketAccessBit : 0)
|
||||
| (Vectorizable_ ? PacketAccessBit : 0)
|
||||
| LinearAccessBit,
|
||||
|
||||
Alignment = 0 // FIXME this will need to be improved once PartialReduxExpr is vectorized
|
||||
|
||||
@@ -11,6 +11,8 @@
|
||||
#ifndef EIGEN_PERMUTATIONMATRIX_H
|
||||
#define EIGEN_PERMUTATIONMATRIX_H
|
||||
|
||||
#include "./InternalHeaderCheck.h"
|
||||
|
||||
namespace Eigen {
|
||||
|
||||
namespace internal {
|
||||
@@ -269,13 +271,13 @@ class PermutationBase : public EigenBase<Derived>
|
||||
};
|
||||
|
||||
namespace internal {
|
||||
template<int SizeAtCompileTime, int MaxSizeAtCompileTime, typename _StorageIndex>
|
||||
struct traits<PermutationMatrix<SizeAtCompileTime, MaxSizeAtCompileTime, _StorageIndex> >
|
||||
: traits<Matrix<_StorageIndex,SizeAtCompileTime,SizeAtCompileTime,0,MaxSizeAtCompileTime,MaxSizeAtCompileTime> >
|
||||
template<int SizeAtCompileTime, int MaxSizeAtCompileTime, typename StorageIndex_>
|
||||
struct traits<PermutationMatrix<SizeAtCompileTime, MaxSizeAtCompileTime, StorageIndex_> >
|
||||
: traits<Matrix<StorageIndex_,SizeAtCompileTime,SizeAtCompileTime,0,MaxSizeAtCompileTime,MaxSizeAtCompileTime> >
|
||||
{
|
||||
typedef PermutationStorage StorageKind;
|
||||
typedef Matrix<_StorageIndex, SizeAtCompileTime, 1, 0, MaxSizeAtCompileTime, 1> IndicesType;
|
||||
typedef _StorageIndex StorageIndex;
|
||||
typedef Matrix<StorageIndex_, SizeAtCompileTime, 1, 0, MaxSizeAtCompileTime, 1> IndicesType;
|
||||
typedef StorageIndex_ StorageIndex;
|
||||
typedef void Scalar;
|
||||
};
|
||||
}
|
||||
@@ -287,14 +289,14 @@ struct traits<PermutationMatrix<SizeAtCompileTime, MaxSizeAtCompileTime, _Storag
|
||||
*
|
||||
* \tparam SizeAtCompileTime the number of rows/cols, or Dynamic
|
||||
* \tparam MaxSizeAtCompileTime the maximum number of rows/cols, or Dynamic. This optional parameter defaults to SizeAtCompileTime. Most of the time, you should not have to specify it.
|
||||
* \tparam _StorageIndex the integer type of the indices
|
||||
* \tparam StorageIndex_ the integer type of the indices
|
||||
*
|
||||
* This class represents a permutation matrix, internally stored as a vector of integers.
|
||||
*
|
||||
* \sa class PermutationBase, class PermutationWrapper, class DiagonalMatrix
|
||||
*/
|
||||
template<int SizeAtCompileTime, int MaxSizeAtCompileTime, typename _StorageIndex>
|
||||
class PermutationMatrix : public PermutationBase<PermutationMatrix<SizeAtCompileTime, MaxSizeAtCompileTime, _StorageIndex> >
|
||||
template<int SizeAtCompileTime, int MaxSizeAtCompileTime, typename StorageIndex_>
|
||||
class PermutationMatrix : public PermutationBase<PermutationMatrix<SizeAtCompileTime, MaxSizeAtCompileTime, StorageIndex_> >
|
||||
{
|
||||
typedef PermutationBase<PermutationMatrix> Base;
|
||||
typedef internal::traits<PermutationMatrix> Traits;
|
||||
@@ -389,20 +391,20 @@ class PermutationMatrix : public PermutationBase<PermutationMatrix<SizeAtCompile
|
||||
|
||||
|
||||
namespace internal {
|
||||
template<int SizeAtCompileTime, int MaxSizeAtCompileTime, typename _StorageIndex, int _PacketAccess>
|
||||
struct traits<Map<PermutationMatrix<SizeAtCompileTime, MaxSizeAtCompileTime, _StorageIndex>,_PacketAccess> >
|
||||
: traits<Matrix<_StorageIndex,SizeAtCompileTime,SizeAtCompileTime,0,MaxSizeAtCompileTime,MaxSizeAtCompileTime> >
|
||||
template<int SizeAtCompileTime, int MaxSizeAtCompileTime, typename StorageIndex_, int PacketAccess_>
|
||||
struct traits<Map<PermutationMatrix<SizeAtCompileTime, MaxSizeAtCompileTime, StorageIndex_>,PacketAccess_> >
|
||||
: traits<Matrix<StorageIndex_,SizeAtCompileTime,SizeAtCompileTime,0,MaxSizeAtCompileTime,MaxSizeAtCompileTime> >
|
||||
{
|
||||
typedef PermutationStorage StorageKind;
|
||||
typedef Map<const Matrix<_StorageIndex, SizeAtCompileTime, 1, 0, MaxSizeAtCompileTime, 1>, _PacketAccess> IndicesType;
|
||||
typedef _StorageIndex StorageIndex;
|
||||
typedef Map<const Matrix<StorageIndex_, SizeAtCompileTime, 1, 0, MaxSizeAtCompileTime, 1>, PacketAccess_> IndicesType;
|
||||
typedef StorageIndex_ StorageIndex;
|
||||
typedef void Scalar;
|
||||
};
|
||||
}
|
||||
|
||||
template<int SizeAtCompileTime, int MaxSizeAtCompileTime, typename _StorageIndex, int _PacketAccess>
|
||||
class Map<PermutationMatrix<SizeAtCompileTime, MaxSizeAtCompileTime, _StorageIndex>,_PacketAccess>
|
||||
: public PermutationBase<Map<PermutationMatrix<SizeAtCompileTime, MaxSizeAtCompileTime, _StorageIndex>,_PacketAccess> >
|
||||
template<int SizeAtCompileTime, int MaxSizeAtCompileTime, typename StorageIndex_, int PacketAccess_>
|
||||
class Map<PermutationMatrix<SizeAtCompileTime, MaxSizeAtCompileTime, StorageIndex_>,PacketAccess_>
|
||||
: public PermutationBase<Map<PermutationMatrix<SizeAtCompileTime, MaxSizeAtCompileTime, StorageIndex_>,PacketAccess_> >
|
||||
{
|
||||
typedef PermutationBase<Map> Base;
|
||||
typedef internal::traits<Map> Traits;
|
||||
@@ -452,18 +454,18 @@ class Map<PermutationMatrix<SizeAtCompileTime, MaxSizeAtCompileTime, _StorageInd
|
||||
IndicesType m_indices;
|
||||
};
|
||||
|
||||
template<typename _IndicesType> class TranspositionsWrapper;
|
||||
template<typename IndicesType_> class TranspositionsWrapper;
|
||||
namespace internal {
|
||||
template<typename _IndicesType>
|
||||
struct traits<PermutationWrapper<_IndicesType> >
|
||||
template<typename IndicesType_>
|
||||
struct traits<PermutationWrapper<IndicesType_> >
|
||||
{
|
||||
typedef PermutationStorage StorageKind;
|
||||
typedef void Scalar;
|
||||
typedef typename _IndicesType::Scalar StorageIndex;
|
||||
typedef _IndicesType IndicesType;
|
||||
typedef typename IndicesType_::Scalar StorageIndex;
|
||||
typedef IndicesType_ IndicesType;
|
||||
enum {
|
||||
RowsAtCompileTime = _IndicesType::SizeAtCompileTime,
|
||||
ColsAtCompileTime = _IndicesType::SizeAtCompileTime,
|
||||
RowsAtCompileTime = IndicesType_::SizeAtCompileTime,
|
||||
ColsAtCompileTime = IndicesType_::SizeAtCompileTime,
|
||||
MaxRowsAtCompileTime = IndicesType::MaxSizeAtCompileTime,
|
||||
MaxColsAtCompileTime = IndicesType::MaxSizeAtCompileTime,
|
||||
Flags = 0
|
||||
@@ -476,14 +478,14 @@ struct traits<PermutationWrapper<_IndicesType> >
|
||||
*
|
||||
* \brief Class to view a vector of integers as a permutation matrix
|
||||
*
|
||||
* \tparam _IndicesType the type of the vector of integer (can be any compatible expression)
|
||||
* \tparam IndicesType_ the type of the vector of integer (can be any compatible expression)
|
||||
*
|
||||
* This class allows to view any vector expression of integers as a permutation matrix.
|
||||
*
|
||||
* \sa class PermutationBase, class PermutationMatrix
|
||||
*/
|
||||
template<typename _IndicesType>
|
||||
class PermutationWrapper : public PermutationBase<PermutationWrapper<_IndicesType> >
|
||||
template<typename IndicesType_>
|
||||
class PermutationWrapper : public PermutationBase<PermutationWrapper<IndicesType_> >
|
||||
{
|
||||
typedef PermutationBase<PermutationWrapper> Base;
|
||||
typedef internal::traits<PermutationWrapper> Traits;
|
||||
@@ -498,7 +500,7 @@ class PermutationWrapper : public PermutationBase<PermutationWrapper<_IndicesTyp
|
||||
{}
|
||||
|
||||
/** const version of indices(). */
|
||||
const typename internal::remove_all<typename IndicesType::Nested>::type&
|
||||
const internal::remove_all_t<typename IndicesType::Nested>&
|
||||
indices() const { return m_indices; }
|
||||
|
||||
protected:
|
||||
|
||||
@@ -22,23 +22,20 @@
|
||||
# define EIGEN_INITIALIZE_COEFFS_IF_THAT_OPTION_IS_ENABLED
|
||||
#endif
|
||||
|
||||
#include "./InternalHeaderCheck.h"
|
||||
|
||||
namespace Eigen {
|
||||
|
||||
namespace internal {
|
||||
|
||||
template<int MaxSizeAtCompileTime> struct check_rows_cols_for_overflow {
|
||||
template<typename Index>
|
||||
EIGEN_DEVICE_FUNC
|
||||
static EIGEN_ALWAYS_INLINE void run(Index, Index)
|
||||
{
|
||||
}
|
||||
template <typename Index>
|
||||
EIGEN_DEVICE_FUNC static EIGEN_ALWAYS_INLINE constexpr void run(Index, Index) {}
|
||||
};
|
||||
|
||||
template<> struct check_rows_cols_for_overflow<Dynamic> {
|
||||
template<typename Index>
|
||||
EIGEN_DEVICE_FUNC
|
||||
static EIGEN_ALWAYS_INLINE void run(Index rows, Index cols)
|
||||
{
|
||||
template <typename Index>
|
||||
EIGEN_DEVICE_FUNC static EIGEN_ALWAYS_INLINE constexpr void run(Index rows, Index cols) {
|
||||
// http://hg.mozilla.org/mozilla-central/file/6c8a909977d3/xpcom/ds/CheckedInt.h#l242
|
||||
// we assume Index is signed
|
||||
Index max_index = (std::size_t(1) << (8 * sizeof(Index) - 1)) - 1; // assume Index is signed
|
||||
@@ -64,18 +61,18 @@ namespace doxygen {
|
||||
// This is a workaround to doxygen not being able to understand the inheritance logic
|
||||
// when it is hidden by the dense_xpr_base helper struct.
|
||||
// Moreover, doxygen fails to include members that are not documented in the declaration body of
|
||||
// MatrixBase if we inherits MatrixBase<Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols> >,
|
||||
// MatrixBase if we inherits MatrixBase<Matrix<Scalar_, Rows_, Cols_, Options_, MaxRows_, MaxCols_> >,
|
||||
// this is why we simply inherits MatrixBase, though this does not make sense.
|
||||
|
||||
/** This class is just a workaround for Doxygen and it does not not actually exist. */
|
||||
template<typename Derived> struct dense_xpr_base_dispatcher;
|
||||
/** This class is just a workaround for Doxygen and it does not not actually exist. */
|
||||
template<typename _Scalar, int _Rows, int _Cols, int _Options, int _MaxRows, int _MaxCols>
|
||||
struct dense_xpr_base_dispatcher<Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols> >
|
||||
template<typename Scalar_, int Rows_, int Cols_, int Options_, int MaxRows_, int MaxCols_>
|
||||
struct dense_xpr_base_dispatcher<Matrix<Scalar_, Rows_, Cols_, Options_, MaxRows_, MaxCols_> >
|
||||
: public MatrixBase {};
|
||||
/** This class is just a workaround for Doxygen and it does not not actually exist. */
|
||||
template<typename _Scalar, int _Rows, int _Cols, int _Options, int _MaxRows, int _MaxCols>
|
||||
struct dense_xpr_base_dispatcher<Array<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols> >
|
||||
template<typename Scalar_, int Rows_, int Cols_, int Options_, int MaxRows_, int MaxCols_>
|
||||
struct dense_xpr_base_dispatcher<Array<Scalar_, Rows_, Cols_, Options_, MaxRows_, MaxCols_> >
|
||||
: public ArrayBase {};
|
||||
|
||||
} // namespace doxygen
|
||||
@@ -134,6 +131,16 @@ class PlainObjectBase : public internal::dense_xpr_base<Derived>::type
|
||||
enum { NeedsToAlign = (SizeAtCompileTime != Dynamic) && (internal::traits<Derived>::Alignment>0) };
|
||||
EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF(NeedsToAlign)
|
||||
|
||||
EIGEN_STATIC_ASSERT(internal::check_implication(MaxRowsAtCompileTime==1 && MaxColsAtCompileTime!=1, (int(Options)&RowMajor)==RowMajor), INVALID_MATRIX_TEMPLATE_PARAMETERS)
|
||||
EIGEN_STATIC_ASSERT(internal::check_implication(MaxColsAtCompileTime==1 && MaxRowsAtCompileTime!=1, (int(Options)&RowMajor)==0), INVALID_MATRIX_TEMPLATE_PARAMETERS)
|
||||
EIGEN_STATIC_ASSERT((RowsAtCompileTime == Dynamic) || (RowsAtCompileTime >= 0), INVALID_MATRIX_TEMPLATE_PARAMETERS)
|
||||
EIGEN_STATIC_ASSERT((ColsAtCompileTime == Dynamic) || (ColsAtCompileTime >= 0), INVALID_MATRIX_TEMPLATE_PARAMETERS)
|
||||
EIGEN_STATIC_ASSERT((MaxRowsAtCompileTime == Dynamic) || (MaxRowsAtCompileTime >= 0), INVALID_MATRIX_TEMPLATE_PARAMETERS)
|
||||
EIGEN_STATIC_ASSERT((MaxColsAtCompileTime == Dynamic) || (MaxColsAtCompileTime >= 0), INVALID_MATRIX_TEMPLATE_PARAMETERS)
|
||||
EIGEN_STATIC_ASSERT((MaxRowsAtCompileTime == RowsAtCompileTime || RowsAtCompileTime==Dynamic), INVALID_MATRIX_TEMPLATE_PARAMETERS)
|
||||
EIGEN_STATIC_ASSERT((MaxColsAtCompileTime == ColsAtCompileTime || ColsAtCompileTime==Dynamic), INVALID_MATRIX_TEMPLATE_PARAMETERS)
|
||||
EIGEN_STATIC_ASSERT(((Options & (DontAlign|RowMajor)) == Options), INVALID_MATRIX_TEMPLATE_PARAMETERS)
|
||||
|
||||
EIGEN_DEVICE_FUNC
|
||||
Base& base() { return *static_cast<Base*>(this); }
|
||||
EIGEN_DEVICE_FUNC
|
||||
@@ -148,12 +155,10 @@ class PlainObjectBase : public internal::dense_xpr_base<Derived>::type
|
||||
* provided to by-pass the creation of an evaluator of the expression, thus saving compilation efforts.
|
||||
*
|
||||
* See DenseCoeffsBase<Derived,ReadOnlyAccessors>::coeff(Index) const for details. */
|
||||
EIGEN_DEVICE_FUNC
|
||||
EIGEN_STRONG_INLINE const Scalar& coeff(Index rowId, Index colId) const
|
||||
{
|
||||
if(Flags & RowMajorBit)
|
||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE constexpr const Scalar& coeff(Index rowId, Index colId) const {
|
||||
if (Flags & RowMajorBit)
|
||||
return m_storage.data()[colId + rowId * m_storage.cols()];
|
||||
else // column-major
|
||||
else // column-major
|
||||
return m_storage.data()[rowId + colId * m_storage.rows()];
|
||||
}
|
||||
|
||||
@@ -171,12 +176,10 @@ class PlainObjectBase : public internal::dense_xpr_base<Derived>::type
|
||||
* provided to by-pass the creation of an evaluator of the expression, thus saving compilation efforts.
|
||||
*
|
||||
* See DenseCoeffsBase<Derived,WriteAccessors>::coeffRef(Index,Index) const for details. */
|
||||
EIGEN_DEVICE_FUNC
|
||||
EIGEN_STRONG_INLINE Scalar& coeffRef(Index rowId, Index colId)
|
||||
{
|
||||
if(Flags & RowMajorBit)
|
||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE constexpr Scalar& coeffRef(Index rowId, Index colId) {
|
||||
if (Flags & RowMajorBit)
|
||||
return m_storage.data()[colId + rowId * m_storage.cols()];
|
||||
else // column-major
|
||||
else // column-major
|
||||
return m_storage.data()[rowId + colId * m_storage.rows()];
|
||||
}
|
||||
|
||||
@@ -184,28 +187,20 @@ class PlainObjectBase : public internal::dense_xpr_base<Derived>::type
|
||||
* provided to by-pass the creation of an evaluator of the expression, thus saving compilation efforts.
|
||||
*
|
||||
* See DenseCoeffsBase<Derived,WriteAccessors>::coeffRef(Index) const for details. */
|
||||
EIGEN_DEVICE_FUNC
|
||||
EIGEN_STRONG_INLINE Scalar& coeffRef(Index index)
|
||||
{
|
||||
return m_storage.data()[index];
|
||||
}
|
||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE constexpr Scalar& coeffRef(Index index) { return m_storage.data()[index]; }
|
||||
|
||||
/** This is the const version of coeffRef(Index,Index) which is thus synonym of coeff(Index,Index).
|
||||
* It is provided for convenience. */
|
||||
EIGEN_DEVICE_FUNC
|
||||
EIGEN_STRONG_INLINE const Scalar& coeffRef(Index rowId, Index colId) const
|
||||
{
|
||||
if(Flags & RowMajorBit)
|
||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE constexpr const Scalar& coeffRef(Index rowId, Index colId) const {
|
||||
if (Flags & RowMajorBit)
|
||||
return m_storage.data()[colId + rowId * m_storage.cols()];
|
||||
else // column-major
|
||||
else // column-major
|
||||
return m_storage.data()[rowId + colId * m_storage.rows()];
|
||||
}
|
||||
|
||||
/** This is the const version of coeffRef(Index) which is thus synonym of coeff(Index).
|
||||
* It is provided for convenience. */
|
||||
EIGEN_DEVICE_FUNC
|
||||
EIGEN_STRONG_INLINE const Scalar& coeffRef(Index index) const
|
||||
{
|
||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE constexpr const Scalar& coeffRef(Index index) const {
|
||||
return m_storage.data()[index];
|
||||
}
|
||||
|
||||
@@ -267,13 +262,11 @@ class PlainObjectBase : public internal::dense_xpr_base<Derived>::type
|
||||
*
|
||||
* \sa resize(Index) for vectors, resize(NoChange_t, Index), resize(Index, NoChange_t)
|
||||
*/
|
||||
EIGEN_DEVICE_FUNC
|
||||
EIGEN_STRONG_INLINE void resize(Index rows, Index cols)
|
||||
{
|
||||
eigen_assert( EIGEN_IMPLIES(RowsAtCompileTime!=Dynamic,rows==RowsAtCompileTime)
|
||||
&& EIGEN_IMPLIES(ColsAtCompileTime!=Dynamic,cols==ColsAtCompileTime)
|
||||
&& EIGEN_IMPLIES(RowsAtCompileTime==Dynamic && MaxRowsAtCompileTime!=Dynamic,rows<=MaxRowsAtCompileTime)
|
||||
&& EIGEN_IMPLIES(ColsAtCompileTime==Dynamic && MaxColsAtCompileTime!=Dynamic,cols<=MaxColsAtCompileTime)
|
||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE constexpr void resize(Index rows, Index cols) {
|
||||
eigen_assert(internal::check_implication(RowsAtCompileTime!=Dynamic, rows==RowsAtCompileTime)
|
||||
&& internal::check_implication(ColsAtCompileTime!=Dynamic, cols==ColsAtCompileTime)
|
||||
&& internal::check_implication(RowsAtCompileTime==Dynamic && MaxRowsAtCompileTime!=Dynamic, rows<=MaxRowsAtCompileTime)
|
||||
&& internal::check_implication(ColsAtCompileTime==Dynamic && MaxColsAtCompileTime!=Dynamic, cols<=MaxColsAtCompileTime)
|
||||
&& rows>=0 && cols>=0 && "Invalid sizes when resizing a matrix or array.");
|
||||
internal::check_rows_cols_for_overflow<MaxSizeAtCompileTime>::run(rows, cols);
|
||||
#ifdef EIGEN_INITIALIZE_COEFFS
|
||||
@@ -297,12 +290,13 @@ class PlainObjectBase : public internal::dense_xpr_base<Derived>::type
|
||||
*
|
||||
* \sa resize(Index,Index), resize(NoChange_t, Index), resize(Index, NoChange_t)
|
||||
*/
|
||||
EIGEN_DEVICE_FUNC
|
||||
inline void resize(Index size)
|
||||
{
|
||||
EIGEN_STATIC_ASSERT_VECTOR_ONLY(PlainObjectBase)
|
||||
eigen_assert(((SizeAtCompileTime == Dynamic && (MaxSizeAtCompileTime==Dynamic || size<=MaxSizeAtCompileTime)) || SizeAtCompileTime == size) && size>=0);
|
||||
#ifdef EIGEN_INITIALIZE_COEFFS
|
||||
EIGEN_DEVICE_FUNC inline constexpr void resize(Index size) {
|
||||
EIGEN_STATIC_ASSERT_VECTOR_ONLY(PlainObjectBase)
|
||||
eigen_assert(
|
||||
((SizeAtCompileTime == Dynamic && (MaxSizeAtCompileTime == Dynamic || size <= MaxSizeAtCompileTime)) ||
|
||||
SizeAtCompileTime == size) &&
|
||||
size >= 0);
|
||||
#ifdef EIGEN_INITIALIZE_COEFFS
|
||||
bool size_changed = size != this->size();
|
||||
#endif
|
||||
if(RowsAtCompileTime == 1)
|
||||
@@ -322,11 +316,7 @@ class PlainObjectBase : public internal::dense_xpr_base<Derived>::type
|
||||
*
|
||||
* \sa resize(Index,Index)
|
||||
*/
|
||||
EIGEN_DEVICE_FUNC
|
||||
inline void resize(NoChange_t, Index cols)
|
||||
{
|
||||
resize(rows(), cols);
|
||||
}
|
||||
EIGEN_DEVICE_FUNC inline constexpr void resize(NoChange_t, Index cols) { resize(rows(), cols); }
|
||||
|
||||
/** Resizes the matrix, changing only the number of rows. For the parameter of type NoChange_t, just pass the special value \c NoChange
|
||||
* as in the example below.
|
||||
@@ -336,11 +326,7 @@ class PlainObjectBase : public internal::dense_xpr_base<Derived>::type
|
||||
*
|
||||
* \sa resize(Index,Index)
|
||||
*/
|
||||
EIGEN_DEVICE_FUNC
|
||||
inline void resize(Index rows, NoChange_t)
|
||||
{
|
||||
resize(rows, cols());
|
||||
}
|
||||
EIGEN_DEVICE_FUNC inline constexpr void resize(Index rows, NoChange_t) { resize(rows, cols()); }
|
||||
|
||||
/** Resizes \c *this to have the same dimensions as \a other.
|
||||
* Takes care of doing all the checking that's needed.
|
||||
@@ -475,7 +461,6 @@ class PlainObjectBase : public internal::dense_xpr_base<Derived>::type
|
||||
EIGEN_DEVICE_FUNC
|
||||
EIGEN_STRONG_INLINE PlainObjectBase() : m_storage()
|
||||
{
|
||||
// _check_template_params();
|
||||
// EIGEN_INITIALIZE_COEFFS_IF_THAT_OPTION_IS_ENABLED
|
||||
}
|
||||
|
||||
@@ -486,11 +471,10 @@ class PlainObjectBase : public internal::dense_xpr_base<Derived>::type
|
||||
explicit PlainObjectBase(internal::constructor_without_unaligned_array_assert)
|
||||
: m_storage(internal::constructor_without_unaligned_array_assert())
|
||||
{
|
||||
// _check_template_params(); EIGEN_INITIALIZE_COEFFS_IF_THAT_OPTION_IS_ENABLED
|
||||
// EIGEN_INITIALIZE_COEFFS_IF_THAT_OPTION_IS_ENABLED
|
||||
}
|
||||
#endif
|
||||
|
||||
#if EIGEN_HAS_RVALUE_REFERENCES
|
||||
EIGEN_DEVICE_FUNC
|
||||
PlainObjectBase(PlainObjectBase&& other) EIGEN_NOEXCEPT
|
||||
: m_storage( std::move(other.m_storage) )
|
||||
@@ -500,11 +484,9 @@ class PlainObjectBase : public internal::dense_xpr_base<Derived>::type
|
||||
EIGEN_DEVICE_FUNC
|
||||
PlainObjectBase& operator=(PlainObjectBase&& other) EIGEN_NOEXCEPT
|
||||
{
|
||||
_check_template_params();
|
||||
m_storage = std::move(other.m_storage);
|
||||
return *this;
|
||||
}
|
||||
#endif
|
||||
|
||||
/** Copy constructor */
|
||||
EIGEN_DEVICE_FUNC
|
||||
@@ -514,17 +496,14 @@ class PlainObjectBase : public internal::dense_xpr_base<Derived>::type
|
||||
EIGEN_STRONG_INLINE PlainObjectBase(Index size, Index rows, Index cols)
|
||||
: m_storage(size, rows, cols)
|
||||
{
|
||||
// _check_template_params();
|
||||
// EIGEN_INITIALIZE_COEFFS_IF_THAT_OPTION_IS_ENABLED
|
||||
}
|
||||
|
||||
#if EIGEN_HAS_CXX11
|
||||
/** \brief Construct a row of column vector with fixed size from an arbitrary number of coefficients. \cpp11
|
||||
/** \brief Construct a row of column vector with fixed size from an arbitrary number of coefficients.
|
||||
*
|
||||
* \only_for_vectors
|
||||
*
|
||||
* This constructor is for 1D array or vectors with more than 4 coefficients.
|
||||
* There exists C++98 analogue constructors for fixed-size array/vector having 1, 2, 3, or 4 coefficients.
|
||||
*
|
||||
* \warning To construct a column (resp. row) vector of fixed length, the number of values passed to this
|
||||
* constructor must match the the fixed number of rows (resp. columns) of \c *this.
|
||||
@@ -534,7 +513,6 @@ class PlainObjectBase : public internal::dense_xpr_base<Derived>::type
|
||||
PlainObjectBase(const Scalar& a0, const Scalar& a1, const Scalar& a2, const Scalar& a3, const ArgTypes&... args)
|
||||
: m_storage()
|
||||
{
|
||||
_check_template_params();
|
||||
EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(PlainObjectBase, sizeof...(args) + 4);
|
||||
m_storage.data()[0] = a0;
|
||||
m_storage.data()[1] = a1;
|
||||
@@ -546,14 +524,11 @@ class PlainObjectBase : public internal::dense_xpr_base<Derived>::type
|
||||
}
|
||||
|
||||
/** \brief Constructs a Matrix or Array and initializes it by elements given by an initializer list of initializer
|
||||
* lists \cpp11
|
||||
* lists
|
||||
*/
|
||||
EIGEN_DEVICE_FUNC
|
||||
explicit EIGEN_STRONG_INLINE PlainObjectBase(const std::initializer_list<std::initializer_list<Scalar>>& list)
|
||||
: m_storage()
|
||||
{
|
||||
_check_template_params();
|
||||
|
||||
EIGEN_DEVICE_FUNC explicit constexpr EIGEN_STRONG_INLINE PlainObjectBase(
|
||||
const std::initializer_list<std::initializer_list<Scalar>>& list)
|
||||
: m_storage() {
|
||||
size_t list_size = 0;
|
||||
if (list.begin() != list.end()) {
|
||||
list_size = list.begin()->size();
|
||||
@@ -581,7 +556,6 @@ class PlainObjectBase : public internal::dense_xpr_base<Derived>::type
|
||||
}
|
||||
}
|
||||
}
|
||||
#endif // end EIGEN_HAS_CXX11
|
||||
|
||||
/** \sa PlainObjectBase::operator=(const EigenBase<OtherDerived>&) */
|
||||
template<typename OtherDerived>
|
||||
@@ -589,7 +563,6 @@ class PlainObjectBase : public internal::dense_xpr_base<Derived>::type
|
||||
EIGEN_STRONG_INLINE PlainObjectBase(const DenseBase<OtherDerived> &other)
|
||||
: m_storage()
|
||||
{
|
||||
_check_template_params();
|
||||
resizeLike(other);
|
||||
_set_noalias(other);
|
||||
}
|
||||
@@ -600,7 +573,6 @@ class PlainObjectBase : public internal::dense_xpr_base<Derived>::type
|
||||
EIGEN_STRONG_INLINE PlainObjectBase(const EigenBase<OtherDerived> &other)
|
||||
: m_storage()
|
||||
{
|
||||
_check_template_params();
|
||||
resizeLike(other);
|
||||
*this = other.derived();
|
||||
}
|
||||
@@ -609,7 +581,6 @@ class PlainObjectBase : public internal::dense_xpr_base<Derived>::type
|
||||
EIGEN_DEVICE_FUNC
|
||||
EIGEN_STRONG_INLINE PlainObjectBase(const ReturnByValue<OtherDerived>& other)
|
||||
{
|
||||
_check_template_params();
|
||||
// FIXME this does not automatically transpose vectors if necessary
|
||||
resize(other.rows(), other.cols());
|
||||
other.evalTo(this->derived());
|
||||
@@ -640,7 +611,7 @@ class PlainObjectBase : public internal::dense_xpr_base<Derived>::type
|
||||
*
|
||||
* \see class Map
|
||||
*/
|
||||
//@{
|
||||
///@{
|
||||
static inline ConstMapType Map(const Scalar* data)
|
||||
{ return ConstMapType(data); }
|
||||
static inline MapType Map(Scalar* data)
|
||||
@@ -704,7 +675,7 @@ class PlainObjectBase : public internal::dense_xpr_base<Derived>::type
|
||||
template<int Outer, int Inner>
|
||||
static inline typename StridedAlignedMapType<Stride<Outer, Inner> >::type MapAligned(Scalar* data, Index rows, Index cols, const Stride<Outer, Inner>& stride)
|
||||
{ return typename StridedAlignedMapType<Stride<Outer, Inner> >::type(data, rows, cols, stride); }
|
||||
//@}
|
||||
///@}
|
||||
|
||||
using Base::setConstant;
|
||||
EIGEN_DEVICE_FUNC Derived& setConstant(Index size, const Scalar& val);
|
||||
@@ -800,7 +771,7 @@ class PlainObjectBase : public internal::dense_xpr_base<Derived>::type
|
||||
|
||||
template<typename T0, typename T1>
|
||||
EIGEN_DEVICE_FUNC
|
||||
EIGEN_STRONG_INLINE void _init2(Index rows, Index cols, typename internal::enable_if<Base::SizeAtCompileTime!=2,T0>::type* = 0)
|
||||
EIGEN_STRONG_INLINE void _init2(Index rows, Index cols, std::enable_if_t<Base::SizeAtCompileTime!=2,T0>* = 0)
|
||||
{
|
||||
const bool t0_is_integer_alike = internal::is_valid_index_type<T0>::value;
|
||||
const bool t1_is_integer_alike = internal::is_valid_index_type<T1>::value;
|
||||
@@ -812,7 +783,7 @@ class PlainObjectBase : public internal::dense_xpr_base<Derived>::type
|
||||
|
||||
template<typename T0, typename T1>
|
||||
EIGEN_DEVICE_FUNC
|
||||
EIGEN_STRONG_INLINE void _init2(const T0& val0, const T1& val1, typename internal::enable_if<Base::SizeAtCompileTime==2,T0>::type* = 0)
|
||||
EIGEN_STRONG_INLINE void _init2(const T0& val0, const T1& val1, std::enable_if_t<Base::SizeAtCompileTime==2,T0>* = 0)
|
||||
{
|
||||
EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(PlainObjectBase, 2)
|
||||
m_storage.data()[0] = Scalar(val0);
|
||||
@@ -822,10 +793,10 @@ class PlainObjectBase : public internal::dense_xpr_base<Derived>::type
|
||||
template<typename T0, typename T1>
|
||||
EIGEN_DEVICE_FUNC
|
||||
EIGEN_STRONG_INLINE void _init2(const Index& val0, const Index& val1,
|
||||
typename internal::enable_if< (!internal::is_same<Index,Scalar>::value)
|
||||
&& (internal::is_same<T0,Index>::value)
|
||||
&& (internal::is_same<T1,Index>::value)
|
||||
&& Base::SizeAtCompileTime==2,T1>::type* = 0)
|
||||
std::enable_if_t< (!internal::is_same<Index,Scalar>::value)
|
||||
&& (internal::is_same<T0,Index>::value)
|
||||
&& (internal::is_same<T1,Index>::value)
|
||||
&& Base::SizeAtCompileTime==2,T1>* = 0)
|
||||
{
|
||||
EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(PlainObjectBase, 2)
|
||||
m_storage.data()[0] = Scalar(val0);
|
||||
@@ -836,8 +807,8 @@ class PlainObjectBase : public internal::dense_xpr_base<Derived>::type
|
||||
// then the argument is meant to be the size of the object.
|
||||
template<typename T>
|
||||
EIGEN_DEVICE_FUNC
|
||||
EIGEN_STRONG_INLINE void _init1(Index size, typename internal::enable_if< (Base::SizeAtCompileTime!=1 || !internal::is_convertible<T, Scalar>::value)
|
||||
&& ((!internal::is_same<typename internal::traits<Derived>::XprKind,ArrayXpr>::value || Base::SizeAtCompileTime==Dynamic)),T>::type* = 0)
|
||||
EIGEN_STRONG_INLINE void _init1(Index size, std::enable_if_t< (Base::SizeAtCompileTime!=1 || !internal::is_convertible<T, Scalar>::value)
|
||||
&& ((!internal::is_same<typename internal::traits<Derived>::XprKind,ArrayXpr>::value || Base::SizeAtCompileTime==Dynamic)),T>* = 0)
|
||||
{
|
||||
// NOTE MSVC 2008 complains if we directly put bool(NumTraits<T>::IsInteger) as the EIGEN_STATIC_ASSERT argument.
|
||||
const bool is_integer_alike = internal::is_valid_index_type<T>::value;
|
||||
@@ -850,7 +821,7 @@ class PlainObjectBase : public internal::dense_xpr_base<Derived>::type
|
||||
// We have a 1x1 matrix/array => the argument is interpreted as the value of the unique coefficient (case where scalar type can be implicitly converted)
|
||||
template<typename T>
|
||||
EIGEN_DEVICE_FUNC
|
||||
EIGEN_STRONG_INLINE void _init1(const Scalar& val0, typename internal::enable_if<Base::SizeAtCompileTime==1 && internal::is_convertible<T, Scalar>::value,T>::type* = 0)
|
||||
EIGEN_STRONG_INLINE void _init1(const Scalar& val0, std::enable_if_t<Base::SizeAtCompileTime==1 && internal::is_convertible<T, Scalar>::value,T>* = 0)
|
||||
{
|
||||
EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(PlainObjectBase, 1)
|
||||
m_storage.data()[0] = val0;
|
||||
@@ -860,10 +831,10 @@ class PlainObjectBase : public internal::dense_xpr_base<Derived>::type
|
||||
template<typename T>
|
||||
EIGEN_DEVICE_FUNC
|
||||
EIGEN_STRONG_INLINE void _init1(const Index& val0,
|
||||
typename internal::enable_if< (!internal::is_same<Index,Scalar>::value)
|
||||
&& (internal::is_same<Index,T>::value)
|
||||
&& Base::SizeAtCompileTime==1
|
||||
&& internal::is_convertible<T, Scalar>::value,T*>::type* = 0)
|
||||
std::enable_if_t< (!internal::is_same<Index,Scalar>::value)
|
||||
&& (internal::is_same<Index,T>::value)
|
||||
&& Base::SizeAtCompileTime==1
|
||||
&& internal::is_convertible<T, Scalar>::value,T*>* = 0)
|
||||
{
|
||||
EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(PlainObjectBase, 1)
|
||||
m_storage.data()[0] = Scalar(val0);
|
||||
@@ -916,10 +887,10 @@ class PlainObjectBase : public internal::dense_xpr_base<Derived>::type
|
||||
template<typename T>
|
||||
EIGEN_DEVICE_FUNC
|
||||
EIGEN_STRONG_INLINE void _init1(const Scalar& val0,
|
||||
typename internal::enable_if< Base::SizeAtCompileTime!=Dynamic
|
||||
&& Base::SizeAtCompileTime!=1
|
||||
&& internal::is_convertible<T, Scalar>::value
|
||||
&& internal::is_same<typename internal::traits<Derived>::XprKind,ArrayXpr>::value,T>::type* = 0)
|
||||
std::enable_if_t< Base::SizeAtCompileTime!=Dynamic
|
||||
&& Base::SizeAtCompileTime!=1
|
||||
&& internal::is_convertible<T, Scalar>::value
|
||||
&& internal::is_same<typename internal::traits<Derived>::XprKind,ArrayXpr>::value,T>* = 0)
|
||||
{
|
||||
Base::setConstant(val0);
|
||||
}
|
||||
@@ -928,12 +899,12 @@ class PlainObjectBase : public internal::dense_xpr_base<Derived>::type
|
||||
template<typename T>
|
||||
EIGEN_DEVICE_FUNC
|
||||
EIGEN_STRONG_INLINE void _init1(const Index& val0,
|
||||
typename internal::enable_if< (!internal::is_same<Index,Scalar>::value)
|
||||
&& (internal::is_same<Index,T>::value)
|
||||
&& Base::SizeAtCompileTime!=Dynamic
|
||||
&& Base::SizeAtCompileTime!=1
|
||||
&& internal::is_convertible<T, Scalar>::value
|
||||
&& internal::is_same<typename internal::traits<Derived>::XprKind,ArrayXpr>::value,T*>::type* = 0)
|
||||
std::enable_if_t< (!internal::is_same<Index,Scalar>::value)
|
||||
&& (internal::is_same<Index,T>::value)
|
||||
&& Base::SizeAtCompileTime!=Dynamic
|
||||
&& Base::SizeAtCompileTime!=1
|
||||
&& internal::is_convertible<T, Scalar>::value
|
||||
&& internal::is_same<typename internal::traits<Derived>::XprKind,ArrayXpr>::value,T*>* = 0)
|
||||
{
|
||||
Base::setConstant(val0);
|
||||
}
|
||||
@@ -964,21 +935,6 @@ class PlainObjectBase : public internal::dense_xpr_base<Derived>::type
|
||||
void swap(DenseBase<OtherDerived> const & other)
|
||||
{ Base::swap(other.derived()); }
|
||||
|
||||
EIGEN_DEVICE_FUNC
|
||||
static EIGEN_STRONG_INLINE void _check_template_params()
|
||||
{
|
||||
EIGEN_STATIC_ASSERT((EIGEN_IMPLIES(MaxRowsAtCompileTime==1 && MaxColsAtCompileTime!=1, (int(Options)&RowMajor)==RowMajor)
|
||||
&& EIGEN_IMPLIES(MaxColsAtCompileTime==1 && MaxRowsAtCompileTime!=1, (int(Options)&RowMajor)==0)
|
||||
&& ((RowsAtCompileTime == Dynamic) || (RowsAtCompileTime >= 0))
|
||||
&& ((ColsAtCompileTime == Dynamic) || (ColsAtCompileTime >= 0))
|
||||
&& ((MaxRowsAtCompileTime == Dynamic) || (MaxRowsAtCompileTime >= 0))
|
||||
&& ((MaxColsAtCompileTime == Dynamic) || (MaxColsAtCompileTime >= 0))
|
||||
&& (MaxRowsAtCompileTime == RowsAtCompileTime || RowsAtCompileTime==Dynamic)
|
||||
&& (MaxColsAtCompileTime == ColsAtCompileTime || ColsAtCompileTime==Dynamic)
|
||||
&& (Options & (DontAlign|RowMajor)) == Options),
|
||||
INVALID_MATRIX_TEMPLATE_PARAMETERS)
|
||||
}
|
||||
|
||||
enum { IsPlainObjectBase = 1 };
|
||||
#endif
|
||||
public:
|
||||
@@ -999,11 +955,7 @@ namespace internal {
|
||||
template <typename Derived, typename OtherDerived, bool IsVector>
|
||||
struct conservative_resize_like_impl
|
||||
{
|
||||
#if EIGEN_HAS_TYPE_TRAITS
|
||||
static const bool IsRelocatable = std::is_trivially_copyable<typename Derived::Scalar>::value;
|
||||
#else
|
||||
static const bool IsRelocatable = !NumTraits<typename Derived::Scalar>::RequireInitialization;
|
||||
#endif
|
||||
static constexpr bool IsRelocatable = std::is_trivially_copyable<typename Derived::Scalar>::value;
|
||||
static void run(DenseBase<Derived>& _this, Index rows, Index cols)
|
||||
{
|
||||
if (_this.rows() == rows && _this.cols() == cols) return;
|
||||
|
||||
@@ -10,6 +10,8 @@
|
||||
#ifndef EIGEN_PRODUCT_H
|
||||
#define EIGEN_PRODUCT_H
|
||||
|
||||
#include "./InternalHeaderCheck.h"
|
||||
|
||||
namespace Eigen {
|
||||
|
||||
template<typename Lhs, typename Rhs, int Option, typename StorageKind> class ProductImpl;
|
||||
@@ -19,8 +21,8 @@ namespace internal {
|
||||
template<typename Lhs, typename Rhs, int Option>
|
||||
struct traits<Product<Lhs, Rhs, Option> >
|
||||
{
|
||||
typedef typename remove_all<Lhs>::type LhsCleaned;
|
||||
typedef typename remove_all<Rhs>::type RhsCleaned;
|
||||
typedef remove_all_t<Lhs> LhsCleaned;
|
||||
typedef remove_all_t<Rhs> RhsCleaned;
|
||||
typedef traits<LhsCleaned> LhsTraits;
|
||||
typedef traits<RhsCleaned> RhsTraits;
|
||||
|
||||
@@ -40,7 +42,7 @@ struct traits<Product<Lhs, Rhs, Option> >
|
||||
MaxColsAtCompileTime = RhsTraits::MaxColsAtCompileTime,
|
||||
|
||||
// FIXME: only needed by GeneralMatrixMatrixTriangular
|
||||
InnerSize = EIGEN_SIZE_MIN_PREFER_FIXED(LhsTraits::ColsAtCompileTime, RhsTraits::RowsAtCompileTime),
|
||||
InnerSize = min_size_prefer_fixed(LhsTraits::ColsAtCompileTime, RhsTraits::RowsAtCompileTime),
|
||||
|
||||
// The storage order is somewhat arbitrary here. The correct one will be determined through the evaluator.
|
||||
Flags = (MaxRowsAtCompileTime==1 && MaxColsAtCompileTime!=1) ? RowMajorBit
|
||||
@@ -58,8 +60,8 @@ struct traits<Product<Lhs, Rhs, Option> >
|
||||
*
|
||||
* \brief Expression of the product of two arbitrary matrices or vectors
|
||||
*
|
||||
* \tparam _Lhs the type of the left-hand side expression
|
||||
* \tparam _Rhs the type of the right-hand side expression
|
||||
* \tparam Lhs_ the type of the left-hand side expression
|
||||
* \tparam Rhs_ the type of the right-hand side expression
|
||||
*
|
||||
* This class represents an expression of the product of two arbitrary matrices.
|
||||
*
|
||||
@@ -67,16 +69,16 @@ struct traits<Product<Lhs, Rhs, Option> >
|
||||
* \tparam Option can be DefaultProduct, AliasFreeProduct, or LazyProduct
|
||||
*
|
||||
*/
|
||||
template<typename _Lhs, typename _Rhs, int Option>
|
||||
class Product : public ProductImpl<_Lhs,_Rhs,Option,
|
||||
typename internal::product_promote_storage_type<typename internal::traits<_Lhs>::StorageKind,
|
||||
typename internal::traits<_Rhs>::StorageKind,
|
||||
internal::product_type<_Lhs,_Rhs>::ret>::ret>
|
||||
template<typename Lhs_, typename Rhs_, int Option>
|
||||
class Product : public ProductImpl<Lhs_,Rhs_,Option,
|
||||
typename internal::product_promote_storage_type<typename internal::traits<Lhs_>::StorageKind,
|
||||
typename internal::traits<Rhs_>::StorageKind,
|
||||
internal::product_type<Lhs_,Rhs_>::ret>::ret>
|
||||
{
|
||||
public:
|
||||
|
||||
typedef _Lhs Lhs;
|
||||
typedef _Rhs Rhs;
|
||||
typedef Lhs_ Lhs;
|
||||
typedef Rhs_ Rhs;
|
||||
|
||||
typedef typename ProductImpl<
|
||||
Lhs, Rhs, Option,
|
||||
@@ -87,8 +89,8 @@ class Product : public ProductImpl<_Lhs,_Rhs,Option,
|
||||
|
||||
typedef typename internal::ref_selector<Lhs>::type LhsNested;
|
||||
typedef typename internal::ref_selector<Rhs>::type RhsNested;
|
||||
typedef typename internal::remove_all<LhsNested>::type LhsNestedCleaned;
|
||||
typedef typename internal::remove_all<RhsNested>::type RhsNestedCleaned;
|
||||
typedef internal::remove_all_t<LhsNested> LhsNestedCleaned;
|
||||
typedef internal::remove_all_t<RhsNested> RhsNestedCleaned;
|
||||
|
||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
|
||||
Product(const Lhs& lhs, const Rhs& rhs) : m_lhs(lhs), m_rhs(rhs)
|
||||
|
||||
@@ -13,6 +13,8 @@
|
||||
#ifndef EIGEN_PRODUCTEVALUATORS_H
|
||||
#define EIGEN_PRODUCTEVALUATORS_H
|
||||
|
||||
#include "./InternalHeaderCheck.h"
|
||||
|
||||
namespace Eigen {
|
||||
|
||||
namespace internal {
|
||||
@@ -107,14 +109,14 @@ struct product_evaluator<Product<Lhs, Rhs, Options>, ProductTag, LhsShape, RhsSh
|
||||
explicit product_evaluator(const XprType& xpr)
|
||||
: m_result(xpr.rows(), xpr.cols())
|
||||
{
|
||||
::new (static_cast<Base*>(this)) Base(m_result);
|
||||
internal::construct_at<Base>(this, m_result);
|
||||
|
||||
// FIXME shall we handle nested_eval here?,
|
||||
// if so, then we must take care at removing the call to nested_eval in the specializations (e.g., in permutation_matrix_product, transposition_matrix_product, etc.)
|
||||
// typedef typename internal::nested_eval<Lhs,Rhs::ColsAtCompileTime>::type LhsNested;
|
||||
// typedef typename internal::nested_eval<Rhs,Lhs::RowsAtCompileTime>::type RhsNested;
|
||||
// typedef typename internal::remove_all<LhsNested>::type LhsNestedCleaned;
|
||||
// typedef typename internal::remove_all<RhsNested>::type RhsNestedCleaned;
|
||||
// typedef internal::remove_all_t<LhsNested> LhsNestedCleaned;
|
||||
// typedef internal::remove_all_t<RhsNested> RhsNestedCleaned;
|
||||
//
|
||||
// const LhsNested lhs(xpr.lhs());
|
||||
// const RhsNested rhs(xpr.rhs());
|
||||
@@ -134,7 +136,7 @@ protected:
|
||||
// Dense = Product
|
||||
template< typename DstXprType, typename Lhs, typename Rhs, int Options, typename Scalar>
|
||||
struct Assignment<DstXprType, Product<Lhs,Rhs,Options>, internal::assign_op<Scalar,Scalar>, Dense2Dense,
|
||||
typename enable_if<(Options==DefaultProduct || Options==AliasFreeProduct)>::type>
|
||||
std::enable_if_t<(Options==DefaultProduct || Options==AliasFreeProduct)>>
|
||||
{
|
||||
typedef Product<Lhs,Rhs,Options> SrcXprType;
|
||||
static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
|
||||
@@ -152,7 +154,7 @@ struct Assignment<DstXprType, Product<Lhs,Rhs,Options>, internal::assign_op<Scal
|
||||
// Dense += Product
|
||||
template< typename DstXprType, typename Lhs, typename Rhs, int Options, typename Scalar>
|
||||
struct Assignment<DstXprType, Product<Lhs,Rhs,Options>, internal::add_assign_op<Scalar,Scalar>, Dense2Dense,
|
||||
typename enable_if<(Options==DefaultProduct || Options==AliasFreeProduct)>::type>
|
||||
std::enable_if_t<(Options==DefaultProduct || Options==AliasFreeProduct)>>
|
||||
{
|
||||
typedef Product<Lhs,Rhs,Options> SrcXprType;
|
||||
static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
|
||||
@@ -167,7 +169,7 @@ struct Assignment<DstXprType, Product<Lhs,Rhs,Options>, internal::add_assign_op<
|
||||
// Dense -= Product
|
||||
template< typename DstXprType, typename Lhs, typename Rhs, int Options, typename Scalar>
|
||||
struct Assignment<DstXprType, Product<Lhs,Rhs,Options>, internal::sub_assign_op<Scalar,Scalar>, Dense2Dense,
|
||||
typename enable_if<(Options==DefaultProduct || Options==AliasFreeProduct)>::type>
|
||||
std::enable_if_t<(Options==DefaultProduct || Options==AliasFreeProduct)>>
|
||||
{
|
||||
typedef Product<Lhs,Rhs,Options> SrcXprType;
|
||||
static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
|
||||
@@ -296,7 +298,7 @@ void EIGEN_DEVICE_FUNC outer_product_selector_run(Dst& dst, const Lhs &lhs, cons
|
||||
template<typename Lhs, typename Rhs>
|
||||
struct generic_product_impl<Lhs,Rhs,DenseShape,DenseShape,OuterProduct>
|
||||
{
|
||||
template<typename T> struct is_row_major : internal::conditional<(int(T::Flags)&RowMajorBit), internal::true_type, internal::false_type>::type {};
|
||||
template<typename T> struct is_row_major : std::conditional_t<(int(T::Flags)&RowMajorBit), internal::true_type, internal::false_type> {};
|
||||
typedef typename Product<Lhs,Rhs>::Scalar Scalar;
|
||||
|
||||
// TODO it would be nice to be able to exploit our *_assign_op functors for that purpose
|
||||
@@ -370,7 +372,7 @@ struct generic_product_impl<Lhs,Rhs,DenseShape,DenseShape,GemvProduct>
|
||||
typedef typename nested_eval<Rhs,1>::type RhsNested;
|
||||
typedef typename Product<Lhs,Rhs>::Scalar Scalar;
|
||||
enum { Side = Lhs::IsVectorAtCompileTime ? OnTheLeft : OnTheRight };
|
||||
typedef typename internal::remove_all<typename internal::conditional<int(Side)==OnTheRight,LhsNested,RhsNested>::type>::type MatrixType;
|
||||
typedef internal::remove_all_t<std::conditional_t<int(Side)==OnTheRight,LhsNested,RhsNested>> MatrixType;
|
||||
|
||||
template<typename Dest>
|
||||
static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void scaleAndAddTo(Dest& dst, const Lhs& lhs, const Rhs& rhs, const Scalar& alpha)
|
||||
@@ -427,8 +429,8 @@ struct generic_product_impl<Lhs,Rhs,DenseShape,DenseShape,CoeffBasedProductMode>
|
||||
// 3 - it makes this fallback consistent with the heavy GEMM routine.
|
||||
// 4 - it fully by-passes huge stack allocation attempts when multiplying huge fixed-size matrices.
|
||||
// (see https://stackoverflow.com/questions/54738495)
|
||||
// For small fixed sizes matrices, howver, the gains are less obvious, it is sometimes x2 faster, but sometimes x3 slower,
|
||||
// and the behavior depends also a lot on the compiler... This is why this re-writting strategy is currently
|
||||
// For small fixed sizes matrices, however, the gains are less obvious, it is sometimes x2 faster, but sometimes x3 slower,
|
||||
// and the behavior depends also a lot on the compiler... This is why this re-writing strategy is currently
|
||||
// enabled only when falling back from the main GEMM.
|
||||
template<typename Dst, typename Func>
|
||||
static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
|
||||
@@ -448,7 +450,7 @@ struct generic_product_impl<Lhs,Rhs,DenseShape,DenseShape,CoeffBasedProductMode>
|
||||
blas_traits<Rhs>::extract(rhs).template conjugateIf<ConjRhs>(),
|
||||
func,
|
||||
actualAlpha,
|
||||
typename conditional<HasScalarFactor,true_type,false_type>::type());
|
||||
std::conditional_t<HasScalarFactor,true_type,false_type>());
|
||||
}
|
||||
|
||||
protected:
|
||||
@@ -458,7 +460,7 @@ protected:
|
||||
void eval_dynamic_impl(Dst& dst, const LhsT& lhs, const RhsT& rhs, const Func &func, const Scalar& s /* == 1 */, false_type)
|
||||
{
|
||||
EIGEN_UNUSED_VARIABLE(s);
|
||||
eigen_internal_assert(s==Scalar(1));
|
||||
eigen_internal_assert(numext::is_exactly_one(s));
|
||||
call_restricted_packet_assignment_no_alias(dst, lhs.lazyProduct(rhs), func);
|
||||
}
|
||||
|
||||
@@ -526,8 +528,8 @@ struct product_evaluator<Product<Lhs, Rhs, LazyProduct>, ProductTag, DenseShape,
|
||||
typedef typename internal::nested_eval<Lhs,Rhs::ColsAtCompileTime>::type LhsNested;
|
||||
typedef typename internal::nested_eval<Rhs,Lhs::RowsAtCompileTime>::type RhsNested;
|
||||
|
||||
typedef typename internal::remove_all<LhsNested>::type LhsNestedCleaned;
|
||||
typedef typename internal::remove_all<RhsNested>::type RhsNestedCleaned;
|
||||
typedef internal::remove_all_t<LhsNested> LhsNestedCleaned;
|
||||
typedef internal::remove_all_t<RhsNested> RhsNestedCleaned;
|
||||
|
||||
typedef evaluator<LhsNestedCleaned> LhsEtorType;
|
||||
typedef evaluator<RhsNestedCleaned> RhsEtorType;
|
||||
@@ -535,7 +537,7 @@ struct product_evaluator<Product<Lhs, Rhs, LazyProduct>, ProductTag, DenseShape,
|
||||
enum {
|
||||
RowsAtCompileTime = LhsNestedCleaned::RowsAtCompileTime,
|
||||
ColsAtCompileTime = RhsNestedCleaned::ColsAtCompileTime,
|
||||
InnerSize = EIGEN_SIZE_MIN_PREFER_FIXED(LhsNestedCleaned::ColsAtCompileTime, RhsNestedCleaned::RowsAtCompileTime),
|
||||
InnerSize = min_size_prefer_fixed(LhsNestedCleaned::ColsAtCompileTime, RhsNestedCleaned::RowsAtCompileTime),
|
||||
MaxRowsAtCompileTime = LhsNestedCleaned::MaxRowsAtCompileTime,
|
||||
MaxColsAtCompileTime = RhsNestedCleaned::MaxColsAtCompileTime
|
||||
};
|
||||
@@ -564,8 +566,8 @@ struct product_evaluator<Product<Lhs, Rhs, LazyProduct>, ProductTag, DenseShape,
|
||||
RhsVecPacketSize = unpacket_traits<RhsVecPacketType>::size,
|
||||
|
||||
// Here, we don't care about alignment larger than the usable packet size.
|
||||
LhsAlignment = EIGEN_PLAIN_ENUM_MIN(LhsEtorType::Alignment,LhsVecPacketSize*int(sizeof(typename LhsNestedCleaned::Scalar))),
|
||||
RhsAlignment = EIGEN_PLAIN_ENUM_MIN(RhsEtorType::Alignment,RhsVecPacketSize*int(sizeof(typename RhsNestedCleaned::Scalar))),
|
||||
LhsAlignment = plain_enum_min(LhsEtorType::Alignment, LhsVecPacketSize*int(sizeof(typename LhsNestedCleaned::Scalar))),
|
||||
RhsAlignment = plain_enum_min(RhsEtorType::Alignment, RhsVecPacketSize*int(sizeof(typename RhsNestedCleaned::Scalar))),
|
||||
|
||||
SameType = is_same<typename LhsNestedCleaned::Scalar,typename RhsNestedCleaned::Scalar>::value,
|
||||
|
||||
@@ -585,8 +587,8 @@ struct product_evaluator<Product<Lhs, Rhs, LazyProduct>, ProductTag, DenseShape,
|
||||
LhsOuterStrideBytes = int(LhsNestedCleaned::OuterStrideAtCompileTime) * int(sizeof(typename LhsNestedCleaned::Scalar)),
|
||||
RhsOuterStrideBytes = int(RhsNestedCleaned::OuterStrideAtCompileTime) * int(sizeof(typename RhsNestedCleaned::Scalar)),
|
||||
|
||||
Alignment = bool(CanVectorizeLhs) ? (LhsOuterStrideBytes<=0 || (int(LhsOuterStrideBytes) % EIGEN_PLAIN_ENUM_MAX(1,LhsAlignment))!=0 ? 0 : LhsAlignment)
|
||||
: bool(CanVectorizeRhs) ? (RhsOuterStrideBytes<=0 || (int(RhsOuterStrideBytes) % EIGEN_PLAIN_ENUM_MAX(1,RhsAlignment))!=0 ? 0 : RhsAlignment)
|
||||
Alignment = bool(CanVectorizeLhs) ? (LhsOuterStrideBytes<=0 || (int(LhsOuterStrideBytes) % plain_enum_max(1, LhsAlignment))!=0 ? 0 : LhsAlignment)
|
||||
: bool(CanVectorizeRhs) ? (RhsOuterStrideBytes<=0 || (int(RhsOuterStrideBytes) % plain_enum_max(1, RhsAlignment))!=0 ? 0 : RhsAlignment)
|
||||
: 0,
|
||||
|
||||
/* CanVectorizeInner deserves special explanation. It does not affect the product flags. It is not used outside
|
||||
@@ -640,8 +642,8 @@ struct product_evaluator<Product<Lhs, Rhs, LazyProduct>, ProductTag, DenseShape,
|
||||
}
|
||||
|
||||
protected:
|
||||
typename internal::add_const_on_value_type<LhsNested>::type m_lhs;
|
||||
typename internal::add_const_on_value_type<RhsNested>::type m_rhs;
|
||||
add_const_on_value_type_t<LhsNested> m_lhs;
|
||||
add_const_on_value_type_t<RhsNested> m_rhs;
|
||||
|
||||
LhsEtorType m_lhsImpl;
|
||||
RhsEtorType m_rhsImpl;
|
||||
@@ -836,22 +838,22 @@ public:
|
||||
MatrixFlags = evaluator<MatrixType>::Flags,
|
||||
DiagFlags = evaluator<DiagonalType>::Flags,
|
||||
|
||||
_StorageOrder = (Derived::MaxRowsAtCompileTime==1 && Derived::MaxColsAtCompileTime!=1) ? RowMajor
|
||||
StorageOrder_ = (Derived::MaxRowsAtCompileTime==1 && Derived::MaxColsAtCompileTime!=1) ? RowMajor
|
||||
: (Derived::MaxColsAtCompileTime==1 && Derived::MaxRowsAtCompileTime!=1) ? ColMajor
|
||||
: MatrixFlags & RowMajorBit ? RowMajor : ColMajor,
|
||||
_SameStorageOrder = _StorageOrder == (MatrixFlags & RowMajorBit ? RowMajor : ColMajor),
|
||||
SameStorageOrder_ = StorageOrder_ == (MatrixFlags & RowMajorBit ? RowMajor : ColMajor),
|
||||
|
||||
_ScalarAccessOnDiag = !((int(_StorageOrder) == ColMajor && int(ProductOrder) == OnTheLeft)
|
||||
||(int(_StorageOrder) == RowMajor && int(ProductOrder) == OnTheRight)),
|
||||
_SameTypes = is_same<typename MatrixType::Scalar, typename DiagonalType::Scalar>::value,
|
||||
ScalarAccessOnDiag_ = !((int(StorageOrder_) == ColMajor && int(ProductOrder) == OnTheLeft)
|
||||
||(int(StorageOrder_) == RowMajor && int(ProductOrder) == OnTheRight)),
|
||||
SameTypes_ = is_same<typename MatrixType::Scalar, typename DiagonalType::Scalar>::value,
|
||||
// FIXME currently we need same types, but in the future the next rule should be the one
|
||||
//_Vectorizable = bool(int(MatrixFlags)&PacketAccessBit) && ((!_PacketOnDiag) || (_SameTypes && bool(int(DiagFlags)&PacketAccessBit))),
|
||||
_Vectorizable = bool(int(MatrixFlags)&PacketAccessBit)
|
||||
&& _SameTypes
|
||||
&& (_SameStorageOrder || (MatrixFlags&LinearAccessBit)==LinearAccessBit)
|
||||
&& (_ScalarAccessOnDiag || (bool(int(DiagFlags)&PacketAccessBit))),
|
||||
_LinearAccessMask = (MatrixType::RowsAtCompileTime==1 || MatrixType::ColsAtCompileTime==1) ? LinearAccessBit : 0,
|
||||
Flags = ((HereditaryBits|_LinearAccessMask) & (unsigned int)(MatrixFlags)) | (_Vectorizable ? PacketAccessBit : 0),
|
||||
//Vectorizable_ = bool(int(MatrixFlags)&PacketAccessBit) && ((!_PacketOnDiag) || (SameTypes_ && bool(int(DiagFlags)&PacketAccessBit))),
|
||||
Vectorizable_ = bool(int(MatrixFlags)&PacketAccessBit)
|
||||
&& SameTypes_
|
||||
&& (SameStorageOrder_ || (MatrixFlags&LinearAccessBit)==LinearAccessBit)
|
||||
&& (ScalarAccessOnDiag_ || (bool(int(DiagFlags)&PacketAccessBit))),
|
||||
LinearAccessMask_ = (MatrixType::RowsAtCompileTime==1 || MatrixType::ColsAtCompileTime==1) ? LinearAccessBit : 0,
|
||||
Flags = ((HereditaryBits|LinearAccessMask_) & (unsigned int)(MatrixFlags)) | (Vectorizable_ ? PacketAccessBit : 0),
|
||||
Alignment = evaluator<MatrixType>::Alignment,
|
||||
|
||||
AsScalarProduct = (DiagonalType::SizeAtCompileTime==1)
|
||||
@@ -887,7 +889,7 @@ protected:
|
||||
{
|
||||
enum {
|
||||
InnerSize = (MatrixType::Flags & RowMajorBit) ? MatrixType::ColsAtCompileTime : MatrixType::RowsAtCompileTime,
|
||||
DiagonalPacketLoadMode = EIGEN_PLAIN_ENUM_MIN(LoadMode,((InnerSize%16) == 0) ? int(Aligned16) : int(evaluator<DiagonalType>::Alignment)) // FIXME hardcoded 16!!
|
||||
DiagonalPacketLoadMode = plain_enum_min(LoadMode,((InnerSize%16) == 0) ? int(Aligned16) : int(evaluator<DiagonalType>::Alignment)) // FIXME hardcoded 16!!
|
||||
};
|
||||
return internal::pmul(m_matImpl.template packet<LoadMode,PacketType>(row, col),
|
||||
m_diagImpl.template packet<DiagonalPacketLoadMode,PacketType>(id));
|
||||
@@ -913,7 +915,7 @@ struct product_evaluator<Product<Lhs, Rhs, ProductKind>, ProductTag, DiagonalSha
|
||||
typedef typename Lhs::DiagonalVectorType DiagonalType;
|
||||
|
||||
|
||||
enum { StorageOrder = Base::_StorageOrder };
|
||||
enum { StorageOrder = Base::StorageOrder_ };
|
||||
|
||||
EIGEN_DEVICE_FUNC explicit product_evaluator(const XprType& xpr)
|
||||
: Base(xpr.rhs(), xpr.lhs().diagonal())
|
||||
@@ -932,7 +934,7 @@ struct product_evaluator<Product<Lhs, Rhs, ProductKind>, ProductTag, DiagonalSha
|
||||
// FIXME: NVCC used to complain about the template keyword, but we have to check whether this is still the case.
|
||||
// See also similar calls below.
|
||||
return this->template packet_impl<LoadMode,PacketType>(row,col, row,
|
||||
typename internal::conditional<int(StorageOrder)==RowMajor, internal::true_type, internal::false_type>::type());
|
||||
std::conditional_t<int(StorageOrder)==RowMajor, internal::true_type, internal::false_type>());
|
||||
}
|
||||
|
||||
template<int LoadMode,typename PacketType>
|
||||
@@ -957,7 +959,7 @@ struct product_evaluator<Product<Lhs, Rhs, ProductKind>, ProductTag, DenseShape,
|
||||
typedef Product<Lhs, Rhs, ProductKind> XprType;
|
||||
typedef typename XprType::PlainObject PlainObject;
|
||||
|
||||
enum { StorageOrder = Base::_StorageOrder };
|
||||
enum { StorageOrder = Base::StorageOrder_ };
|
||||
|
||||
EIGEN_DEVICE_FUNC explicit product_evaluator(const XprType& xpr)
|
||||
: Base(xpr.lhs(), xpr.rhs().diagonal())
|
||||
@@ -974,7 +976,7 @@ struct product_evaluator<Product<Lhs, Rhs, ProductKind>, ProductTag, DenseShape,
|
||||
EIGEN_STRONG_INLINE PacketType packet(Index row, Index col) const
|
||||
{
|
||||
return this->template packet_impl<LoadMode,PacketType>(row,col, col,
|
||||
typename internal::conditional<int(StorageOrder)==ColMajor, internal::true_type, internal::false_type>::type());
|
||||
std::conditional_t<int(StorageOrder)==ColMajor, internal::true_type, internal::false_type>());
|
||||
}
|
||||
|
||||
template<int LoadMode,typename PacketType>
|
||||
@@ -1001,7 +1003,7 @@ template<typename ExpressionType, int Side, bool Transposed>
|
||||
struct permutation_matrix_product<ExpressionType, Side, Transposed, DenseShape>
|
||||
{
|
||||
typedef typename nested_eval<ExpressionType, 1>::type MatrixType;
|
||||
typedef typename remove_all<MatrixType>::type MatrixTypeCleaned;
|
||||
typedef remove_all_t<MatrixType> MatrixTypeCleaned;
|
||||
|
||||
template<typename Dest, typename PermutationType>
|
||||
static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void run(Dest& dst, const PermutationType& perm, const ExpressionType& xpr)
|
||||
@@ -1109,7 +1111,7 @@ template<typename ExpressionType, int Side, bool Transposed, typename Expression
|
||||
struct transposition_matrix_product
|
||||
{
|
||||
typedef typename nested_eval<ExpressionType, 1>::type MatrixType;
|
||||
typedef typename remove_all<MatrixType>::type MatrixTypeCleaned;
|
||||
typedef remove_all_t<MatrixType> MatrixTypeCleaned;
|
||||
|
||||
template<typename Dest, typename TranspositionType>
|
||||
static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void run(Dest& dst, const TranspositionType& tr, const ExpressionType& xpr)
|
||||
@@ -1172,6 +1174,40 @@ struct generic_product_impl<Lhs, Transpose<Rhs>, MatrixShape, TranspositionsShap
|
||||
}
|
||||
};
|
||||
|
||||
/***************************************************************************
|
||||
* skew symmetric products
|
||||
* for now we just call the generic implementation
|
||||
***************************************************************************/
|
||||
template<typename Lhs, typename Rhs, int ProductTag, typename MatrixShape>
|
||||
struct generic_product_impl<Lhs, Rhs, SkewSymmetricShape, MatrixShape, ProductTag>
|
||||
{
|
||||
template<typename Dest>
|
||||
static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void evalTo(Dest& dst, const Lhs& lhs, const Rhs& rhs)
|
||||
{
|
||||
generic_product_impl<typename Lhs::DenseMatrixType , Rhs, DenseShape, MatrixShape, ProductTag>::evalTo(dst, lhs, rhs);
|
||||
}
|
||||
};
|
||||
|
||||
template<typename Lhs, typename Rhs, int ProductTag, typename MatrixShape>
|
||||
struct generic_product_impl<Lhs, Rhs, MatrixShape, SkewSymmetricShape, ProductTag>
|
||||
{
|
||||
template<typename Dest>
|
||||
static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void evalTo(Dest& dst, const Lhs& lhs, const Rhs& rhs)
|
||||
{
|
||||
generic_product_impl<Lhs, typename Rhs::DenseMatrixType, MatrixShape, DenseShape, ProductTag>::evalTo(dst, lhs, rhs);
|
||||
}
|
||||
};
|
||||
|
||||
template<typename Lhs, typename Rhs, int ProductTag>
|
||||
struct generic_product_impl<Lhs, Rhs, SkewSymmetricShape, SkewSymmetricShape, ProductTag>
|
||||
{
|
||||
template<typename Dest>
|
||||
static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void evalTo(Dest& dst, const Lhs& lhs, const Rhs& rhs)
|
||||
{
|
||||
generic_product_impl<typename Lhs::DenseMatrixType, typename Rhs::DenseMatrixType, DenseShape, DenseShape, ProductTag>::evalTo(dst, lhs, rhs);
|
||||
}
|
||||
};
|
||||
|
||||
} // end namespace internal
|
||||
|
||||
} // end namespace Eigen
|
||||
|
||||
@@ -10,12 +10,13 @@
|
||||
#ifndef EIGEN_RANDOM_H
|
||||
#define EIGEN_RANDOM_H
|
||||
|
||||
#include "./InternalHeaderCheck.h"
|
||||
|
||||
namespace Eigen {
|
||||
|
||||
namespace internal {
|
||||
|
||||
template<typename Scalar> struct scalar_random_op {
|
||||
EIGEN_EMPTY_STRUCT_CTOR(scalar_random_op)
|
||||
inline const Scalar operator() () const { return random<Scalar>(); }
|
||||
};
|
||||
|
||||
|
||||
@@ -11,6 +11,8 @@
|
||||
#ifndef EIGEN_REDUX_H
|
||||
#define EIGEN_REDUX_H
|
||||
|
||||
#include "./InternalHeaderCheck.h"
|
||||
|
||||
namespace Eigen {
|
||||
|
||||
namespace internal {
|
||||
@@ -198,8 +200,7 @@ struct redux_impl<Func, Evaluator, DefaultTraversal, NoUnrolling>
|
||||
Scalar run(const Evaluator &eval, const Func& func, const XprType& xpr)
|
||||
{
|
||||
eigen_assert(xpr.rows()>0 && xpr.cols()>0 && "you are using an empty matrix");
|
||||
Scalar res;
|
||||
res = eval.coeffByOuterInner(0, 0);
|
||||
Scalar res = eval.coeffByOuterInner(0, 0);
|
||||
for(Index i = 1; i < xpr.innerSize(); ++i)
|
||||
res = func(res, eval.coeffByOuterInner(0, i));
|
||||
for(Index i = 1; i < xpr.outerSize(); ++i)
|
||||
@@ -238,7 +239,7 @@ struct redux_impl<Func, Evaluator, LinearVectorizedTraversal, NoUnrolling>
|
||||
const int packetAlignment = unpacket_traits<PacketScalar>::alignment;
|
||||
enum {
|
||||
alignment0 = (bool(Evaluator::Flags & DirectAccessBit) && bool(packet_traits<Scalar>::AlignedOnScalar)) ? int(packetAlignment) : int(Unaligned),
|
||||
alignment = EIGEN_PLAIN_ENUM_MAX(alignment0, Evaluator::Alignment)
|
||||
alignment = plain_enum_max(alignment0, Evaluator::Alignment)
|
||||
};
|
||||
const Index alignedStart = internal::first_default_aligned(xpr);
|
||||
const Index alignedSize2 = ((size-alignedStart)/(2*packetSize))*(2*packetSize);
|
||||
@@ -353,12 +354,12 @@ struct redux_impl<Func, Evaluator, LinearVectorizedTraversal, CompleteUnrolling>
|
||||
};
|
||||
|
||||
// evaluator adaptor
|
||||
template<typename _XprType>
|
||||
class redux_evaluator : public internal::evaluator<_XprType>
|
||||
template<typename XprType_>
|
||||
class redux_evaluator : public internal::evaluator<XprType_>
|
||||
{
|
||||
typedef internal::evaluator<_XprType> Base;
|
||||
typedef internal::evaluator<XprType_> Base;
|
||||
public:
|
||||
typedef _XprType XprType;
|
||||
typedef XprType_ XprType;
|
||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
|
||||
explicit redux_evaluator(const XprType &xpr) : Base(xpr) {}
|
||||
|
||||
|
||||
@@ -10,20 +10,22 @@
|
||||
#ifndef EIGEN_REF_H
|
||||
#define EIGEN_REF_H
|
||||
|
||||
#include "./InternalHeaderCheck.h"
|
||||
|
||||
namespace Eigen {
|
||||
|
||||
namespace internal {
|
||||
|
||||
template<typename _PlainObjectType, int _Options, typename _StrideType>
|
||||
struct traits<Ref<_PlainObjectType, _Options, _StrideType> >
|
||||
: public traits<Map<_PlainObjectType, _Options, _StrideType> >
|
||||
template<typename PlainObjectType_, int Options_, typename StrideType_>
|
||||
struct traits<Ref<PlainObjectType_, Options_, StrideType_> >
|
||||
: public traits<Map<PlainObjectType_, Options_, StrideType_> >
|
||||
{
|
||||
typedef _PlainObjectType PlainObjectType;
|
||||
typedef _StrideType StrideType;
|
||||
typedef PlainObjectType_ PlainObjectType;
|
||||
typedef StrideType_ StrideType;
|
||||
enum {
|
||||
Options = _Options,
|
||||
Flags = traits<Map<_PlainObjectType, _Options, _StrideType> >::Flags | NestByRefBit,
|
||||
Alignment = traits<Map<_PlainObjectType, _Options, _StrideType> >::Alignment
|
||||
Options = Options_,
|
||||
Flags = traits<Map<PlainObjectType_, Options_, StrideType_> >::Flags | NestByRefBit,
|
||||
Alignment = traits<Map<PlainObjectType_, Options_, StrideType_> >::Alignment
|
||||
};
|
||||
|
||||
template<typename Derived> struct match {
|
||||
@@ -46,7 +48,7 @@ struct traits<Ref<_PlainObjectType, _Options, _StrideType> >
|
||||
ScalarTypeMatch = internal::is_same<typename PlainObjectType::Scalar, typename Derived::Scalar>::value,
|
||||
MatchAtCompileTime = HasDirectAccess && StorageOrderMatch && InnerStrideMatch && OuterStrideMatch && AlignmentMatch && ScalarTypeMatch
|
||||
};
|
||||
typedef typename internal::conditional<MatchAtCompileTime,internal::true_type,internal::false_type>::type type;
|
||||
typedef std::conditional_t<MatchAtCompileTime,internal::true_type,internal::false_type> type;
|
||||
};
|
||||
|
||||
};
|
||||
@@ -197,8 +199,8 @@ protected:
|
||||
return false;
|
||||
}
|
||||
|
||||
::new (static_cast<Base*>(this)) Base(expr.data(), rows, cols);
|
||||
::new (&m_stride) StrideBase(
|
||||
internal::construct_at<Base>(this, expr.data(), rows, cols);
|
||||
internal::construct_at(&m_stride,
|
||||
(StrideType::OuterStrideAtCompileTime == 0) ? 0 : outer_stride,
|
||||
(StrideType::InnerStrideAtCompileTime == 0) ? 0 : inner_stride );
|
||||
return true;
|
||||
@@ -285,7 +287,7 @@ template<typename PlainObjectType, int Options, typename StrideType> class Ref
|
||||
typedef internal::traits<Ref> Traits;
|
||||
template<typename Derived>
|
||||
EIGEN_DEVICE_FUNC inline Ref(const PlainObjectBase<Derived>& expr,
|
||||
typename internal::enable_if<bool(Traits::template match<Derived>::MatchAtCompileTime),Derived>::type* = 0);
|
||||
std::enable_if_t<bool(Traits::template match<Derived>::MatchAtCompileTime),Derived>* = 0);
|
||||
public:
|
||||
|
||||
typedef RefBase<Ref> Base;
|
||||
@@ -295,17 +297,17 @@ template<typename PlainObjectType, int Options, typename StrideType> class Ref
|
||||
#ifndef EIGEN_PARSED_BY_DOXYGEN
|
||||
template<typename Derived>
|
||||
EIGEN_DEVICE_FUNC inline Ref(PlainObjectBase<Derived>& expr,
|
||||
typename internal::enable_if<bool(Traits::template match<Derived>::MatchAtCompileTime),Derived>::type* = 0)
|
||||
std::enable_if_t<bool(Traits::template match<Derived>::MatchAtCompileTime),Derived>* = 0)
|
||||
{
|
||||
EIGEN_STATIC_ASSERT(bool(Traits::template match<Derived>::MatchAtCompileTime), STORAGE_LAYOUT_DOES_NOT_MATCH);
|
||||
// Construction must pass since we will not create temprary storage in the non-const case.
|
||||
// Construction must pass since we will not create temporary storage in the non-const case.
|
||||
const bool success = Base::construct(expr.derived());
|
||||
EIGEN_UNUSED_VARIABLE(success)
|
||||
eigen_assert(success);
|
||||
}
|
||||
template<typename Derived>
|
||||
EIGEN_DEVICE_FUNC inline Ref(const DenseBase<Derived>& expr,
|
||||
typename internal::enable_if<bool(Traits::template match<Derived>::MatchAtCompileTime),Derived>::type* = 0)
|
||||
std::enable_if_t<bool(Traits::template match<Derived>::MatchAtCompileTime),Derived>* = 0)
|
||||
#else
|
||||
/** Implicit constructor from any dense expression */
|
||||
template<typename Derived>
|
||||
@@ -337,7 +339,7 @@ template<typename TPlainObjectType, int Options, typename StrideType> class Ref<
|
||||
|
||||
template<typename Derived>
|
||||
EIGEN_DEVICE_FUNC inline Ref(const DenseBase<Derived>& expr,
|
||||
typename internal::enable_if<bool(Traits::template match<Derived>::ScalarTypeMatch),Derived>::type* = 0)
|
||||
std::enable_if_t<bool(Traits::template match<Derived>::ScalarTypeMatch),Derived>* = 0)
|
||||
{
|
||||
// std::cout << match_helper<Derived>::HasDirectAccess << "," << match_helper<Derived>::OuterStrideMatch << "," << match_helper<Derived>::InnerStrideMatch << "\n";
|
||||
// std::cout << int(StrideType::OuterStrideAtCompileTime) << " - " << int(Derived::OuterStrideAtCompileTime) << "\n";
|
||||
|
||||
@@ -10,6 +10,8 @@
|
||||
#ifndef EIGEN_REPLICATE_H
|
||||
#define EIGEN_REPLICATE_H
|
||||
|
||||
#include "./InternalHeaderCheck.h"
|
||||
|
||||
namespace Eigen {
|
||||
|
||||
namespace internal {
|
||||
@@ -21,7 +23,7 @@ struct traits<Replicate<MatrixType,RowFactor,ColFactor> >
|
||||
typedef typename traits<MatrixType>::StorageKind StorageKind;
|
||||
typedef typename traits<MatrixType>::XprKind XprKind;
|
||||
typedef typename ref_selector<MatrixType>::type MatrixTypeNested;
|
||||
typedef typename remove_reference<MatrixTypeNested>::type _MatrixTypeNested;
|
||||
typedef std::remove_reference_t<MatrixTypeNested> MatrixTypeNested_;
|
||||
enum {
|
||||
RowsAtCompileTime = RowFactor==Dynamic || int(MatrixType::RowsAtCompileTime)==Dynamic
|
||||
? Dynamic
|
||||
@@ -62,19 +64,19 @@ template<typename MatrixType,int RowFactor,int ColFactor> class Replicate
|
||||
: public internal::dense_xpr_base< Replicate<MatrixType,RowFactor,ColFactor> >::type
|
||||
{
|
||||
typedef typename internal::traits<Replicate>::MatrixTypeNested MatrixTypeNested;
|
||||
typedef typename internal::traits<Replicate>::_MatrixTypeNested _MatrixTypeNested;
|
||||
typedef typename internal::traits<Replicate>::MatrixTypeNested_ MatrixTypeNested_;
|
||||
public:
|
||||
|
||||
typedef typename internal::dense_xpr_base<Replicate>::type Base;
|
||||
EIGEN_DENSE_PUBLIC_INTERFACE(Replicate)
|
||||
typedef typename internal::remove_all<MatrixType>::type NestedExpression;
|
||||
typedef internal::remove_all_t<MatrixType> NestedExpression;
|
||||
|
||||
template<typename OriginalMatrixType>
|
||||
EIGEN_DEVICE_FUNC
|
||||
inline explicit Replicate(const OriginalMatrixType& matrix)
|
||||
: m_matrix(matrix), m_rowFactor(RowFactor), m_colFactor(ColFactor)
|
||||
{
|
||||
EIGEN_STATIC_ASSERT((internal::is_same<typename internal::remove_const<MatrixType>::type,OriginalMatrixType>::value),
|
||||
EIGEN_STATIC_ASSERT((internal::is_same<std::remove_const_t<MatrixType>,OriginalMatrixType>::value),
|
||||
THE_MATRIX_OR_EXPRESSION_THAT_YOU_PASSED_DOES_NOT_HAVE_THE_EXPECTED_TYPE)
|
||||
eigen_assert(RowFactor!=Dynamic && ColFactor!=Dynamic);
|
||||
}
|
||||
@@ -84,7 +86,7 @@ template<typename MatrixType,int RowFactor,int ColFactor> class Replicate
|
||||
inline Replicate(const OriginalMatrixType& matrix, Index rowFactor, Index colFactor)
|
||||
: m_matrix(matrix), m_rowFactor(rowFactor), m_colFactor(colFactor)
|
||||
{
|
||||
EIGEN_STATIC_ASSERT((internal::is_same<typename internal::remove_const<MatrixType>::type,OriginalMatrixType>::value),
|
||||
EIGEN_STATIC_ASSERT((internal::is_same<std::remove_const_t<MatrixType>,OriginalMatrixType>::value),
|
||||
THE_MATRIX_OR_EXPRESSION_THAT_YOU_PASSED_DOES_NOT_HAVE_THE_EXPECTED_TYPE)
|
||||
}
|
||||
|
||||
@@ -94,7 +96,7 @@ template<typename MatrixType,int RowFactor,int ColFactor> class Replicate
|
||||
inline Index cols() const { return m_matrix.cols() * m_colFactor.value(); }
|
||||
|
||||
EIGEN_DEVICE_FUNC
|
||||
const _MatrixTypeNested& nestedExpression() const
|
||||
const MatrixTypeNested_& nestedExpression() const
|
||||
{
|
||||
return m_matrix;
|
||||
}
|
||||
|
||||
@@ -11,6 +11,8 @@
|
||||
#ifndef EIGEN_RESHAPED_H
|
||||
#define EIGEN_RESHAPED_H
|
||||
|
||||
#include "./InternalHeaderCheck.h"
|
||||
|
||||
namespace Eigen {
|
||||
|
||||
/** \class Reshaped
|
||||
@@ -27,10 +29,9 @@ namespace Eigen {
|
||||
* It is the return type of DenseBase::reshaped(NRowsType,NColsType) and
|
||||
* most of the time this is the only way it is used.
|
||||
*
|
||||
* However, in C++98, if you want to directly maniputate reshaped expressions,
|
||||
* for instance if you want to write a function returning such an expression, you
|
||||
* will need to use this class. In C++11, it is advised to use the \em auto
|
||||
* keyword for such use cases.
|
||||
* If you want to directly manipulate reshaped expressions,
|
||||
* for instance if you want to write a function returning such an expression,
|
||||
* it is advised to use the \em auto keyword for such use cases.
|
||||
*
|
||||
* Here is an example illustrating the dynamic case:
|
||||
* \include class_Reshaped.cpp
|
||||
@@ -156,7 +157,7 @@ class ReshapedImpl_dense<XprType,Rows,Cols,Order,false>
|
||||
EIGEN_INHERIT_ASSIGNMENT_OPERATORS(ReshapedImpl_dense)
|
||||
|
||||
typedef typename internal::ref_selector<XprType>::non_const_type MatrixTypeNested;
|
||||
typedef typename internal::remove_all<XprType>::type NestedExpression;
|
||||
typedef internal::remove_all_t<XprType> NestedExpression;
|
||||
|
||||
class InnerIterator;
|
||||
|
||||
@@ -186,12 +187,12 @@ class ReshapedImpl_dense<XprType,Rows,Cols,Order,false>
|
||||
|
||||
/** \returns the nested expression */
|
||||
EIGEN_DEVICE_FUNC
|
||||
const typename internal::remove_all<XprType>::type&
|
||||
const internal::remove_all_t<XprType>&
|
||||
nestedExpression() const { return m_xpr; }
|
||||
|
||||
/** \returns the nested expression */
|
||||
EIGEN_DEVICE_FUNC
|
||||
typename internal::remove_reference<XprType>::type&
|
||||
std::remove_reference_t<XprType>&
|
||||
nestedExpression() { return m_xpr; }
|
||||
|
||||
protected:
|
||||
@@ -231,7 +232,7 @@ class ReshapedImpl_dense<XprType, Rows, Cols, Order, true>
|
||||
{}
|
||||
|
||||
EIGEN_DEVICE_FUNC
|
||||
const typename internal::remove_all<XprTypeNested>::type& nestedExpression() const
|
||||
const internal::remove_all_t<XprTypeNested>& nestedExpression() const
|
||||
{
|
||||
return m_xpr;
|
||||
}
|
||||
@@ -250,7 +251,7 @@ class ReshapedImpl_dense<XprType, Rows, Cols, Order, true>
|
||||
EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR
|
||||
inline Index outerStride() const
|
||||
{
|
||||
return ((Flags&RowMajorBit)==RowMajorBit) ? this->cols() : this->rows();
|
||||
return (((Flags&RowMajorBit)==RowMajorBit) ? this->cols() : this->rows()) * m_xpr.innerStride();
|
||||
}
|
||||
|
||||
protected:
|
||||
@@ -324,7 +325,7 @@ struct reshaped_evaluator<ArgType, Rows, Cols, Order, /* HasDirectAccess */ fals
|
||||
|
||||
typedef std::pair<Index, Index> RowCol;
|
||||
|
||||
inline RowCol index_remap(Index rowId, Index colId) const
|
||||
EIGEN_DEVICE_FUNC inline RowCol index_remap(Index rowId, Index colId) const
|
||||
{
|
||||
if(Order==ColMajor)
|
||||
{
|
||||
@@ -443,7 +444,7 @@ struct reshaped_evaluator<ArgType, Rows, Cols, Order, /* HasDirectAccess */ true
|
||||
: mapbase_evaluator<XprType, typename XprType::PlainObject>(xpr)
|
||||
{
|
||||
// TODO: for the 3.4 release, this should be turned to an internal assertion, but let's keep it as is for the beta lifetime
|
||||
eigen_assert(((internal::UIntPtr(xpr.data()) % EIGEN_PLAIN_ENUM_MAX(1,evaluator<XprType>::Alignment)) == 0) && "data is not aligned");
|
||||
eigen_assert(((internal::UIntPtr(xpr.data()) % plain_enum_max(1, evaluator<XprType>::Alignment)) == 0) && "data is not aligned");
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
@@ -11,6 +11,8 @@
|
||||
#ifndef EIGEN_RETURNBYVALUE_H
|
||||
#define EIGEN_RETURNBYVALUE_H
|
||||
|
||||
#include "./InternalHeaderCheck.h"
|
||||
|
||||
namespace Eigen {
|
||||
|
||||
namespace internal {
|
||||
@@ -104,7 +106,7 @@ struct evaluator<ReturnByValue<Derived> >
|
||||
EIGEN_DEVICE_FUNC explicit evaluator(const XprType& xpr)
|
||||
: m_result(xpr.rows(), xpr.cols())
|
||||
{
|
||||
::new (static_cast<Base*>(this)) Base(m_result);
|
||||
internal::construct_at<Base>(this, m_result);
|
||||
xpr.evalTo(m_result);
|
||||
}
|
||||
|
||||
|
||||
@@ -12,6 +12,8 @@
|
||||
#ifndef EIGEN_REVERSE_H
|
||||
#define EIGEN_REVERSE_H
|
||||
|
||||
#include "./InternalHeaderCheck.h"
|
||||
|
||||
namespace Eigen {
|
||||
|
||||
namespace internal {
|
||||
@@ -24,13 +26,13 @@ struct traits<Reverse<MatrixType, Direction> >
|
||||
typedef typename traits<MatrixType>::StorageKind StorageKind;
|
||||
typedef typename traits<MatrixType>::XprKind XprKind;
|
||||
typedef typename ref_selector<MatrixType>::type MatrixTypeNested;
|
||||
typedef typename remove_reference<MatrixTypeNested>::type _MatrixTypeNested;
|
||||
typedef std::remove_reference_t<MatrixTypeNested> MatrixTypeNested_;
|
||||
enum {
|
||||
RowsAtCompileTime = MatrixType::RowsAtCompileTime,
|
||||
ColsAtCompileTime = MatrixType::ColsAtCompileTime,
|
||||
MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
|
||||
MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime,
|
||||
Flags = _MatrixTypeNested::Flags & (RowMajorBit | LvalueBit)
|
||||
Flags = MatrixTypeNested_::Flags & (RowMajorBit | LvalueBit)
|
||||
};
|
||||
};
|
||||
|
||||
@@ -67,7 +69,7 @@ template<typename MatrixType, int Direction> class Reverse
|
||||
|
||||
typedef typename internal::dense_xpr_base<Reverse>::type Base;
|
||||
EIGEN_DENSE_PUBLIC_INTERFACE(Reverse)
|
||||
typedef typename internal::remove_all<MatrixType>::type NestedExpression;
|
||||
typedef internal::remove_all_t<MatrixType> NestedExpression;
|
||||
using Base::IsRowMajor;
|
||||
|
||||
protected:
|
||||
@@ -99,7 +101,7 @@ template<typename MatrixType, int Direction> class Reverse
|
||||
return -m_matrix.innerStride();
|
||||
}
|
||||
|
||||
EIGEN_DEVICE_FUNC const typename internal::remove_all<typename MatrixType::Nested>::type&
|
||||
EIGEN_DEVICE_FUNC const internal::remove_all_t<typename MatrixType::Nested>&
|
||||
nestedExpression() const
|
||||
{
|
||||
return m_matrix;
|
||||
@@ -173,10 +175,10 @@ struct vectorwise_reverse_inplace_impl<Vertical>
|
||||
template<typename ExpressionType>
|
||||
static void run(ExpressionType &xpr)
|
||||
{
|
||||
const int HalfAtCompileTime = ExpressionType::RowsAtCompileTime==Dynamic?Dynamic:ExpressionType::RowsAtCompileTime/2;
|
||||
constexpr Index HalfAtCompileTime = ExpressionType::RowsAtCompileTime==Dynamic?Dynamic:ExpressionType::RowsAtCompileTime/2;
|
||||
Index half = xpr.rows()/2;
|
||||
xpr.topRows(fix<HalfAtCompileTime>(half))
|
||||
.swap(xpr.bottomRows(fix<HalfAtCompileTime>(half)).colwise().reverse());
|
||||
xpr.template topRows<HalfAtCompileTime>(half)
|
||||
.swap(xpr.template bottomRows<HalfAtCompileTime>(half).colwise().reverse());
|
||||
}
|
||||
};
|
||||
|
||||
@@ -186,10 +188,10 @@ struct vectorwise_reverse_inplace_impl<Horizontal>
|
||||
template<typename ExpressionType>
|
||||
static void run(ExpressionType &xpr)
|
||||
{
|
||||
const int HalfAtCompileTime = ExpressionType::ColsAtCompileTime==Dynamic?Dynamic:ExpressionType::ColsAtCompileTime/2;
|
||||
constexpr Index HalfAtCompileTime = ExpressionType::ColsAtCompileTime==Dynamic?Dynamic:ExpressionType::ColsAtCompileTime/2;
|
||||
Index half = xpr.cols()/2;
|
||||
xpr.leftCols(fix<HalfAtCompileTime>(half))
|
||||
.swap(xpr.rightCols(fix<HalfAtCompileTime>(half)).rowwise().reverse());
|
||||
xpr.template leftCols<HalfAtCompileTime>(half)
|
||||
.swap(xpr.template rightCols<HalfAtCompileTime>(half).rowwise().reverse());
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
@@ -10,6 +10,8 @@
|
||||
#ifndef EIGEN_SELECT_H
|
||||
#define EIGEN_SELECT_H
|
||||
|
||||
#include "./InternalHeaderCheck.h"
|
||||
|
||||
namespace Eigen {
|
||||
|
||||
/** \class Select
|
||||
@@ -17,9 +19,9 @@ namespace Eigen {
|
||||
*
|
||||
* \brief Expression of a coefficient wise version of the C++ ternary operator ?:
|
||||
*
|
||||
* \param ConditionMatrixType the type of the \em condition expression which must be a boolean matrix
|
||||
* \param ThenMatrixType the type of the \em then expression
|
||||
* \param ElseMatrixType the type of the \em else expression
|
||||
* \tparam ConditionMatrixType the type of the \em condition expression which must be a boolean matrix
|
||||
* \tparam ThenMatrixType the type of the \em then expression
|
||||
* \tparam ElseMatrixType the type of the \em else expression
|
||||
*
|
||||
* This class represents an expression of a coefficient wise version of the C++ ternary operator ?:.
|
||||
* It is the return type of DenseBase::select() and most of the time this is the only way it is used.
|
||||
|
||||
@@ -10,6 +10,8 @@
|
||||
#ifndef EIGEN_SELFADJOINTMATRIX_H
|
||||
#define EIGEN_SELFADJOINTMATRIX_H
|
||||
|
||||
#include "./InternalHeaderCheck.h"
|
||||
|
||||
namespace Eigen {
|
||||
|
||||
/** \class SelfAdjointView
|
||||
@@ -18,8 +20,8 @@ namespace Eigen {
|
||||
*
|
||||
* \brief Expression of a selfadjoint matrix from a triangular part of a dense matrix
|
||||
*
|
||||
* \param MatrixType the type of the dense matrix storing the coefficients
|
||||
* \param TriangularPart can be either \c #Lower or \c #Upper
|
||||
* \tparam MatrixType the type of the dense matrix storing the coefficients
|
||||
* \tparam TriangularPart can be either \c #Lower or \c #Upper
|
||||
*
|
||||
* This class is an expression of a sefladjoint matrix from a triangular part of a matrix
|
||||
* with given dense storage of the coefficients. It is the return type of MatrixBase::selfadjointView()
|
||||
@@ -33,7 +35,7 @@ template<typename MatrixType, unsigned int UpLo>
|
||||
struct traits<SelfAdjointView<MatrixType, UpLo> > : traits<MatrixType>
|
||||
{
|
||||
typedef typename ref_selector<MatrixType>::non_const_type MatrixTypeNested;
|
||||
typedef typename remove_all<MatrixTypeNested>::type MatrixTypeNestedCleaned;
|
||||
typedef remove_all_t<MatrixTypeNested> MatrixTypeNestedCleaned;
|
||||
typedef MatrixType ExpressionType;
|
||||
typedef typename MatrixType::PlainObject FullMatrixType;
|
||||
enum {
|
||||
@@ -46,12 +48,13 @@ struct traits<SelfAdjointView<MatrixType, UpLo> > : traits<MatrixType>
|
||||
}
|
||||
|
||||
|
||||
template<typename _MatrixType, unsigned int UpLo> class SelfAdjointView
|
||||
: public TriangularBase<SelfAdjointView<_MatrixType, UpLo> >
|
||||
template<typename MatrixType_, unsigned int UpLo> class SelfAdjointView
|
||||
: public TriangularBase<SelfAdjointView<MatrixType_, UpLo> >
|
||||
{
|
||||
public:
|
||||
EIGEN_STATIC_ASSERT(UpLo==Lower || UpLo==Upper,SELFADJOINTVIEW_ACCEPTS_UPPER_AND_LOWER_MODE_ONLY)
|
||||
|
||||
typedef _MatrixType MatrixType;
|
||||
typedef MatrixType_ MatrixType;
|
||||
typedef TriangularBase<SelfAdjointView> Base;
|
||||
typedef typename internal::traits<SelfAdjointView>::MatrixTypeNested MatrixTypeNested;
|
||||
typedef typename internal::traits<SelfAdjointView>::MatrixTypeNestedCleaned MatrixTypeNestedCleaned;
|
||||
@@ -60,8 +63,8 @@ template<typename _MatrixType, unsigned int UpLo> class SelfAdjointView
|
||||
/** \brief The type of coefficients in this matrix */
|
||||
typedef typename internal::traits<SelfAdjointView>::Scalar Scalar;
|
||||
typedef typename MatrixType::StorageIndex StorageIndex;
|
||||
typedef typename internal::remove_all<typename MatrixType::ConjugateReturnType>::type MatrixConjugateReturnType;
|
||||
typedef SelfAdjointView<typename internal::add_const<MatrixType>::type, UpLo> ConstSelfAdjointView;
|
||||
typedef internal::remove_all_t<typename MatrixType::ConjugateReturnType> MatrixConjugateReturnType;
|
||||
typedef SelfAdjointView<std::add_const_t<MatrixType>, UpLo> ConstSelfAdjointView;
|
||||
|
||||
enum {
|
||||
Mode = internal::traits<SelfAdjointView>::Mode,
|
||||
@@ -71,10 +74,7 @@ template<typename _MatrixType, unsigned int UpLo> class SelfAdjointView
|
||||
typedef typename MatrixType::PlainObject PlainObject;
|
||||
|
||||
EIGEN_DEVICE_FUNC
|
||||
explicit inline SelfAdjointView(MatrixType& matrix) : m_matrix(matrix)
|
||||
{
|
||||
EIGEN_STATIC_ASSERT(UpLo==Lower || UpLo==Upper,SELFADJOINTVIEW_ACCEPTS_UPPER_AND_LOWER_MODE_ONLY);
|
||||
}
|
||||
explicit inline SelfAdjointView(MatrixType& matrix) : m_matrix(matrix) { }
|
||||
|
||||
EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR
|
||||
inline Index rows() const EIGEN_NOEXCEPT { return m_matrix.rows(); }
|
||||
@@ -180,16 +180,16 @@ template<typename _MatrixType, unsigned int UpLo> class SelfAdjointView
|
||||
*/
|
||||
template<unsigned int TriMode>
|
||||
EIGEN_DEVICE_FUNC
|
||||
typename internal::conditional<(TriMode&(Upper|Lower))==(UpLo&(Upper|Lower)),
|
||||
TriangularView<MatrixType,TriMode>,
|
||||
TriangularView<typename MatrixType::AdjointReturnType,TriMode> >::type
|
||||
std::conditional_t<(TriMode&(Upper|Lower))==(UpLo&(Upper|Lower)),
|
||||
TriangularView<MatrixType,TriMode>,
|
||||
TriangularView<typename MatrixType::AdjointReturnType,TriMode> >
|
||||
triangularView() const
|
||||
{
|
||||
typename internal::conditional<(TriMode&(Upper|Lower))==(UpLo&(Upper|Lower)), MatrixType&, typename MatrixType::ConstTransposeReturnType>::type tmp1(m_matrix);
|
||||
typename internal::conditional<(TriMode&(Upper|Lower))==(UpLo&(Upper|Lower)), MatrixType&, typename MatrixType::AdjointReturnType>::type tmp2(tmp1);
|
||||
return typename internal::conditional<(TriMode&(Upper|Lower))==(UpLo&(Upper|Lower)),
|
||||
TriangularView<MatrixType,TriMode>,
|
||||
TriangularView<typename MatrixType::AdjointReturnType,TriMode> >::type(tmp2);
|
||||
std::conditional_t<(TriMode&(Upper|Lower))==(UpLo&(Upper|Lower)), MatrixType&, typename MatrixType::ConstTransposeReturnType> tmp1(m_matrix);
|
||||
std::conditional_t<(TriMode&(Upper|Lower))==(UpLo&(Upper|Lower)), MatrixType&, typename MatrixType::AdjointReturnType> tmp2(tmp1);
|
||||
return std::conditional_t<(TriMode&(Upper|Lower))==(UpLo&(Upper|Lower)),
|
||||
TriangularView<MatrixType,TriMode>,
|
||||
TriangularView<typename MatrixType::AdjointReturnType,TriMode> >(tmp2);
|
||||
}
|
||||
|
||||
typedef SelfAdjointView<const MatrixConjugateReturnType,UpLo> ConjugateReturnType;
|
||||
@@ -203,10 +203,10 @@ template<typename _MatrixType, unsigned int UpLo> class SelfAdjointView
|
||||
*/
|
||||
template<bool Cond>
|
||||
EIGEN_DEVICE_FUNC
|
||||
inline typename internal::conditional<Cond,ConjugateReturnType,ConstSelfAdjointView>::type
|
||||
inline std::conditional_t<Cond,ConjugateReturnType,ConstSelfAdjointView>
|
||||
conjugateIf() const
|
||||
{
|
||||
typedef typename internal::conditional<Cond,ConjugateReturnType,ConstSelfAdjointView>::type ReturnType;
|
||||
typedef std::conditional_t<Cond,ConjugateReturnType,ConstSelfAdjointView> ReturnType;
|
||||
return ReturnType(m_matrix.template conjugateIf<Cond>());
|
||||
}
|
||||
|
||||
@@ -218,10 +218,10 @@ template<typename _MatrixType, unsigned int UpLo> class SelfAdjointView
|
||||
|
||||
typedef SelfAdjointView<typename MatrixType::TransposeReturnType,TransposeMode> TransposeReturnType;
|
||||
/** \sa MatrixBase::transpose() */
|
||||
template<class Dummy=int>
|
||||
EIGEN_DEVICE_FUNC
|
||||
inline TransposeReturnType transpose()
|
||||
inline TransposeReturnType transpose(std::enable_if_t<Eigen::internal::is_lvalue<MatrixType>::value, Dummy*> = nullptr)
|
||||
{
|
||||
EIGEN_STATIC_ASSERT_LVALUE(MatrixType)
|
||||
typename MatrixType::TransposeReturnType tmp(m_matrix);
|
||||
return TransposeReturnType(tmp);
|
||||
}
|
||||
|
||||
@@ -10,6 +10,8 @@
|
||||
#ifndef EIGEN_SELFCWISEBINARYOP_H
|
||||
#define EIGEN_SELFCWISEBINARYOP_H
|
||||
|
||||
#include "./InternalHeaderCheck.h"
|
||||
|
||||
namespace Eigen {
|
||||
|
||||
// TODO generalize the scalar type of 'other'
|
||||
|
||||
412
libs/eigen/Eigen/src/Core/SkewSymmetricMatrix3.h
Normal file
412
libs/eigen/Eigen/src/Core/SkewSymmetricMatrix3.h
Normal file
@@ -0,0 +1,412 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra.
|
||||
//
|
||||
// Copyright (C) 2009 Gael Guennebaud <gael.guennebaud@inria.fr>
|
||||
// Copyright (C) 2007-2009 Benoit Jacob <jacob.benoit.1@gmail.com>
|
||||
//
|
||||
// This Source Code Form is subject to the terms of the Mozilla
|
||||
// Public License v. 2.0. If a copy of the MPL was not distributed
|
||||
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
||||
|
||||
#ifndef EIGEN_SKEWSYMMETRICMATRIX3_H
|
||||
#define EIGEN_SKEWSYMMETRICMATRIX3_H
|
||||
|
||||
#include "./InternalHeaderCheck.h"
|
||||
|
||||
namespace Eigen {
|
||||
|
||||
/** \class SkewSymmetricBase
|
||||
* \ingroup Core_Module
|
||||
*
|
||||
* \brief Base class for skew symmetric matrices and expressions
|
||||
*
|
||||
* This is the base class that is inherited by SkewSymmetricMatrix3 and related expression
|
||||
* types, which internally use a three vector for storing the entries. SkewSymmetric
|
||||
* types always represent square three times three matrices.
|
||||
*
|
||||
* This implementations follows class DiagonalMatrix
|
||||
*
|
||||
* \tparam Derived is the derived type, a SkewSymmetricMatrix3 or SkewSymmetricWrapper.
|
||||
*
|
||||
* \sa class SkewSymmetricMatrix3, class SkewSymmetricWrapper
|
||||
*/
|
||||
template<typename Derived>
|
||||
class SkewSymmetricBase : public EigenBase<Derived>
|
||||
{
|
||||
public:
|
||||
typedef typename internal::traits<Derived>::SkewSymmetricVectorType SkewSymmetricVectorType;
|
||||
typedef typename SkewSymmetricVectorType::Scalar Scalar;
|
||||
typedef typename SkewSymmetricVectorType::RealScalar RealScalar;
|
||||
typedef typename internal::traits<Derived>::StorageKind StorageKind;
|
||||
typedef typename internal::traits<Derived>::StorageIndex StorageIndex;
|
||||
|
||||
enum {
|
||||
RowsAtCompileTime = SkewSymmetricVectorType::SizeAtCompileTime,
|
||||
ColsAtCompileTime = SkewSymmetricVectorType::SizeAtCompileTime,
|
||||
MaxRowsAtCompileTime = SkewSymmetricVectorType::MaxSizeAtCompileTime,
|
||||
MaxColsAtCompileTime = SkewSymmetricVectorType::MaxSizeAtCompileTime,
|
||||
IsVectorAtCompileTime = 0,
|
||||
Flags = NoPreferredStorageOrderBit
|
||||
};
|
||||
|
||||
typedef Matrix<Scalar, RowsAtCompileTime, ColsAtCompileTime, 0, MaxRowsAtCompileTime, MaxColsAtCompileTime> DenseMatrixType;
|
||||
typedef DenseMatrixType DenseType;
|
||||
typedef SkewSymmetricMatrix3<Scalar> PlainObject;
|
||||
|
||||
/** \returns a reference to the derived object. */
|
||||
EIGEN_DEVICE_FUNC
|
||||
inline const Derived& derived() const { return *static_cast<const Derived*>(this); }
|
||||
/** \returns a const reference to the derived object. */
|
||||
EIGEN_DEVICE_FUNC
|
||||
inline Derived& derived() { return *static_cast<Derived*>(this); }
|
||||
|
||||
/**
|
||||
* Constructs a dense matrix from \c *this. Note, this directly returns a dense matrix type,
|
||||
* not an expression.
|
||||
* \returns A dense matrix, with its entries set from the the derived object. */
|
||||
EIGEN_DEVICE_FUNC
|
||||
DenseMatrixType toDenseMatrix() const { return derived(); }
|
||||
|
||||
/** Determinant vanishes */
|
||||
EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR
|
||||
inline Scalar determinant() const { return 0; }
|
||||
|
||||
/** A.transpose() = -A */
|
||||
EIGEN_DEVICE_FUNC
|
||||
PlainObject transpose() const { return (-vector()).asSkewSymmetric(); }
|
||||
|
||||
/** \returns the exponential of this matrix using Rodrigues’ formula */
|
||||
EIGEN_DEVICE_FUNC
|
||||
DenseMatrixType exponential() const {
|
||||
DenseMatrixType retVal = DenseMatrixType::Identity();
|
||||
const SkewSymmetricVectorType& v = vector();
|
||||
if (v.isZero()) {
|
||||
return retVal;
|
||||
}
|
||||
const Scalar norm2 = v.squaredNorm();
|
||||
const Scalar norm = numext::sqrt(norm2);
|
||||
retVal += ((((1 - numext::cos(norm))/norm2)*derived())*derived()) + (numext::sin(norm)/norm)*derived().toDenseMatrix();
|
||||
return retVal;
|
||||
}
|
||||
|
||||
/** \returns a reference to the derived object's vector of coefficients. */
|
||||
EIGEN_DEVICE_FUNC
|
||||
inline const SkewSymmetricVectorType& vector() const { return derived().vector(); }
|
||||
/** \returns a const reference to the derived object's vector of coefficients. */
|
||||
EIGEN_DEVICE_FUNC
|
||||
inline SkewSymmetricVectorType& vector() { return derived().vector(); }
|
||||
|
||||
/** \returns the number of rows. */
|
||||
EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR
|
||||
inline Index rows() const { return 3; }
|
||||
/** \returns the number of columns. */
|
||||
EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR
|
||||
inline Index cols() const { return 3; }
|
||||
|
||||
/** \returns the matrix product of \c *this by the dense matrix, \a matrix */
|
||||
template<typename MatrixDerived>
|
||||
EIGEN_DEVICE_FUNC
|
||||
Product<Derived,MatrixDerived,LazyProduct>
|
||||
operator*(const MatrixBase<MatrixDerived> &matrix) const
|
||||
{
|
||||
return Product<Derived, MatrixDerived, LazyProduct>(derived(), matrix.derived());
|
||||
}
|
||||
|
||||
/** \returns the matrix product of \c *this by the skew symmetric matrix, \a matrix */
|
||||
template<typename MatrixDerived>
|
||||
EIGEN_DEVICE_FUNC
|
||||
Product<Derived,MatrixDerived,LazyProduct>
|
||||
operator*(const SkewSymmetricBase<MatrixDerived> &matrix) const
|
||||
{
|
||||
return Product<Derived, MatrixDerived, LazyProduct>(derived(), matrix.derived());
|
||||
}
|
||||
|
||||
template <typename OtherDerived>
|
||||
using SkewSymmetricProductReturnType = SkewSymmetricWrapper<const EIGEN_CWISE_BINARY_RETURN_TYPE(
|
||||
SkewSymmetricVectorType, typename OtherDerived::SkewSymmetricVectorType, product)>;
|
||||
|
||||
/** \returns the wedge product of \c *this by the skew symmetric matrix \a other
|
||||
* A wedge B = AB - BA */
|
||||
template <typename OtherDerived>
|
||||
EIGEN_DEVICE_FUNC SkewSymmetricProductReturnType<OtherDerived> wedge(
|
||||
const SkewSymmetricBase<OtherDerived>& other) const {
|
||||
return vector().cross(other.vector()).asSkewSymmetric();
|
||||
}
|
||||
|
||||
using SkewSymmetricScaleReturnType =
|
||||
SkewSymmetricWrapper<const EIGEN_EXPR_BINARYOP_SCALAR_RETURN_TYPE(SkewSymmetricVectorType, Scalar, product)>;
|
||||
|
||||
/** \returns the product of \c *this by the scalar \a scalar */
|
||||
EIGEN_DEVICE_FUNC
|
||||
inline SkewSymmetricScaleReturnType operator*(const Scalar& scalar) const {
|
||||
return (vector() * scalar).asSkewSymmetric();
|
||||
}
|
||||
|
||||
using ScaleSkewSymmetricReturnType =
|
||||
SkewSymmetricWrapper<const EIGEN_SCALAR_BINARYOP_EXPR_RETURN_TYPE(Scalar, SkewSymmetricVectorType, product)>;
|
||||
|
||||
/** \returns the product of a scalar and the skew symmetric matrix \a other */
|
||||
EIGEN_DEVICE_FUNC
|
||||
friend inline ScaleSkewSymmetricReturnType operator*(const Scalar& scalar, const SkewSymmetricBase& other) {
|
||||
return (scalar * other.vector()).asSkewSymmetric();
|
||||
}
|
||||
|
||||
template <typename OtherDerived>
|
||||
using SkewSymmetricSumReturnType = SkewSymmetricWrapper<const EIGEN_CWISE_BINARY_RETURN_TYPE(
|
||||
SkewSymmetricVectorType, typename OtherDerived::SkewSymmetricVectorType, sum)>;
|
||||
|
||||
/** \returns the sum of \c *this and the skew symmetric matrix \a other */
|
||||
template <typename OtherDerived>
|
||||
EIGEN_DEVICE_FUNC inline SkewSymmetricSumReturnType<OtherDerived> operator+(
|
||||
const SkewSymmetricBase<OtherDerived>& other) const {
|
||||
return (vector() + other.vector()).asSkewSymmetric();
|
||||
}
|
||||
|
||||
template <typename OtherDerived>
|
||||
using SkewSymmetricDifferenceReturnType = SkewSymmetricWrapper<const EIGEN_CWISE_BINARY_RETURN_TYPE(
|
||||
SkewSymmetricVectorType, typename OtherDerived::SkewSymmetricVectorType, difference)>;
|
||||
|
||||
/** \returns the difference of \c *this and the skew symmetric matrix \a other */
|
||||
template <typename OtherDerived>
|
||||
EIGEN_DEVICE_FUNC inline SkewSymmetricDifferenceReturnType<OtherDerived> operator-(
|
||||
const SkewSymmetricBase<OtherDerived>& other) const {
|
||||
return (vector() - other.vector()).asSkewSymmetric();
|
||||
}
|
||||
};
|
||||
|
||||
/** \class SkewSymmetricMatrix3
|
||||
* \ingroup Core_Module
|
||||
*
|
||||
* \brief Represents a 3x3 skew symmetric matrix with its storage
|
||||
*
|
||||
* \tparam Scalar_ the type of coefficients
|
||||
*
|
||||
* \sa class SkewSymmetricBase, class SkewSymmetricWrapper
|
||||
*/
|
||||
|
||||
namespace internal {
|
||||
template<typename Scalar_>
|
||||
struct traits<SkewSymmetricMatrix3<Scalar_> >
|
||||
: traits<Matrix<Scalar_,3,3,0,3,3> >
|
||||
{
|
||||
typedef Matrix<Scalar_,3,1,0,3,1> SkewSymmetricVectorType;
|
||||
typedef SkewSymmetricShape StorageKind;
|
||||
enum {
|
||||
Flags = LvalueBit | NoPreferredStorageOrderBit | NestByRefBit
|
||||
};
|
||||
};
|
||||
}
|
||||
template<typename Scalar_>
|
||||
class SkewSymmetricMatrix3
|
||||
: public SkewSymmetricBase<SkewSymmetricMatrix3<Scalar_> >
|
||||
{
|
||||
public:
|
||||
#ifndef EIGEN_PARSED_BY_DOXYGEN
|
||||
typedef typename internal::traits<SkewSymmetricMatrix3>::SkewSymmetricVectorType SkewSymmetricVectorType;
|
||||
typedef const SkewSymmetricMatrix3& Nested;
|
||||
typedef Scalar_ Scalar;
|
||||
typedef typename internal::traits<SkewSymmetricMatrix3>::StorageKind StorageKind;
|
||||
typedef typename internal::traits<SkewSymmetricMatrix3>::StorageIndex StorageIndex;
|
||||
#endif
|
||||
|
||||
protected:
|
||||
|
||||
SkewSymmetricVectorType m_vector;
|
||||
|
||||
public:
|
||||
|
||||
/** const version of vector(). */
|
||||
EIGEN_DEVICE_FUNC
|
||||
inline const SkewSymmetricVectorType& vector() const { return m_vector; }
|
||||
/** \returns a reference to the stored vector of coefficients. */
|
||||
EIGEN_DEVICE_FUNC
|
||||
inline SkewSymmetricVectorType& vector() { return m_vector; }
|
||||
|
||||
/** Default constructor without initialization */
|
||||
EIGEN_DEVICE_FUNC
|
||||
inline SkewSymmetricMatrix3() {}
|
||||
|
||||
/** Constructor from three scalars */
|
||||
EIGEN_DEVICE_FUNC
|
||||
inline SkewSymmetricMatrix3(const Scalar& x, const Scalar& y, const Scalar& z) : m_vector(x,y,z) {}
|
||||
|
||||
/** \brief Constructs a SkewSymmetricMatrix3 from an r-value vector type */
|
||||
EIGEN_DEVICE_FUNC
|
||||
explicit inline SkewSymmetricMatrix3(SkewSymmetricVectorType&& vec) : m_vector(std::move(vec)) {}
|
||||
|
||||
/** generic constructor from expression of the coefficients */
|
||||
template<typename OtherDerived>
|
||||
EIGEN_DEVICE_FUNC
|
||||
explicit inline SkewSymmetricMatrix3(const MatrixBase<OtherDerived>& other) : m_vector(other)
|
||||
{}
|
||||
|
||||
/** Copy constructor. */
|
||||
template<typename OtherDerived>
|
||||
EIGEN_DEVICE_FUNC
|
||||
inline SkewSymmetricMatrix3(const SkewSymmetricBase<OtherDerived>& other) : m_vector(other.vector()) {}
|
||||
|
||||
#ifndef EIGEN_PARSED_BY_DOXYGEN
|
||||
/** copy constructor. prevent a default copy constructor from hiding the other templated constructor */
|
||||
inline SkewSymmetricMatrix3(const SkewSymmetricMatrix3& other) : m_vector(other.vector()) {}
|
||||
#endif
|
||||
|
||||
/** Copy operator. */
|
||||
template<typename OtherDerived>
|
||||
EIGEN_DEVICE_FUNC
|
||||
SkewSymmetricMatrix3& operator=(const SkewSymmetricBase<OtherDerived>& other)
|
||||
{
|
||||
m_vector = other.vector();
|
||||
return *this;
|
||||
}
|
||||
|
||||
#ifndef EIGEN_PARSED_BY_DOXYGEN
|
||||
/** This is a special case of the templated operator=. Its purpose is to
|
||||
* prevent a default operator= from hiding the templated operator=.
|
||||
*/
|
||||
EIGEN_DEVICE_FUNC
|
||||
SkewSymmetricMatrix3& operator=(const SkewSymmetricMatrix3& other)
|
||||
{
|
||||
m_vector = other.vector();
|
||||
return *this;
|
||||
}
|
||||
#endif
|
||||
|
||||
typedef SkewSymmetricWrapper<const CwiseNullaryOp<internal::scalar_constant_op<Scalar>, SkewSymmetricVectorType>>
|
||||
InitializeReturnType;
|
||||
|
||||
/** Initializes a skew symmetric matrix with coefficients set to zero */
|
||||
EIGEN_DEVICE_FUNC
|
||||
static InitializeReturnType Zero() { return SkewSymmetricVectorType::Zero().asSkewSymmetric(); }
|
||||
|
||||
/** Sets all coefficients to zero. */
|
||||
EIGEN_DEVICE_FUNC
|
||||
inline void setZero() { m_vector.setZero(); }
|
||||
};
|
||||
|
||||
/** \class SkewSymmetricWrapper
|
||||
* \ingroup Core_Module
|
||||
*
|
||||
* \brief Expression of a skew symmetric matrix
|
||||
*
|
||||
* \tparam SkewSymmetricVectorType_ the type of the vector of coefficients
|
||||
*
|
||||
* This class is an expression of a skew symmetric matrix, but not storing its own vector of coefficients,
|
||||
* instead wrapping an existing vector expression. It is the return type of MatrixBase::asSkewSymmetric()
|
||||
* and most of the time this is the only way that it is used.
|
||||
*
|
||||
* \sa class SkewSymmetricMatrix3, class SkewSymmetricBase, MatrixBase::asSkewSymmetric()
|
||||
*/
|
||||
|
||||
namespace internal {
|
||||
template<typename SkewSymmetricVectorType_>
|
||||
struct traits<SkewSymmetricWrapper<SkewSymmetricVectorType_> >
|
||||
{
|
||||
typedef SkewSymmetricVectorType_ SkewSymmetricVectorType;
|
||||
typedef typename SkewSymmetricVectorType::Scalar Scalar;
|
||||
typedef typename SkewSymmetricVectorType::StorageIndex StorageIndex;
|
||||
typedef SkewSymmetricShape StorageKind;
|
||||
typedef typename traits<SkewSymmetricVectorType>::XprKind XprKind;
|
||||
enum {
|
||||
RowsAtCompileTime = SkewSymmetricVectorType::SizeAtCompileTime,
|
||||
ColsAtCompileTime = SkewSymmetricVectorType::SizeAtCompileTime,
|
||||
MaxRowsAtCompileTime = SkewSymmetricVectorType::MaxSizeAtCompileTime,
|
||||
MaxColsAtCompileTime = SkewSymmetricVectorType::MaxSizeAtCompileTime,
|
||||
Flags = (traits<SkewSymmetricVectorType>::Flags & LvalueBit) | NoPreferredStorageOrderBit
|
||||
};
|
||||
};
|
||||
}
|
||||
|
||||
template<typename SkewSymmetricVectorType_>
|
||||
class SkewSymmetricWrapper
|
||||
: public SkewSymmetricBase<SkewSymmetricWrapper<SkewSymmetricVectorType_> >, internal::no_assignment_operator
|
||||
{
|
||||
public:
|
||||
#ifndef EIGEN_PARSED_BY_DOXYGEN
|
||||
typedef SkewSymmetricVectorType_ SkewSymmetricVectorType;
|
||||
typedef SkewSymmetricWrapper Nested;
|
||||
#endif
|
||||
|
||||
/** Constructor from expression of coefficients to wrap. */
|
||||
EIGEN_DEVICE_FUNC
|
||||
explicit inline SkewSymmetricWrapper(SkewSymmetricVectorType& a_vector) : m_vector(a_vector) {}
|
||||
|
||||
/** \returns a const reference to the wrapped expression of coefficients. */
|
||||
EIGEN_DEVICE_FUNC
|
||||
const SkewSymmetricVectorType& vector() const { return m_vector; }
|
||||
|
||||
protected:
|
||||
typename SkewSymmetricVectorType::Nested m_vector;
|
||||
};
|
||||
|
||||
/** \returns a pseudo-expression of a skew symmetric matrix with *this as vector of coefficients
|
||||
*
|
||||
* \only_for_vectors
|
||||
*
|
||||
* \sa class SkewSymmetricWrapper, class SkewSymmetricMatrix3, vector(), isSkewSymmetric()
|
||||
**/
|
||||
template<typename Derived>
|
||||
EIGEN_DEVICE_FUNC inline const SkewSymmetricWrapper<const Derived>
|
||||
MatrixBase<Derived>::asSkewSymmetric() const
|
||||
{
|
||||
return SkewSymmetricWrapper<const Derived>(derived());
|
||||
}
|
||||
|
||||
/** \returns true if *this is approximately equal to a skew symmetric matrix,
|
||||
* within the precision given by \a prec.
|
||||
*/
|
||||
template<typename Derived>
|
||||
bool MatrixBase<Derived>::isSkewSymmetric(const RealScalar& prec) const
|
||||
{
|
||||
if(cols() != rows()) return false;
|
||||
return (this->transpose() + *this).isZero(prec);
|
||||
}
|
||||
|
||||
/** \returns the matrix product of \c *this by the skew symmetric matrix \skew.
|
||||
*/
|
||||
template<typename Derived>
|
||||
template<typename SkewDerived>
|
||||
EIGEN_DEVICE_FUNC inline const Product<Derived, SkewDerived, LazyProduct>
|
||||
MatrixBase<Derived>::operator*(const SkewSymmetricBase<SkewDerived> &skew) const
|
||||
{
|
||||
return Product<Derived, SkewDerived, LazyProduct>(derived(), skew.derived());
|
||||
}
|
||||
|
||||
namespace internal {
|
||||
|
||||
template<> struct storage_kind_to_shape<SkewSymmetricShape> { typedef SkewSymmetricShape Shape; };
|
||||
|
||||
struct SkewSymmetric2Dense {};
|
||||
|
||||
template<> struct AssignmentKind<DenseShape,SkewSymmetricShape> { typedef SkewSymmetric2Dense Kind; };
|
||||
|
||||
// SkewSymmetric matrix to Dense assignment
|
||||
template< typename DstXprType, typename SrcXprType, typename Functor>
|
||||
struct Assignment<DstXprType, SrcXprType, Functor, SkewSymmetric2Dense>
|
||||
{
|
||||
static void run(DstXprType &dst, const SrcXprType &src, const internal::assign_op<typename DstXprType::Scalar,typename SrcXprType::Scalar> &/*func*/)
|
||||
{
|
||||
if((dst.rows()!=3) || (dst.cols()!=3)) {
|
||||
dst.resize(3, 3);
|
||||
}
|
||||
dst.diagonal().setZero();
|
||||
const typename SrcXprType::SkewSymmetricVectorType v = src.vector();
|
||||
dst(0, 1) = -v(2);
|
||||
dst(1, 0) = v(2);
|
||||
dst(0, 2) = v(1);
|
||||
dst(2, 0) = -v(1);
|
||||
dst(1, 2) = -v(0);
|
||||
dst(2, 1) = v(0);
|
||||
}
|
||||
|
||||
static void run(DstXprType &dst, const SrcXprType &src, const internal::add_assign_op<typename DstXprType::Scalar,typename SrcXprType::Scalar> &/*func*/)
|
||||
{ dst.vector() += src.vector(); }
|
||||
|
||||
static void run(DstXprType &dst, const SrcXprType &src, const internal::sub_assign_op<typename DstXprType::Scalar,typename SrcXprType::Scalar> &/*func*/)
|
||||
{ dst.vector() -= src.vector(); }
|
||||
};
|
||||
|
||||
} // namespace internal
|
||||
|
||||
} // end namespace Eigen
|
||||
|
||||
#endif // EIGEN_SKEWSYMMETRICMATRIX3_H
|
||||
@@ -10,6 +10,8 @@
|
||||
#ifndef EIGEN_SOLVE_H
|
||||
#define EIGEN_SOLVE_H
|
||||
|
||||
#include "./InternalHeaderCheck.h"
|
||||
|
||||
namespace Eigen {
|
||||
|
||||
template<typename Decomposition, typename RhsType, typename StorageKind> class SolveImpl;
|
||||
@@ -77,7 +79,7 @@ public:
|
||||
|
||||
protected:
|
||||
const Decomposition &m_dec;
|
||||
const RhsType &m_rhs;
|
||||
const typename internal::ref_selector<RhsType>::type m_rhs;
|
||||
};
|
||||
|
||||
|
||||
@@ -123,7 +125,7 @@ struct evaluator<Solve<Decomposition,RhsType> >
|
||||
EIGEN_DEVICE_FUNC explicit evaluator(const SolveType& solve)
|
||||
: m_result(solve.rows(), solve.cols())
|
||||
{
|
||||
::new (static_cast<Base*>(this)) Base(m_result);
|
||||
internal::construct_at<Base>(this, m_result);
|
||||
solve.dec()._solve_impl(solve.rhs(), m_result);
|
||||
}
|
||||
|
||||
|
||||
@@ -10,6 +10,8 @@
|
||||
#ifndef EIGEN_SOLVETRIANGULAR_H
|
||||
#define EIGEN_SOLVETRIANGULAR_H
|
||||
|
||||
#include "./InternalHeaderCheck.h"
|
||||
|
||||
namespace Eigen {
|
||||
|
||||
namespace internal {
|
||||
@@ -87,7 +89,7 @@ struct triangular_solver_selector<Lhs,Rhs,Side,Mode,NoUnrolling,Dynamic>
|
||||
|
||||
static EIGEN_DEVICE_FUNC void run(const Lhs& lhs, Rhs& rhs)
|
||||
{
|
||||
typename internal::add_const_on_value_type<ActualLhsType>::type actualLhs = LhsProductTraits::extract(lhs);
|
||||
add_const_on_value_type_t<ActualLhsType> actualLhs = LhsProductTraits::extract(lhs);
|
||||
|
||||
const Index size = lhs.rows();
|
||||
const Index othersize = Side==OnTheLeft? rhs.cols() : rhs.rows();
|
||||
@@ -174,11 +176,11 @@ EIGEN_DEVICE_FUNC void TriangularViewImpl<MatrixType,Mode,Dense>::solveInPlace(c
|
||||
return;
|
||||
|
||||
enum { copy = (internal::traits<OtherDerived>::Flags & RowMajorBit) && OtherDerived::IsVectorAtCompileTime && OtherDerived::SizeAtCompileTime!=1};
|
||||
typedef typename internal::conditional<copy,
|
||||
typename internal::plain_matrix_type_column_major<OtherDerived>::type, OtherDerived&>::type OtherCopy;
|
||||
typedef std::conditional_t<copy,
|
||||
typename internal::plain_matrix_type_column_major<OtherDerived>::type, OtherDerived&> OtherCopy;
|
||||
OtherCopy otherCopy(other);
|
||||
|
||||
internal::triangular_solver_selector<MatrixType, typename internal::remove_reference<OtherCopy>::type,
|
||||
internal::triangular_solver_selector<MatrixType, std::remove_reference_t<OtherCopy>,
|
||||
Side, Mode>::run(derived().nestedExpression(), otherCopy);
|
||||
|
||||
if (copy)
|
||||
@@ -206,7 +208,7 @@ struct traits<triangular_solve_retval<Side, TriangularType, Rhs> >
|
||||
template<int Side, typename TriangularType, typename Rhs> struct triangular_solve_retval
|
||||
: public ReturnByValue<triangular_solve_retval<Side, TriangularType, Rhs> >
|
||||
{
|
||||
typedef typename remove_all<typename Rhs::Nested>::type RhsNestedCleaned;
|
||||
typedef remove_all_t<typename Rhs::Nested> RhsNestedCleaned;
|
||||
typedef ReturnByValue<triangular_solve_retval> Base;
|
||||
|
||||
triangular_solve_retval(const TriangularType& tri, const Rhs& rhs)
|
||||
|
||||
@@ -10,6 +10,8 @@
|
||||
#ifndef EIGEN_SOLVERBASE_H
|
||||
#define EIGEN_SOLVERBASE_H
|
||||
|
||||
#include "./InternalHeaderCheck.h"
|
||||
|
||||
namespace Eigen {
|
||||
|
||||
namespace internal {
|
||||
@@ -28,7 +30,7 @@ struct solve_assertion<Transpose<Derived> >
|
||||
template<bool Transpose_, typename Rhs>
|
||||
static void run(const type& transpose, const Rhs& b)
|
||||
{
|
||||
internal::solve_assertion<typename internal::remove_all<Derived>::type>::template run<true>(transpose.nestedExpression(), b);
|
||||
internal::solve_assertion<internal::remove_all_t<Derived>>::template run<true>(transpose.nestedExpression(), b);
|
||||
}
|
||||
};
|
||||
|
||||
@@ -40,7 +42,7 @@ struct solve_assertion<CwiseUnaryOp<Eigen::internal::scalar_conjugate_op<Scalar>
|
||||
template<bool Transpose_, typename Rhs>
|
||||
static void run(const type& adjoint, const Rhs& b)
|
||||
{
|
||||
internal::solve_assertion<typename internal::remove_all<Transpose<Derived> >::type>::template run<true>(adjoint.nestedExpression(), b);
|
||||
internal::solve_assertion<internal::remove_all_t<Transpose<Derived> >>::template run<true>(adjoint.nestedExpression(), b);
|
||||
}
|
||||
};
|
||||
} // end namespace internal
|
||||
@@ -79,12 +81,11 @@ class SolverBase : public EigenBase<Derived>
|
||||
enum {
|
||||
RowsAtCompileTime = internal::traits<Derived>::RowsAtCompileTime,
|
||||
ColsAtCompileTime = internal::traits<Derived>::ColsAtCompileTime,
|
||||
SizeAtCompileTime = (internal::size_at_compile_time<internal::traits<Derived>::RowsAtCompileTime,
|
||||
internal::traits<Derived>::ColsAtCompileTime>::ret),
|
||||
SizeAtCompileTime = (internal::size_of_xpr_at_compile_time<Derived>::ret),
|
||||
MaxRowsAtCompileTime = internal::traits<Derived>::MaxRowsAtCompileTime,
|
||||
MaxColsAtCompileTime = internal::traits<Derived>::MaxColsAtCompileTime,
|
||||
MaxSizeAtCompileTime = (internal::size_at_compile_time<internal::traits<Derived>::MaxRowsAtCompileTime,
|
||||
internal::traits<Derived>::MaxColsAtCompileTime>::ret),
|
||||
MaxSizeAtCompileTime = internal::size_at_compile_time(internal::traits<Derived>::MaxRowsAtCompileTime,
|
||||
internal::traits<Derived>::MaxColsAtCompileTime),
|
||||
IsVectorAtCompileTime = internal::traits<Derived>::MaxRowsAtCompileTime == 1
|
||||
|| internal::traits<Derived>::MaxColsAtCompileTime == 1,
|
||||
NumDimensions = int(MaxSizeAtCompileTime) == 1 ? 0 : bool(IsVectorAtCompileTime) ? 1 : 2
|
||||
@@ -105,12 +106,12 @@ class SolverBase : public EigenBase<Derived>
|
||||
inline const Solve<Derived, Rhs>
|
||||
solve(const MatrixBase<Rhs>& b) const
|
||||
{
|
||||
internal::solve_assertion<typename internal::remove_all<Derived>::type>::template run<false>(derived(), b);
|
||||
internal::solve_assertion<internal::remove_all_t<Derived>>::template run<false>(derived(), b);
|
||||
return Solve<Derived, Rhs>(derived(), b.derived());
|
||||
}
|
||||
|
||||
/** \internal the return type of transpose() */
|
||||
typedef typename internal::add_const<Transpose<const Derived> >::type ConstTransposeReturnType;
|
||||
typedef Transpose<const Derived> ConstTransposeReturnType;
|
||||
/** \returns an expression of the transposed of the factored matrix.
|
||||
*
|
||||
* A typical usage is to solve for the transposed problem A^T x = b:
|
||||
@@ -118,16 +119,16 @@ class SolverBase : public EigenBase<Derived>
|
||||
*
|
||||
* \sa adjoint(), solve()
|
||||
*/
|
||||
inline ConstTransposeReturnType transpose() const
|
||||
inline const ConstTransposeReturnType transpose() const
|
||||
{
|
||||
return ConstTransposeReturnType(derived());
|
||||
}
|
||||
|
||||
/** \internal the return type of adjoint() */
|
||||
typedef typename internal::conditional<NumTraits<Scalar>::IsComplex,
|
||||
CwiseUnaryOp<internal::scalar_conjugate_op<Scalar>, ConstTransposeReturnType>,
|
||||
ConstTransposeReturnType
|
||||
>::type AdjointReturnType;
|
||||
typedef std::conditional_t<NumTraits<Scalar>::IsComplex,
|
||||
CwiseUnaryOp<internal::scalar_conjugate_op<Scalar>, const ConstTransposeReturnType>,
|
||||
const ConstTransposeReturnType
|
||||
> AdjointReturnType;
|
||||
/** \returns an expression of the adjoint of the factored matrix
|
||||
*
|
||||
* A typical usage is to solve for the adjoint problem A' x = b:
|
||||
@@ -137,7 +138,7 @@ class SolverBase : public EigenBase<Derived>
|
||||
*
|
||||
* \sa transpose(), solve()
|
||||
*/
|
||||
inline AdjointReturnType adjoint() const
|
||||
inline const AdjointReturnType adjoint() const
|
||||
{
|
||||
return AdjointReturnType(derived().transpose());
|
||||
}
|
||||
|
||||
@@ -10,6 +10,8 @@
|
||||
#ifndef EIGEN_STABLENORM_H
|
||||
#define EIGEN_STABLENORM_H
|
||||
|
||||
#include "./InternalHeaderCheck.h"
|
||||
|
||||
namespace Eigen {
|
||||
|
||||
namespace internal {
|
||||
@@ -57,7 +59,7 @@ void stable_norm_impl_inner_step(const VectorType &vec, RealScalar& ssq, RealSca
|
||||
const Index blockSize = 4096;
|
||||
|
||||
typedef typename internal::nested_eval<VectorType,2>::type VectorTypeCopy;
|
||||
typedef typename internal::remove_all<VectorTypeCopy>::type VectorTypeCopyClean;
|
||||
typedef internal::remove_all_t<VectorTypeCopy> VectorTypeCopyClean;
|
||||
const VectorTypeCopy copy(vec);
|
||||
|
||||
enum {
|
||||
@@ -66,8 +68,8 @@ void stable_norm_impl_inner_step(const VectorType &vec, RealScalar& ssq, RealSca
|
||||
) && (blockSize*sizeof(Scalar)*2<EIGEN_STACK_ALLOCATION_LIMIT)
|
||||
&& (EIGEN_MAX_STATIC_ALIGN_BYTES>0) // if we cannot allocate on the stack, then let's not bother about this optimization
|
||||
};
|
||||
typedef typename internal::conditional<CanAlign, Ref<const Matrix<Scalar,Dynamic,1,0,blockSize,1>, internal::evaluator<VectorTypeCopyClean>::Alignment>,
|
||||
typename VectorTypeCopyClean::ConstSegmentReturnType>::type SegmentWrapper;
|
||||
typedef std::conditional_t<CanAlign, Ref<const Matrix<Scalar,Dynamic,1,0,blockSize,1>, internal::evaluator<VectorTypeCopyClean>::Alignment>,
|
||||
typename VectorTypeCopyClean::ConstSegmentReturnType> SegmentWrapper;
|
||||
Index n = vec.size();
|
||||
|
||||
Index bi = internal::first_default_aligned(copy);
|
||||
@@ -79,7 +81,7 @@ void stable_norm_impl_inner_step(const VectorType &vec, RealScalar& ssq, RealSca
|
||||
|
||||
template<typename VectorType>
|
||||
typename VectorType::RealScalar
|
||||
stable_norm_impl(const VectorType &vec, typename enable_if<VectorType::IsVectorAtCompileTime>::type* = 0 )
|
||||
stable_norm_impl(const VectorType &vec, std::enable_if_t<VectorType::IsVectorAtCompileTime>* = 0 )
|
||||
{
|
||||
using std::sqrt;
|
||||
using std::abs;
|
||||
@@ -101,7 +103,7 @@ stable_norm_impl(const VectorType &vec, typename enable_if<VectorType::IsVectorA
|
||||
|
||||
template<typename MatrixType>
|
||||
typename MatrixType::RealScalar
|
||||
stable_norm_impl(const MatrixType &mat, typename enable_if<!MatrixType::IsVectorAtCompileTime>::type* = 0 )
|
||||
stable_norm_impl(const MatrixType &mat, std::enable_if_t<!MatrixType::IsVectorAtCompileTime>* = 0 )
|
||||
{
|
||||
using std::sqrt;
|
||||
|
||||
|
||||
@@ -10,6 +10,8 @@
|
||||
#ifndef EIGEN_STLITERATORS_H
|
||||
#define EIGEN_STLITERATORS_H
|
||||
|
||||
#include "./InternalHeaderCheck.h"
|
||||
|
||||
namespace Eigen {
|
||||
|
||||
namespace internal {
|
||||
@@ -25,7 +27,7 @@ protected:
|
||||
typedef typename traits::XprType XprType;
|
||||
typedef indexed_based_stl_iterator_base<typename traits::non_const_iterator> non_const_iterator;
|
||||
typedef indexed_based_stl_iterator_base<typename traits::const_iterator> const_iterator;
|
||||
typedef typename internal::conditional<internal::is_const<XprType>::value,non_const_iterator,const_iterator>::type other_iterator;
|
||||
typedef std::conditional_t<internal::is_const<XprType>::value,non_const_iterator,const_iterator> other_iterator;
|
||||
// NOTE: in C++03 we cannot declare friend classes through typedefs because we need to write friend class:
|
||||
friend class indexed_based_stl_iterator_base<typename traits::const_iterator>;
|
||||
friend class indexed_based_stl_iterator_base<typename traits::non_const_iterator>;
|
||||
@@ -104,7 +106,7 @@ protected:
|
||||
typedef typename traits::XprType XprType;
|
||||
typedef indexed_based_stl_reverse_iterator_base<typename traits::non_const_iterator> non_const_iterator;
|
||||
typedef indexed_based_stl_reverse_iterator_base<typename traits::const_iterator> const_iterator;
|
||||
typedef typename internal::conditional<internal::is_const<XprType>::value,non_const_iterator,const_iterator>::type other_iterator;
|
||||
typedef std::conditional_t<internal::is_const<XprType>::value,non_const_iterator,const_iterator> other_iterator;
|
||||
// NOTE: in C++03 we cannot declare friend classes through typedefs because we need to write friend class:
|
||||
friend class indexed_based_stl_reverse_iterator_base<typename traits::const_iterator>;
|
||||
friend class indexed_based_stl_reverse_iterator_base<typename traits::non_const_iterator>;
|
||||
@@ -179,18 +181,18 @@ template<typename XprType>
|
||||
class pointer_based_stl_iterator
|
||||
{
|
||||
enum { is_lvalue = internal::is_lvalue<XprType>::value };
|
||||
typedef pointer_based_stl_iterator<typename internal::remove_const<XprType>::type> non_const_iterator;
|
||||
typedef pointer_based_stl_iterator<typename internal::add_const<XprType>::type> const_iterator;
|
||||
typedef typename internal::conditional<internal::is_const<XprType>::value,non_const_iterator,const_iterator>::type other_iterator;
|
||||
typedef pointer_based_stl_iterator<std::remove_const_t<XprType>> non_const_iterator;
|
||||
typedef pointer_based_stl_iterator<std::add_const_t<XprType>> const_iterator;
|
||||
typedef std::conditional_t<internal::is_const<XprType>::value,non_const_iterator,const_iterator> other_iterator;
|
||||
// NOTE: in C++03 we cannot declare friend classes through typedefs because we need to write friend class:
|
||||
friend class pointer_based_stl_iterator<typename internal::add_const<XprType>::type>;
|
||||
friend class pointer_based_stl_iterator<typename internal::remove_const<XprType>::type>;
|
||||
friend class pointer_based_stl_iterator<std::add_const_t<XprType>>;
|
||||
friend class pointer_based_stl_iterator<std::remove_const_t<XprType>>;
|
||||
public:
|
||||
typedef Index difference_type;
|
||||
typedef typename XprType::Scalar value_type;
|
||||
typedef std::random_access_iterator_tag iterator_category;
|
||||
typedef typename internal::conditional<bool(is_lvalue), value_type*, const value_type*>::type pointer;
|
||||
typedef typename internal::conditional<bool(is_lvalue), value_type&, const value_type&>::type reference;
|
||||
typedef std::conditional_t<bool(is_lvalue), value_type*, const value_type*> pointer;
|
||||
typedef std::conditional_t<bool(is_lvalue), value_type&, const value_type&> reference;
|
||||
|
||||
|
||||
pointer_based_stl_iterator() EIGEN_NO_THROW : m_ptr(0) {}
|
||||
@@ -256,12 +258,12 @@ protected:
|
||||
internal::variable_if_dynamic<Index, XprType::InnerStrideAtCompileTime> m_incr;
|
||||
};
|
||||
|
||||
template<typename _XprType>
|
||||
struct indexed_based_stl_iterator_traits<generic_randaccess_stl_iterator<_XprType> >
|
||||
template<typename XprType_>
|
||||
struct indexed_based_stl_iterator_traits<generic_randaccess_stl_iterator<XprType_> >
|
||||
{
|
||||
typedef _XprType XprType;
|
||||
typedef generic_randaccess_stl_iterator<typename internal::remove_const<XprType>::type> non_const_iterator;
|
||||
typedef generic_randaccess_stl_iterator<typename internal::add_const<XprType>::type> const_iterator;
|
||||
typedef XprType_ XprType;
|
||||
typedef generic_randaccess_stl_iterator<std::remove_const_t<XprType>> non_const_iterator;
|
||||
typedef generic_randaccess_stl_iterator<std::add_const_t<XprType>> const_iterator;
|
||||
};
|
||||
|
||||
template<typename XprType>
|
||||
@@ -283,13 +285,13 @@ protected:
|
||||
|
||||
// TODO currently const Transpose/Reshape expressions never returns const references,
|
||||
// so lets return by value too.
|
||||
//typedef typename internal::conditional<bool(has_direct_access), const value_type&, const value_type>::type read_only_ref_t;
|
||||
//typedef std::conditional_t<bool(has_direct_access), const value_type&, const value_type> read_only_ref_t;
|
||||
typedef const value_type read_only_ref_t;
|
||||
|
||||
public:
|
||||
|
||||
typedef typename internal::conditional<bool(is_lvalue), value_type *, const value_type *>::type pointer;
|
||||
typedef typename internal::conditional<bool(is_lvalue), value_type&, read_only_ref_t>::type reference;
|
||||
typedef std::conditional_t<bool(is_lvalue), value_type *, const value_type *> pointer;
|
||||
typedef std::conditional_t<bool(is_lvalue), value_type&, read_only_ref_t> reference;
|
||||
|
||||
generic_randaccess_stl_iterator() : Base() {}
|
||||
generic_randaccess_stl_iterator(XprType& xpr, Index index) : Base(xpr,index) {}
|
||||
@@ -301,12 +303,12 @@ public:
|
||||
pointer operator->() const { return &((*mp_xpr)(m_index)); }
|
||||
};
|
||||
|
||||
template<typename _XprType, DirectionType Direction>
|
||||
struct indexed_based_stl_iterator_traits<subvector_stl_iterator<_XprType,Direction> >
|
||||
template<typename XprType_, DirectionType Direction>
|
||||
struct indexed_based_stl_iterator_traits<subvector_stl_iterator<XprType_,Direction> >
|
||||
{
|
||||
typedef _XprType XprType;
|
||||
typedef subvector_stl_iterator<typename internal::remove_const<XprType>::type, Direction> non_const_iterator;
|
||||
typedef subvector_stl_iterator<typename internal::add_const<XprType>::type, Direction> const_iterator;
|
||||
typedef XprType_ XprType;
|
||||
typedef subvector_stl_iterator<std::remove_const_t<XprType>, Direction> non_const_iterator;
|
||||
typedef subvector_stl_iterator<std::add_const_t<XprType>, Direction> const_iterator;
|
||||
};
|
||||
|
||||
template<typename XprType, DirectionType Direction>
|
||||
@@ -320,12 +322,12 @@ protected:
|
||||
using Base::m_index;
|
||||
using Base::mp_xpr;
|
||||
|
||||
typedef typename internal::conditional<Direction==Vertical,typename XprType::ColXpr,typename XprType::RowXpr>::type SubVectorType;
|
||||
typedef typename internal::conditional<Direction==Vertical,typename XprType::ConstColXpr,typename XprType::ConstRowXpr>::type ConstSubVectorType;
|
||||
typedef std::conditional_t<Direction==Vertical,typename XprType::ColXpr,typename XprType::RowXpr> SubVectorType;
|
||||
typedef std::conditional_t<Direction==Vertical,typename XprType::ConstColXpr,typename XprType::ConstRowXpr> ConstSubVectorType;
|
||||
|
||||
|
||||
public:
|
||||
typedef typename internal::conditional<bool(is_lvalue), SubVectorType, ConstSubVectorType>::type reference;
|
||||
typedef std::conditional_t<bool(is_lvalue), SubVectorType, ConstSubVectorType> reference;
|
||||
typedef typename reference::PlainObject value_type;
|
||||
|
||||
private:
|
||||
@@ -349,12 +351,12 @@ public:
|
||||
pointer operator->() const { return (*mp_xpr).template subVector<Direction>(m_index); }
|
||||
};
|
||||
|
||||
template<typename _XprType, DirectionType Direction>
|
||||
struct indexed_based_stl_iterator_traits<subvector_stl_reverse_iterator<_XprType,Direction> >
|
||||
template<typename XprType_, DirectionType Direction>
|
||||
struct indexed_based_stl_iterator_traits<subvector_stl_reverse_iterator<XprType_,Direction> >
|
||||
{
|
||||
typedef _XprType XprType;
|
||||
typedef subvector_stl_reverse_iterator<typename internal::remove_const<XprType>::type, Direction> non_const_iterator;
|
||||
typedef subvector_stl_reverse_iterator<typename internal::add_const<XprType>::type, Direction> const_iterator;
|
||||
typedef XprType_ XprType;
|
||||
typedef subvector_stl_reverse_iterator<std::remove_const_t<XprType>, Direction> non_const_iterator;
|
||||
typedef subvector_stl_reverse_iterator<std::add_const_t<XprType>, Direction> const_iterator;
|
||||
};
|
||||
|
||||
template<typename XprType, DirectionType Direction>
|
||||
@@ -368,12 +370,12 @@ protected:
|
||||
using Base::m_index;
|
||||
using Base::mp_xpr;
|
||||
|
||||
typedef typename internal::conditional<Direction==Vertical,typename XprType::ColXpr,typename XprType::RowXpr>::type SubVectorType;
|
||||
typedef typename internal::conditional<Direction==Vertical,typename XprType::ConstColXpr,typename XprType::ConstRowXpr>::type ConstSubVectorType;
|
||||
typedef std::conditional_t<Direction==Vertical,typename XprType::ColXpr,typename XprType::RowXpr> SubVectorType;
|
||||
typedef std::conditional_t<Direction==Vertical,typename XprType::ConstColXpr,typename XprType::ConstRowXpr> ConstSubVectorType;
|
||||
|
||||
|
||||
public:
|
||||
typedef typename internal::conditional<bool(is_lvalue), SubVectorType, ConstSubVectorType>::type reference;
|
||||
typedef std::conditional_t<bool(is_lvalue), SubVectorType, ConstSubVectorType> reference;
|
||||
typedef typename reference::PlainObject value_type;
|
||||
|
||||
private:
|
||||
|
||||
@@ -10,6 +10,8 @@
|
||||
#ifndef EIGEN_STRIDE_H
|
||||
#define EIGEN_STRIDE_H
|
||||
|
||||
#include "./InternalHeaderCheck.h"
|
||||
|
||||
namespace Eigen {
|
||||
|
||||
/** \class Stride
|
||||
@@ -31,27 +33,31 @@ namespace Eigen {
|
||||
* arguments to the constructor.
|
||||
*
|
||||
* Indeed, this class takes two template parameters:
|
||||
* \tparam _OuterStrideAtCompileTime the outer stride, or Dynamic if you want to specify it at runtime.
|
||||
* \tparam _InnerStrideAtCompileTime the inner stride, or Dynamic if you want to specify it at runtime.
|
||||
* \tparam OuterStrideAtCompileTime_ the outer stride, or Dynamic if you want to specify it at runtime.
|
||||
* \tparam InnerStrideAtCompileTime_ the inner stride, or Dynamic if you want to specify it at runtime.
|
||||
*
|
||||
* Here is an example:
|
||||
* \include Map_general_stride.cpp
|
||||
* Output: \verbinclude Map_general_stride.out
|
||||
*
|
||||
* Both strides can be negative, however, a negative stride of -1 cannot be specified at compiletime
|
||||
* Both strides can be negative. However, a negative stride of -1 cannot be specified at compile time
|
||||
* because of the ambiguity with Dynamic which is defined to -1 (historically, negative strides were
|
||||
* not allowed).
|
||||
*
|
||||
* Note that for compile-time vectors (ColsAtCompileTime==1 or RowsAtCompile==1),
|
||||
* the inner stride is the pointer increment between two consecutive elements,
|
||||
* regardless of storage layout.
|
||||
*
|
||||
* \sa class InnerStride, class OuterStride, \ref TopicStorageOrders
|
||||
*/
|
||||
template<int _OuterStrideAtCompileTime, int _InnerStrideAtCompileTime>
|
||||
template<int OuterStrideAtCompileTime_, int InnerStrideAtCompileTime_>
|
||||
class Stride
|
||||
{
|
||||
public:
|
||||
typedef Eigen::Index Index; ///< \deprecated since Eigen 3.3
|
||||
enum {
|
||||
InnerStrideAtCompileTime = _InnerStrideAtCompileTime,
|
||||
OuterStrideAtCompileTime = _OuterStrideAtCompileTime
|
||||
InnerStrideAtCompileTime = InnerStrideAtCompileTime_,
|
||||
OuterStrideAtCompileTime = OuterStrideAtCompileTime_
|
||||
};
|
||||
|
||||
/** Default constructor, for use when strides are fixed at compile time */
|
||||
|
||||
@@ -10,6 +10,8 @@
|
||||
#ifndef EIGEN_SWAP_H
|
||||
#define EIGEN_SWAP_H
|
||||
|
||||
#include "./InternalHeaderCheck.h"
|
||||
|
||||
namespace Eigen {
|
||||
|
||||
namespace internal {
|
||||
|
||||
@@ -11,6 +11,8 @@
|
||||
#ifndef EIGEN_TRANSPOSE_H
|
||||
#define EIGEN_TRANSPOSE_H
|
||||
|
||||
#include "./InternalHeaderCheck.h"
|
||||
|
||||
namespace Eigen {
|
||||
|
||||
namespace internal {
|
||||
@@ -18,7 +20,7 @@ template<typename MatrixType>
|
||||
struct traits<Transpose<MatrixType> > : public traits<MatrixType>
|
||||
{
|
||||
typedef typename ref_selector<MatrixType>::type MatrixTypeNested;
|
||||
typedef typename remove_reference<MatrixTypeNested>::type MatrixTypeNestedPlain;
|
||||
typedef std::remove_reference_t<MatrixTypeNested> MatrixTypeNestedPlain;
|
||||
enum {
|
||||
RowsAtCompileTime = MatrixType::ColsAtCompileTime,
|
||||
ColsAtCompileTime = MatrixType::RowsAtCompileTime,
|
||||
@@ -58,7 +60,7 @@ template<typename MatrixType> class Transpose
|
||||
|
||||
typedef typename TransposeImpl<MatrixType,typename internal::traits<MatrixType>::StorageKind>::Base Base;
|
||||
EIGEN_GENERIC_PUBLIC_INTERFACE(Transpose)
|
||||
typedef typename internal::remove_all<MatrixType>::type NestedExpression;
|
||||
typedef internal::remove_all_t<MatrixType> NestedExpression;
|
||||
|
||||
EIGEN_DEVICE_FUNC
|
||||
explicit EIGEN_STRONG_INLINE Transpose(MatrixType& matrix) : m_matrix(matrix) {}
|
||||
@@ -72,12 +74,12 @@ template<typename MatrixType> class Transpose
|
||||
|
||||
/** \returns the nested expression */
|
||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
|
||||
const typename internal::remove_all<MatrixTypeNested>::type&
|
||||
const internal::remove_all_t<MatrixTypeNested>&
|
||||
nestedExpression() const { return m_matrix; }
|
||||
|
||||
/** \returns the nested expression */
|
||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
|
||||
typename internal::remove_reference<MatrixTypeNested>::type&
|
||||
std::remove_reference_t<MatrixTypeNested>&
|
||||
nestedExpression() { return m_matrix; }
|
||||
|
||||
/** \internal */
|
||||
@@ -130,11 +132,11 @@ template<typename MatrixType> class TransposeImpl<MatrixType,Dense>
|
||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
|
||||
Index outerStride() const { return derived().nestedExpression().outerStride(); }
|
||||
|
||||
typedef typename internal::conditional<
|
||||
internal::is_lvalue<MatrixType>::value,
|
||||
Scalar,
|
||||
const Scalar
|
||||
>::type ScalarWithConstIfNotLvalue;
|
||||
typedef std::conditional_t<
|
||||
internal::is_lvalue<MatrixType>::value,
|
||||
Scalar,
|
||||
const Scalar
|
||||
> ScalarWithConstIfNotLvalue;
|
||||
|
||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
|
||||
ScalarWithConstIfNotLvalue* data() { return derived().nestedExpression().data(); }
|
||||
@@ -178,7 +180,7 @@ template<typename MatrixType> class TransposeImpl<MatrixType,Dense>
|
||||
* \sa transposeInPlace(), adjoint() */
|
||||
template<typename Derived>
|
||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
|
||||
Transpose<Derived>
|
||||
typename DenseBase<Derived>::TransposeReturnType
|
||||
DenseBase<Derived>::transpose()
|
||||
{
|
||||
return TransposeReturnType(derived());
|
||||
@@ -191,7 +193,7 @@ DenseBase<Derived>::transpose()
|
||||
* \sa transposeInPlace(), adjoint() */
|
||||
template<typename Derived>
|
||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
|
||||
typename DenseBase<Derived>::ConstTransposeReturnType
|
||||
const typename DenseBase<Derived>::ConstTransposeReturnType
|
||||
DenseBase<Derived>::transpose() const
|
||||
{
|
||||
return ConstTransposeReturnType(derived());
|
||||
|
||||
@@ -10,6 +10,8 @@
|
||||
#ifndef EIGEN_TRANSPOSITIONS_H
|
||||
#define EIGEN_TRANSPOSITIONS_H
|
||||
|
||||
#include "./InternalHeaderCheck.h"
|
||||
|
||||
namespace Eigen {
|
||||
|
||||
template<typename Derived>
|
||||
@@ -113,11 +115,11 @@ class TranspositionsBase
|
||||
};
|
||||
|
||||
namespace internal {
|
||||
template<int SizeAtCompileTime, int MaxSizeAtCompileTime, typename _StorageIndex>
|
||||
struct traits<Transpositions<SizeAtCompileTime,MaxSizeAtCompileTime,_StorageIndex> >
|
||||
: traits<PermutationMatrix<SizeAtCompileTime,MaxSizeAtCompileTime,_StorageIndex> >
|
||||
template<int SizeAtCompileTime, int MaxSizeAtCompileTime, typename StorageIndex_>
|
||||
struct traits<Transpositions<SizeAtCompileTime,MaxSizeAtCompileTime,StorageIndex_> >
|
||||
: traits<PermutationMatrix<SizeAtCompileTime,MaxSizeAtCompileTime,StorageIndex_> >
|
||||
{
|
||||
typedef Matrix<_StorageIndex, SizeAtCompileTime, 1, 0, MaxSizeAtCompileTime, 1> IndicesType;
|
||||
typedef Matrix<StorageIndex_, SizeAtCompileTime, 1, 0, MaxSizeAtCompileTime, 1> IndicesType;
|
||||
typedef TranspositionsStorage StorageKind;
|
||||
};
|
||||
}
|
||||
@@ -151,8 +153,8 @@ struct traits<Transpositions<SizeAtCompileTime,MaxSizeAtCompileTime,_StorageInde
|
||||
* \sa class PermutationMatrix
|
||||
*/
|
||||
|
||||
template<int SizeAtCompileTime, int MaxSizeAtCompileTime, typename _StorageIndex>
|
||||
class Transpositions : public TranspositionsBase<Transpositions<SizeAtCompileTime,MaxSizeAtCompileTime,_StorageIndex> >
|
||||
template<int SizeAtCompileTime, int MaxSizeAtCompileTime, typename StorageIndex_>
|
||||
class Transpositions : public TranspositionsBase<Transpositions<SizeAtCompileTime,MaxSizeAtCompileTime,StorageIndex_> >
|
||||
{
|
||||
typedef internal::traits<Transpositions> Traits;
|
||||
public:
|
||||
@@ -199,19 +201,19 @@ class Transpositions : public TranspositionsBase<Transpositions<SizeAtCompileTim
|
||||
|
||||
|
||||
namespace internal {
|
||||
template<int SizeAtCompileTime, int MaxSizeAtCompileTime, typename _StorageIndex, int _PacketAccess>
|
||||
struct traits<Map<Transpositions<SizeAtCompileTime,MaxSizeAtCompileTime,_StorageIndex>,_PacketAccess> >
|
||||
: traits<PermutationMatrix<SizeAtCompileTime,MaxSizeAtCompileTime,_StorageIndex> >
|
||||
template<int SizeAtCompileTime, int MaxSizeAtCompileTime, typename StorageIndex_, int PacketAccess_>
|
||||
struct traits<Map<Transpositions<SizeAtCompileTime,MaxSizeAtCompileTime,StorageIndex_>,PacketAccess_> >
|
||||
: traits<PermutationMatrix<SizeAtCompileTime,MaxSizeAtCompileTime,StorageIndex_> >
|
||||
{
|
||||
typedef Map<const Matrix<_StorageIndex,SizeAtCompileTime,1,0,MaxSizeAtCompileTime,1>, _PacketAccess> IndicesType;
|
||||
typedef _StorageIndex StorageIndex;
|
||||
typedef Map<const Matrix<StorageIndex_,SizeAtCompileTime,1,0,MaxSizeAtCompileTime,1>, PacketAccess_> IndicesType;
|
||||
typedef StorageIndex_ StorageIndex;
|
||||
typedef TranspositionsStorage StorageKind;
|
||||
};
|
||||
}
|
||||
|
||||
template<int SizeAtCompileTime, int MaxSizeAtCompileTime, typename _StorageIndex, int PacketAccess>
|
||||
class Map<Transpositions<SizeAtCompileTime,MaxSizeAtCompileTime,_StorageIndex>,PacketAccess>
|
||||
: public TranspositionsBase<Map<Transpositions<SizeAtCompileTime,MaxSizeAtCompileTime,_StorageIndex>,PacketAccess> >
|
||||
template<int SizeAtCompileTime, int MaxSizeAtCompileTime, typename StorageIndex_, int PacketAccess>
|
||||
class Map<Transpositions<SizeAtCompileTime,MaxSizeAtCompileTime,StorageIndex_>,PacketAccess>
|
||||
: public TranspositionsBase<Map<Transpositions<SizeAtCompileTime,MaxSizeAtCompileTime,StorageIndex_>,PacketAccess> >
|
||||
{
|
||||
typedef internal::traits<Map> Traits;
|
||||
public:
|
||||
@@ -260,17 +262,17 @@ class Map<Transpositions<SizeAtCompileTime,MaxSizeAtCompileTime,_StorageIndex>,P
|
||||
};
|
||||
|
||||
namespace internal {
|
||||
template<typename _IndicesType>
|
||||
struct traits<TranspositionsWrapper<_IndicesType> >
|
||||
: traits<PermutationWrapper<_IndicesType> >
|
||||
template<typename IndicesType_>
|
||||
struct traits<TranspositionsWrapper<IndicesType_> >
|
||||
: traits<PermutationWrapper<IndicesType_> >
|
||||
{
|
||||
typedef TranspositionsStorage StorageKind;
|
||||
};
|
||||
}
|
||||
|
||||
template<typename _IndicesType>
|
||||
template<typename IndicesType_>
|
||||
class TranspositionsWrapper
|
||||
: public TranspositionsBase<TranspositionsWrapper<_IndicesType> >
|
||||
: public TranspositionsBase<TranspositionsWrapper<IndicesType_> >
|
||||
{
|
||||
typedef internal::traits<TranspositionsWrapper> Traits;
|
||||
public:
|
||||
|
||||
@@ -11,6 +11,8 @@
|
||||
#ifndef EIGEN_TRIANGULARMATRIX_H
|
||||
#define EIGEN_TRIANGULARMATRIX_H
|
||||
|
||||
#include "./InternalHeaderCheck.h"
|
||||
|
||||
namespace Eigen {
|
||||
|
||||
namespace internal {
|
||||
@@ -35,14 +37,13 @@ template<typename Derived> class TriangularBase : public EigenBase<Derived>
|
||||
MaxRowsAtCompileTime = internal::traits<Derived>::MaxRowsAtCompileTime,
|
||||
MaxColsAtCompileTime = internal::traits<Derived>::MaxColsAtCompileTime,
|
||||
|
||||
SizeAtCompileTime = (internal::size_at_compile_time<internal::traits<Derived>::RowsAtCompileTime,
|
||||
internal::traits<Derived>::ColsAtCompileTime>::ret),
|
||||
SizeAtCompileTime = (internal::size_of_xpr_at_compile_time<Derived>::ret),
|
||||
/**< This is equal to the number of coefficients, i.e. the number of
|
||||
* rows times the number of columns, or to \a Dynamic if this is not
|
||||
* known at compile-time. \sa RowsAtCompileTime, ColsAtCompileTime */
|
||||
|
||||
MaxSizeAtCompileTime = (internal::size_at_compile_time<internal::traits<Derived>::MaxRowsAtCompileTime,
|
||||
internal::traits<Derived>::MaxColsAtCompileTime>::ret)
|
||||
MaxSizeAtCompileTime = internal::size_at_compile_time(internal::traits<Derived>::MaxRowsAtCompileTime,
|
||||
internal::traits<Derived>::MaxColsAtCompileTime)
|
||||
|
||||
};
|
||||
typedef typename internal::traits<Derived>::Scalar Scalar;
|
||||
@@ -153,8 +154,8 @@ template<typename Derived> class TriangularBase : public EigenBase<Derived>
|
||||
*
|
||||
* \brief Expression of a triangular part in a matrix
|
||||
*
|
||||
* \param MatrixType the type of the object in which we are taking the triangular part
|
||||
* \param Mode the kind of triangular matrix expression to construct. Can be #Upper,
|
||||
* \tparam MatrixType the type of the object in which we are taking the triangular part
|
||||
* \tparam Mode the kind of triangular matrix expression to construct. Can be #Upper,
|
||||
* #Lower, #UnitUpper, #UnitLower, #StrictlyUpper, or #StrictlyLower.
|
||||
* This is in fact a bit field; it must have either #Upper or #Lower,
|
||||
* and additionally it may have #UnitDiag or #ZeroDiag or neither.
|
||||
@@ -166,39 +167,39 @@ template<typename Derived> class TriangularBase : public EigenBase<Derived>
|
||||
* \sa MatrixBase::triangularView()
|
||||
*/
|
||||
namespace internal {
|
||||
template<typename MatrixType, unsigned int _Mode>
|
||||
struct traits<TriangularView<MatrixType, _Mode> > : traits<MatrixType>
|
||||
template<typename MatrixType, unsigned int Mode_>
|
||||
struct traits<TriangularView<MatrixType, Mode_> > : traits<MatrixType>
|
||||
{
|
||||
typedef typename ref_selector<MatrixType>::non_const_type MatrixTypeNested;
|
||||
typedef typename remove_reference<MatrixTypeNested>::type MatrixTypeNestedNonRef;
|
||||
typedef typename remove_all<MatrixTypeNested>::type MatrixTypeNestedCleaned;
|
||||
typedef std::remove_reference_t<MatrixTypeNested> MatrixTypeNestedNonRef;
|
||||
typedef remove_all_t<MatrixTypeNested> MatrixTypeNestedCleaned;
|
||||
typedef typename MatrixType::PlainObject FullMatrixType;
|
||||
typedef MatrixType ExpressionType;
|
||||
enum {
|
||||
Mode = _Mode,
|
||||
Mode = Mode_,
|
||||
FlagsLvalueBit = is_lvalue<MatrixType>::value ? LvalueBit : 0,
|
||||
Flags = (MatrixTypeNestedCleaned::Flags & (HereditaryBits | FlagsLvalueBit) & (~(PacketAccessBit | DirectAccessBit | LinearAccessBit)))
|
||||
};
|
||||
};
|
||||
}
|
||||
|
||||
template<typename _MatrixType, unsigned int _Mode, typename StorageKind> class TriangularViewImpl;
|
||||
template<typename MatrixType_, unsigned int Mode_, typename StorageKind> class TriangularViewImpl;
|
||||
|
||||
template<typename _MatrixType, unsigned int _Mode> class TriangularView
|
||||
: public TriangularViewImpl<_MatrixType, _Mode, typename internal::traits<_MatrixType>::StorageKind >
|
||||
template<typename MatrixType_, unsigned int Mode_> class TriangularView
|
||||
: public TriangularViewImpl<MatrixType_, Mode_, typename internal::traits<MatrixType_>::StorageKind >
|
||||
{
|
||||
public:
|
||||
|
||||
typedef TriangularViewImpl<_MatrixType, _Mode, typename internal::traits<_MatrixType>::StorageKind > Base;
|
||||
typedef TriangularViewImpl<MatrixType_, Mode_, typename internal::traits<MatrixType_>::StorageKind > Base;
|
||||
typedef typename internal::traits<TriangularView>::Scalar Scalar;
|
||||
typedef _MatrixType MatrixType;
|
||||
typedef MatrixType_ MatrixType;
|
||||
|
||||
protected:
|
||||
typedef typename internal::traits<TriangularView>::MatrixTypeNested MatrixTypeNested;
|
||||
typedef typename internal::traits<TriangularView>::MatrixTypeNestedNonRef MatrixTypeNestedNonRef;
|
||||
|
||||
typedef typename internal::remove_all<typename MatrixType::ConjugateReturnType>::type MatrixConjugateReturnType;
|
||||
typedef TriangularView<typename internal::add_const<MatrixType>::type, _Mode> ConstTriangularView;
|
||||
typedef internal::remove_all_t<typename MatrixType::ConjugateReturnType> MatrixConjugateReturnType;
|
||||
typedef TriangularView<std::add_const_t<MatrixType>, Mode_> ConstTriangularView;
|
||||
|
||||
public:
|
||||
|
||||
@@ -206,7 +207,7 @@ template<typename _MatrixType, unsigned int _Mode> class TriangularView
|
||||
typedef typename internal::traits<TriangularView>::MatrixTypeNestedCleaned NestedExpression;
|
||||
|
||||
enum {
|
||||
Mode = _Mode,
|
||||
Mode = Mode_,
|
||||
Flags = internal::traits<TriangularView>::Flags,
|
||||
TransposeMode = (Mode & Upper ? Lower : 0)
|
||||
| (Mode & Lower ? Upper : 0)
|
||||
@@ -247,10 +248,10 @@ template<typename _MatrixType, unsigned int _Mode> class TriangularView
|
||||
*/
|
||||
template<bool Cond>
|
||||
EIGEN_DEVICE_FUNC
|
||||
inline typename internal::conditional<Cond,ConjugateReturnType,ConstTriangularView>::type
|
||||
inline std::conditional_t<Cond,ConjugateReturnType,ConstTriangularView>
|
||||
conjugateIf() const
|
||||
{
|
||||
typedef typename internal::conditional<Cond,ConjugateReturnType,ConstTriangularView>::type ReturnType;
|
||||
typedef std::conditional_t<Cond,ConjugateReturnType,ConstTriangularView> ReturnType;
|
||||
return ReturnType(m_matrix.template conjugateIf<Cond>());
|
||||
}
|
||||
|
||||
@@ -262,10 +263,10 @@ template<typename _MatrixType, unsigned int _Mode> class TriangularView
|
||||
|
||||
typedef TriangularView<typename MatrixType::TransposeReturnType,TransposeMode> TransposeReturnType;
|
||||
/** \sa MatrixBase::transpose() */
|
||||
template<class Dummy=int>
|
||||
EIGEN_DEVICE_FUNC
|
||||
inline TransposeReturnType transpose()
|
||||
inline TransposeReturnType transpose(std::enable_if_t<Eigen::internal::is_lvalue<MatrixType>::value, Dummy*> = nullptr)
|
||||
{
|
||||
EIGEN_STATIC_ASSERT_LVALUE(MatrixType)
|
||||
typename MatrixType::TransposeReturnType tmp(m_matrix);
|
||||
return TransposeReturnType(tmp);
|
||||
}
|
||||
@@ -342,16 +343,17 @@ template<typename _MatrixType, unsigned int _Mode> class TriangularView
|
||||
*
|
||||
* \sa class TriangularView, MatrixBase::triangularView()
|
||||
*/
|
||||
template<typename _MatrixType, unsigned int _Mode> class TriangularViewImpl<_MatrixType,_Mode,Dense>
|
||||
: public TriangularBase<TriangularView<_MatrixType, _Mode> >
|
||||
template<typename MatrixType_, unsigned int Mode_> class TriangularViewImpl<MatrixType_,Mode_,Dense>
|
||||
: public TriangularBase<TriangularView<MatrixType_, Mode_> >
|
||||
{
|
||||
public:
|
||||
|
||||
typedef TriangularView<_MatrixType, _Mode> TriangularViewType;
|
||||
typedef TriangularView<MatrixType_, Mode_> TriangularViewType;
|
||||
|
||||
typedef TriangularBase<TriangularViewType> Base;
|
||||
typedef typename internal::traits<TriangularViewType>::Scalar Scalar;
|
||||
|
||||
typedef _MatrixType MatrixType;
|
||||
typedef MatrixType_ MatrixType;
|
||||
typedef typename MatrixType::PlainObject DenseMatrixType;
|
||||
typedef DenseMatrixType PlainObject;
|
||||
|
||||
@@ -362,7 +364,7 @@ template<typename _MatrixType, unsigned int _Mode> class TriangularViewImpl<_Mat
|
||||
typedef typename internal::traits<TriangularViewType>::StorageKind StorageKind;
|
||||
|
||||
enum {
|
||||
Mode = _Mode,
|
||||
Mode = Mode_,
|
||||
Flags = internal::traits<TriangularViewType>::Flags
|
||||
};
|
||||
|
||||
@@ -728,10 +730,10 @@ struct evaluator_traits<TriangularView<MatrixType,Mode> >
|
||||
|
||||
template<typename MatrixType, unsigned int Mode>
|
||||
struct unary_evaluator<TriangularView<MatrixType,Mode>, IndexBased>
|
||||
: evaluator<typename internal::remove_all<MatrixType>::type>
|
||||
: evaluator<internal::remove_all_t<MatrixType>>
|
||||
{
|
||||
typedef TriangularView<MatrixType,Mode> XprType;
|
||||
typedef evaluator<typename internal::remove_all<MatrixType>::type> Base;
|
||||
typedef evaluator<internal::remove_all_t<MatrixType>> Base;
|
||||
EIGEN_DEVICE_FUNC
|
||||
unary_evaluator(const XprType &xpr) : Base(xpr.nestedExpression()) {}
|
||||
};
|
||||
|
||||
@@ -11,6 +11,8 @@
|
||||
#ifndef EIGEN_VECTORBLOCK_H
|
||||
#define EIGEN_VECTORBLOCK_H
|
||||
|
||||
#include "./InternalHeaderCheck.h"
|
||||
|
||||
namespace Eigen {
|
||||
|
||||
namespace internal {
|
||||
@@ -66,6 +68,7 @@ template<typename VectorType, int Size> class VectorBlock
|
||||
};
|
||||
public:
|
||||
EIGEN_DENSE_PUBLIC_INTERFACE(VectorBlock)
|
||||
EIGEN_STATIC_ASSERT_VECTOR_ONLY(VectorBlock)
|
||||
|
||||
using Base::operator=;
|
||||
|
||||
@@ -76,18 +79,14 @@ template<typename VectorType, int Size> class VectorBlock
|
||||
: Base(vector,
|
||||
IsColVector ? start : 0, IsColVector ? 0 : start,
|
||||
IsColVector ? size : 1, IsColVector ? 1 : size)
|
||||
{
|
||||
EIGEN_STATIC_ASSERT_VECTOR_ONLY(VectorBlock);
|
||||
}
|
||||
{ }
|
||||
|
||||
/** Fixed-size constructor
|
||||
*/
|
||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
|
||||
VectorBlock(VectorType& vector, Index start)
|
||||
: Base(vector, IsColVector ? start : 0, IsColVector ? 0 : start)
|
||||
{
|
||||
EIGEN_STATIC_ASSERT_VECTOR_ONLY(VectorBlock);
|
||||
}
|
||||
{ }
|
||||
};
|
||||
|
||||
|
||||
|
||||
@@ -11,6 +11,8 @@
|
||||
#ifndef EIGEN_PARTIAL_REDUX_H
|
||||
#define EIGEN_PARTIAL_REDUX_H
|
||||
|
||||
#include "./InternalHeaderCheck.h"
|
||||
|
||||
namespace Eigen {
|
||||
|
||||
/** \class PartialReduxExpr
|
||||
@@ -86,7 +88,6 @@ template<typename A,typename B> struct partial_redux_dummy_func;
|
||||
#define EIGEN_MAKE_PARTIAL_REDUX_FUNCTOR(MEMBER,COST,VECTORIZABLE,BINARYOP) \
|
||||
template <typename ResultType,typename Scalar> \
|
||||
struct member_##MEMBER { \
|
||||
EIGEN_EMPTY_STRUCT_CTOR(member_##MEMBER) \
|
||||
typedef ResultType result_type; \
|
||||
typedef BINARYOP<Scalar,Scalar> BinaryOp; \
|
||||
template<int Size> struct Cost { enum { value = COST }; }; \
|
||||
@@ -191,7 +192,7 @@ template<typename ExpressionType, int Direction> class VectorwiseOp
|
||||
typedef typename ExpressionType::RealScalar RealScalar;
|
||||
typedef Eigen::Index Index; ///< \deprecated since Eigen 3.3
|
||||
typedef typename internal::ref_selector<ExpressionType>::non_const_type ExpressionTypeNested;
|
||||
typedef typename internal::remove_all<ExpressionTypeNested>::type ExpressionTypeNestedCleaned;
|
||||
typedef internal::remove_all_t<ExpressionTypeNested> ExpressionTypeNestedCleaned;
|
||||
|
||||
template<template<typename OutScalar,typename InputScalar> class Functor,
|
||||
typename ReturnScalar=Scalar> struct ReturnType
|
||||
@@ -230,9 +231,9 @@ template<typename ExpressionType, int Direction> class VectorwiseOp
|
||||
typename ExtendedType<OtherDerived>::Type
|
||||
extendedTo(const DenseBase<OtherDerived>& other) const
|
||||
{
|
||||
EIGEN_STATIC_ASSERT(EIGEN_IMPLIES(isVertical, OtherDerived::MaxColsAtCompileTime==1),
|
||||
EIGEN_STATIC_ASSERT(internal::check_implication(isVertical, OtherDerived::MaxColsAtCompileTime==1),
|
||||
YOU_PASSED_A_ROW_VECTOR_BUT_A_COLUMN_VECTOR_WAS_EXPECTED)
|
||||
EIGEN_STATIC_ASSERT(EIGEN_IMPLIES(isHorizontal, OtherDerived::MaxRowsAtCompileTime==1),
|
||||
EIGEN_STATIC_ASSERT(internal::check_implication(isHorizontal, OtherDerived::MaxRowsAtCompileTime==1),
|
||||
YOU_PASSED_A_COLUMN_VECTOR_BUT_A_ROW_VECTOR_WAS_EXPECTED)
|
||||
return typename ExtendedType<OtherDerived>::Type
|
||||
(other.derived(),
|
||||
@@ -253,9 +254,9 @@ template<typename ExpressionType, int Direction> class VectorwiseOp
|
||||
typename OppositeExtendedType<OtherDerived>::Type
|
||||
extendedToOpposite(const DenseBase<OtherDerived>& other) const
|
||||
{
|
||||
EIGEN_STATIC_ASSERT(EIGEN_IMPLIES(isHorizontal, OtherDerived::MaxColsAtCompileTime==1),
|
||||
EIGEN_STATIC_ASSERT(internal::check_implication(isHorizontal, OtherDerived::MaxColsAtCompileTime==1),
|
||||
YOU_PASSED_A_ROW_VECTOR_BUT_A_COLUMN_VECTOR_WAS_EXPECTED)
|
||||
EIGEN_STATIC_ASSERT(EIGEN_IMPLIES(isVertical, OtherDerived::MaxRowsAtCompileTime==1),
|
||||
EIGEN_STATIC_ASSERT(internal::check_implication(isVertical, OtherDerived::MaxRowsAtCompileTime==1),
|
||||
YOU_PASSED_A_COLUMN_VECTOR_BUT_A_ROW_VECTOR_WAS_EXPECTED)
|
||||
return typename OppositeExtendedType<OtherDerived>::Type
|
||||
(other.derived(),
|
||||
@@ -594,7 +595,7 @@ template<typename ExpressionType, int Direction> class VectorwiseOp
|
||||
return m_matrix += extendedTo(other.derived());
|
||||
}
|
||||
|
||||
/** Substracts the vector \a other to each subvector of \c *this */
|
||||
/** Subtracts the vector \a other to each subvector of \c *this */
|
||||
template<typename OtherDerived>
|
||||
EIGEN_DEVICE_FUNC
|
||||
ExpressionType& operator-=(const DenseBase<OtherDerived>& other)
|
||||
@@ -604,7 +605,7 @@ template<typename ExpressionType, int Direction> class VectorwiseOp
|
||||
return m_matrix -= extendedTo(other.derived());
|
||||
}
|
||||
|
||||
/** Multiples each subvector of \c *this by the vector \a other */
|
||||
/** Multiplies each subvector of \c *this by the vector \a other */
|
||||
template<typename OtherDerived>
|
||||
EIGEN_DEVICE_FUNC
|
||||
ExpressionType& operator*=(const DenseBase<OtherDerived>& other)
|
||||
|
||||
@@ -10,16 +10,23 @@
|
||||
#ifndef EIGEN_VISITOR_H
|
||||
#define EIGEN_VISITOR_H
|
||||
|
||||
#include "./InternalHeaderCheck.h"
|
||||
|
||||
namespace Eigen {
|
||||
|
||||
namespace internal {
|
||||
|
||||
template<typename Visitor, typename Derived, int UnrollCount, bool Vectorize=((Derived::PacketAccess!=0) && functor_traits<Visitor>::PacketAccess)>
|
||||
struct visitor_impl;
|
||||
|
||||
template<typename Visitor, typename Derived, int UnrollCount>
|
||||
struct visitor_impl
|
||||
struct visitor_impl<Visitor, Derived, UnrollCount, false>
|
||||
{
|
||||
enum {
|
||||
col = (UnrollCount-1) / Derived::RowsAtCompileTime,
|
||||
row = (UnrollCount-1) % Derived::RowsAtCompileTime
|
||||
col = Derived::IsRowMajor ? (UnrollCount-1) % Derived::ColsAtCompileTime
|
||||
: (UnrollCount-1) / Derived::RowsAtCompileTime,
|
||||
row = Derived::IsRowMajor ? (UnrollCount-1) / Derived::ColsAtCompileTime
|
||||
: (UnrollCount-1) % Derived::RowsAtCompileTime
|
||||
};
|
||||
|
||||
EIGEN_DEVICE_FUNC
|
||||
@@ -31,7 +38,7 @@ struct visitor_impl
|
||||
};
|
||||
|
||||
template<typename Visitor, typename Derived>
|
||||
struct visitor_impl<Visitor, Derived, 1>
|
||||
struct visitor_impl<Visitor, Derived, 1, false>
|
||||
{
|
||||
EIGEN_DEVICE_FUNC
|
||||
static inline void run(const Derived &mat, Visitor& visitor)
|
||||
@@ -42,24 +49,73 @@ struct visitor_impl<Visitor, Derived, 1>
|
||||
|
||||
// This specialization enables visitors on empty matrices at compile-time
|
||||
template<typename Visitor, typename Derived>
|
||||
struct visitor_impl<Visitor, Derived, 0> {
|
||||
struct visitor_impl<Visitor, Derived, 0, false> {
|
||||
EIGEN_DEVICE_FUNC
|
||||
static inline void run(const Derived &/*mat*/, Visitor& /*visitor*/)
|
||||
{}
|
||||
};
|
||||
|
||||
template<typename Visitor, typename Derived>
|
||||
struct visitor_impl<Visitor, Derived, Dynamic>
|
||||
struct visitor_impl<Visitor, Derived, Dynamic, /*Vectorize=*/false>
|
||||
{
|
||||
EIGEN_DEVICE_FUNC
|
||||
static inline void run(const Derived& mat, Visitor& visitor)
|
||||
{
|
||||
visitor.init(mat.coeff(0,0), 0, 0);
|
||||
for(Index i = 1; i < mat.rows(); ++i)
|
||||
visitor(mat.coeff(i, 0), i, 0);
|
||||
for(Index j = 1; j < mat.cols(); ++j)
|
||||
for(Index i = 0; i < mat.rows(); ++i)
|
||||
visitor(mat.coeff(i, j), i, j);
|
||||
if (Derived::IsRowMajor) {
|
||||
for(Index i = 1; i < mat.cols(); ++i) {
|
||||
visitor(mat.coeff(0, i), 0, i);
|
||||
}
|
||||
for(Index j = 1; j < mat.rows(); ++j) {
|
||||
for(Index i = 0; i < mat.cols(); ++i) {
|
||||
visitor(mat.coeff(j, i), j, i);
|
||||
}
|
||||
}
|
||||
} else {
|
||||
for(Index i = 1; i < mat.rows(); ++i) {
|
||||
visitor(mat.coeff(i, 0), i, 0);
|
||||
}
|
||||
for(Index j = 1; j < mat.cols(); ++j) {
|
||||
for(Index i = 0; i < mat.rows(); ++i) {
|
||||
visitor(mat.coeff(i, j), i, j);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
template<typename Visitor, typename Derived, int UnrollSize>
|
||||
struct visitor_impl<Visitor, Derived, UnrollSize, /*Vectorize=*/true>
|
||||
{
|
||||
typedef typename Derived::Scalar Scalar;
|
||||
typedef typename packet_traits<Scalar>::type Packet;
|
||||
|
||||
EIGEN_DEVICE_FUNC
|
||||
static inline void run(const Derived& mat, Visitor& visitor)
|
||||
{
|
||||
const Index PacketSize = packet_traits<Scalar>::size;
|
||||
visitor.init(mat.coeff(0,0), 0, 0);
|
||||
if (Derived::IsRowMajor) {
|
||||
for(Index i = 0; i < mat.rows(); ++i) {
|
||||
Index j = i == 0 ? 1 : 0;
|
||||
for(; j+PacketSize-1 < mat.cols(); j += PacketSize) {
|
||||
Packet p = mat.packet(i, j);
|
||||
visitor.packet(p, i, j);
|
||||
}
|
||||
for(; j < mat.cols(); ++j)
|
||||
visitor(mat.coeff(i, j), i, j);
|
||||
}
|
||||
} else {
|
||||
for(Index j = 0; j < mat.cols(); ++j) {
|
||||
Index i = j == 0 ? 1 : 0;
|
||||
for(; i+PacketSize-1 < mat.rows(); i += PacketSize) {
|
||||
Packet p = mat.packet(i, j);
|
||||
visitor.packet(p, i, j);
|
||||
}
|
||||
for(; i < mat.rows(); ++i)
|
||||
visitor(mat.coeff(i, j), i, j);
|
||||
}
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
@@ -68,28 +124,38 @@ template<typename XprType>
|
||||
class visitor_evaluator
|
||||
{
|
||||
public:
|
||||
EIGEN_DEVICE_FUNC
|
||||
explicit visitor_evaluator(const XprType &xpr) : m_evaluator(xpr), m_xpr(xpr) {}
|
||||
|
||||
typedef typename XprType::Scalar Scalar;
|
||||
typedef typename XprType::CoeffReturnType CoeffReturnType;
|
||||
typedef internal::evaluator<XprType> Evaluator;
|
||||
|
||||
enum {
|
||||
PacketAccess = Evaluator::Flags & PacketAccessBit,
|
||||
IsRowMajor = XprType::IsRowMajor,
|
||||
RowsAtCompileTime = XprType::RowsAtCompileTime,
|
||||
CoeffReadCost = internal::evaluator<XprType>::CoeffReadCost
|
||||
ColsAtCompileTime = XprType::ColsAtCompileTime,
|
||||
CoeffReadCost = Evaluator::CoeffReadCost
|
||||
};
|
||||
|
||||
|
||||
EIGEN_DEVICE_FUNC
|
||||
explicit visitor_evaluator(const XprType &xpr) : m_evaluator(xpr), m_xpr(xpr) { }
|
||||
|
||||
typedef typename XprType::Scalar Scalar;
|
||||
typedef std::remove_const_t<typename XprType::CoeffReturnType> CoeffReturnType;
|
||||
typedef std::remove_const_t<typename XprType::PacketReturnType> PacketReturnType;
|
||||
|
||||
EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR Index rows() const EIGEN_NOEXCEPT { return m_xpr.rows(); }
|
||||
EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR Index cols() const EIGEN_NOEXCEPT { return m_xpr.cols(); }
|
||||
EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR Index size() const EIGEN_NOEXCEPT { return m_xpr.size(); }
|
||||
|
||||
EIGEN_DEVICE_FUNC CoeffReturnType coeff(Index row, Index col) const
|
||||
{ return m_evaluator.coeff(row, col); }
|
||||
EIGEN_DEVICE_FUNC PacketReturnType packet(Index row, Index col) const
|
||||
{ return m_evaluator.template packet<Unaligned,PacketReturnType>(row, col); }
|
||||
|
||||
protected:
|
||||
internal::evaluator<XprType> m_evaluator;
|
||||
Evaluator m_evaluator;
|
||||
const XprType &m_xpr;
|
||||
};
|
||||
|
||||
} // end namespace internal
|
||||
|
||||
/** Applies the visitor \a visitor to the whole coefficients of the matrix or vector.
|
||||
@@ -152,123 +218,131 @@ struct coeff_visitor
|
||||
}
|
||||
};
|
||||
|
||||
/** \internal
|
||||
* \brief Visitor computing the min coefficient with its value and coordinates
|
||||
*
|
||||
* \sa DenseBase::minCoeff(Index*, Index*)
|
||||
*/
|
||||
template <typename Derived, int NaNPropagation>
|
||||
struct min_coeff_visitor : coeff_visitor<Derived>
|
||||
{
|
||||
typedef typename Derived::Scalar Scalar;
|
||||
EIGEN_DEVICE_FUNC
|
||||
void operator() (const Scalar& value, Index i, Index j)
|
||||
{
|
||||
if(value < this->res)
|
||||
{
|
||||
this->res = value;
|
||||
this->row = i;
|
||||
this->col = j;
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
template <typename Derived>
|
||||
struct min_coeff_visitor<Derived, PropagateNumbers> : coeff_visitor<Derived>
|
||||
{
|
||||
typedef typename Derived::Scalar Scalar;
|
||||
EIGEN_DEVICE_FUNC
|
||||
void operator() (const Scalar& value, Index i, Index j)
|
||||
{
|
||||
if((numext::isnan)(this->res) || (!(numext::isnan)(value) && value < this->res))
|
||||
{
|
||||
this->res = value;
|
||||
this->row = i;
|
||||
this->col = j;
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
template <typename Derived>
|
||||
struct min_coeff_visitor<Derived, PropagateNaN> : coeff_visitor<Derived>
|
||||
{
|
||||
typedef typename Derived::Scalar Scalar;
|
||||
EIGEN_DEVICE_FUNC
|
||||
void operator() (const Scalar& value, Index i, Index j)
|
||||
{
|
||||
if((numext::isnan)(value) || value < this->res)
|
||||
{
|
||||
this->res = value;
|
||||
this->row = i;
|
||||
this->col = j;
|
||||
}
|
||||
}
|
||||
template<typename Scalar, int NaNPropagation, bool is_min=true>
|
||||
struct minmax_compare {
|
||||
typedef typename packet_traits<Scalar>::type Packet;
|
||||
static EIGEN_DEVICE_FUNC inline bool compare(Scalar a, Scalar b) { return a < b; }
|
||||
static EIGEN_DEVICE_FUNC inline Scalar predux(const Packet& p) { return predux_min<NaNPropagation>(p);}
|
||||
};
|
||||
|
||||
template<typename Scalar, int NaNPropagation>
|
||||
struct functor_traits<min_coeff_visitor<Scalar, NaNPropagation> > {
|
||||
struct minmax_compare<Scalar, NaNPropagation, false> {
|
||||
typedef typename packet_traits<Scalar>::type Packet;
|
||||
static EIGEN_DEVICE_FUNC inline bool compare(Scalar a, Scalar b) { return a > b; }
|
||||
static EIGEN_DEVICE_FUNC inline Scalar predux(const Packet& p) { return predux_max<NaNPropagation>(p);}
|
||||
};
|
||||
|
||||
template <typename Derived, bool is_min, int NaNPropagation>
|
||||
struct minmax_coeff_visitor : coeff_visitor<Derived>
|
||||
{
|
||||
using Scalar = typename Derived::Scalar;
|
||||
using Packet = typename packet_traits<Scalar>::type;
|
||||
using Comparator = minmax_compare<Scalar, NaNPropagation, is_min>;
|
||||
|
||||
EIGEN_DEVICE_FUNC inline
|
||||
void operator() (const Scalar& value, Index i, Index j)
|
||||
{
|
||||
if(Comparator::compare(value, this->res)) {
|
||||
this->res = value;
|
||||
this->row = i;
|
||||
this->col = j;
|
||||
}
|
||||
}
|
||||
|
||||
EIGEN_DEVICE_FUNC inline
|
||||
void packet(const Packet& p, Index i, Index j) {
|
||||
const Index PacketSize = packet_traits<Scalar>::size;
|
||||
Scalar value = Comparator::predux(p);
|
||||
if (Comparator::compare(value, this->res)) {
|
||||
const Packet range = preverse(plset<Packet>(Scalar(1)));
|
||||
Packet mask = pcmp_eq(pset1<Packet>(value), p);
|
||||
Index max_idx = PacketSize - static_cast<Index>(predux_max(pand(range, mask)));
|
||||
this->res = value;
|
||||
this->row = Derived::IsRowMajor ? i : i + max_idx;;
|
||||
this->col = Derived::IsRowMajor ? j + max_idx : j;
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
// Suppress NaN. The only case in which we return NaN is if the matrix is all NaN, in which case,
|
||||
// the row=0, col=0 is returned for the location.
|
||||
template <typename Derived, bool is_min>
|
||||
struct minmax_coeff_visitor<Derived, is_min, PropagateNumbers> : coeff_visitor<Derived>
|
||||
{
|
||||
typedef typename Derived::Scalar Scalar;
|
||||
using Packet = typename packet_traits<Scalar>::type;
|
||||
using Comparator = minmax_compare<Scalar, PropagateNumbers, is_min>;
|
||||
|
||||
EIGEN_DEVICE_FUNC inline
|
||||
void operator() (const Scalar& value, Index i, Index j)
|
||||
{
|
||||
if ((!(numext::isnan)(value) && (numext::isnan)(this->res)) || Comparator::compare(value, this->res)) {
|
||||
this->res = value;
|
||||
this->row = i;
|
||||
this->col = j;
|
||||
}
|
||||
}
|
||||
|
||||
EIGEN_DEVICE_FUNC inline
|
||||
void packet(const Packet& p, Index i, Index j) {
|
||||
const Index PacketSize = packet_traits<Scalar>::size;
|
||||
Scalar value = Comparator::predux(p);
|
||||
if ((!(numext::isnan)(value) && (numext::isnan)(this->res)) || Comparator::compare(value, this->res)) {
|
||||
const Packet range = preverse(plset<Packet>(Scalar(1)));
|
||||
/* mask will be zero for NaNs, so they will be ignored. */
|
||||
Packet mask = pcmp_eq(pset1<Packet>(value), p);
|
||||
Index max_idx = PacketSize - static_cast<Index>(predux_max(pand(range, mask)));
|
||||
this->res = value;
|
||||
this->row = Derived::IsRowMajor ? i : i + max_idx;;
|
||||
this->col = Derived::IsRowMajor ? j + max_idx : j;
|
||||
}
|
||||
}
|
||||
|
||||
};
|
||||
|
||||
// Propagate NaN. If the matrix contains NaN, the location of the first NaN will be returned in
|
||||
// row and col.
|
||||
template <typename Derived, bool is_min>
|
||||
struct minmax_coeff_visitor<Derived, is_min, PropagateNaN> : coeff_visitor<Derived>
|
||||
{
|
||||
typedef typename Derived::Scalar Scalar;
|
||||
using Packet = typename packet_traits<Scalar>::type;
|
||||
using Comparator = minmax_compare<Scalar, PropagateNaN, is_min>;
|
||||
|
||||
EIGEN_DEVICE_FUNC inline
|
||||
void operator() (const Scalar& value, Index i, Index j)
|
||||
{
|
||||
const bool value_is_nan = (numext::isnan)(value);
|
||||
if ((value_is_nan && !(numext::isnan)(this->res)) || Comparator::compare(value, this->res)) {
|
||||
this->res = value;
|
||||
this->row = i;
|
||||
this->col = j;
|
||||
}
|
||||
}
|
||||
|
||||
EIGEN_DEVICE_FUNC inline
|
||||
void packet(const Packet& p, Index i, Index j) {
|
||||
const Index PacketSize = packet_traits<Scalar>::size;
|
||||
Scalar value = Comparator::predux(p);
|
||||
const bool value_is_nan = (numext::isnan)(value);
|
||||
if ((value_is_nan && !(numext::isnan)(this->res)) || Comparator::compare(value, this->res)) {
|
||||
const Packet range = preverse(plset<Packet>(Scalar(1)));
|
||||
// If the value is NaN, pick the first position of a NaN, otherwise pick the first extremal value.
|
||||
Packet mask = value_is_nan ? pnot(pcmp_eq(p, p)) : pcmp_eq(pset1<Packet>(value), p);
|
||||
Index max_idx = PacketSize - static_cast<Index>(predux_max(pand(range, mask)));
|
||||
this->res = value;
|
||||
this->row = Derived::IsRowMajor ? i : i + max_idx;;
|
||||
this->col = Derived::IsRowMajor ? j + max_idx : j;
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
template<typename Scalar, bool is_min, int NaNPropagation>
|
||||
struct functor_traits<minmax_coeff_visitor<Scalar, is_min, NaNPropagation> > {
|
||||
enum {
|
||||
Cost = NumTraits<Scalar>::AddCost
|
||||
};
|
||||
};
|
||||
|
||||
/** \internal
|
||||
* \brief Visitor computing the max coefficient with its value and coordinates
|
||||
*
|
||||
* \sa DenseBase::maxCoeff(Index*, Index*)
|
||||
*/
|
||||
template <typename Derived, int NaNPropagation>
|
||||
struct max_coeff_visitor : coeff_visitor<Derived>
|
||||
{
|
||||
typedef typename Derived::Scalar Scalar;
|
||||
EIGEN_DEVICE_FUNC
|
||||
void operator() (const Scalar& value, Index i, Index j)
|
||||
{
|
||||
if(value > this->res)
|
||||
{
|
||||
this->res = value;
|
||||
this->row = i;
|
||||
this->col = j;
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
template <typename Derived>
|
||||
struct max_coeff_visitor<Derived, PropagateNumbers> : coeff_visitor<Derived>
|
||||
{
|
||||
typedef typename Derived::Scalar Scalar;
|
||||
EIGEN_DEVICE_FUNC
|
||||
void operator() (const Scalar& value, Index i, Index j)
|
||||
{
|
||||
if((numext::isnan)(this->res) || (!(numext::isnan)(value) && value > this->res))
|
||||
{
|
||||
this->res = value;
|
||||
this->row = i;
|
||||
this->col = j;
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
template <typename Derived>
|
||||
struct max_coeff_visitor<Derived, PropagateNaN> : coeff_visitor<Derived>
|
||||
{
|
||||
typedef typename Derived::Scalar Scalar;
|
||||
EIGEN_DEVICE_FUNC
|
||||
void operator() (const Scalar& value, Index i, Index j)
|
||||
{
|
||||
if((numext::isnan)(value) || value > this->res)
|
||||
{
|
||||
this->res = value;
|
||||
this->row = i;
|
||||
this->col = j;
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
template<typename Scalar, int NaNPropagation>
|
||||
struct functor_traits<max_coeff_visitor<Scalar, NaNPropagation> > {
|
||||
enum {
|
||||
Cost = NumTraits<Scalar>::AddCost
|
||||
Cost = NumTraits<Scalar>::AddCost,
|
||||
PacketAccess = true
|
||||
};
|
||||
};
|
||||
|
||||
@@ -293,7 +367,7 @@ DenseBase<Derived>::minCoeff(IndexType* rowId, IndexType* colId) const
|
||||
{
|
||||
eigen_assert(this->rows()>0 && this->cols()>0 && "you are using an empty matrix");
|
||||
|
||||
internal::min_coeff_visitor<Derived, NaNPropagation> minVisitor;
|
||||
internal::minmax_coeff_visitor<Derived, true, NaNPropagation> minVisitor;
|
||||
this->visit(minVisitor);
|
||||
*rowId = minVisitor.row;
|
||||
if (colId) *colId = minVisitor.col;
|
||||
@@ -319,7 +393,7 @@ DenseBase<Derived>::minCoeff(IndexType* index) const
|
||||
eigen_assert(this->rows()>0 && this->cols()>0 && "you are using an empty matrix");
|
||||
|
||||
EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived)
|
||||
internal::min_coeff_visitor<Derived, NaNPropagation> minVisitor;
|
||||
internal::minmax_coeff_visitor<Derived, true, NaNPropagation> minVisitor;
|
||||
this->visit(minVisitor);
|
||||
*index = IndexType((RowsAtCompileTime==1) ? minVisitor.col : minVisitor.row);
|
||||
return minVisitor.res;
|
||||
@@ -344,7 +418,7 @@ DenseBase<Derived>::maxCoeff(IndexType* rowPtr, IndexType* colPtr) const
|
||||
{
|
||||
eigen_assert(this->rows()>0 && this->cols()>0 && "you are using an empty matrix");
|
||||
|
||||
internal::max_coeff_visitor<Derived, NaNPropagation> maxVisitor;
|
||||
internal::minmax_coeff_visitor<Derived, false, NaNPropagation> maxVisitor;
|
||||
this->visit(maxVisitor);
|
||||
*rowPtr = maxVisitor.row;
|
||||
if (colPtr) *colPtr = maxVisitor.col;
|
||||
@@ -370,7 +444,7 @@ DenseBase<Derived>::maxCoeff(IndexType* index) const
|
||||
eigen_assert(this->rows()>0 && this->cols()>0 && "you are using an empty matrix");
|
||||
|
||||
EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived)
|
||||
internal::max_coeff_visitor<Derived, NaNPropagation> maxVisitor;
|
||||
internal::minmax_coeff_visitor<Derived, false, NaNPropagation> maxVisitor;
|
||||
this->visit(maxVisitor);
|
||||
*index = (RowsAtCompileTime==1) ? maxVisitor.col : maxVisitor.row;
|
||||
return maxVisitor.res;
|
||||
|
||||
@@ -10,6 +10,8 @@
|
||||
#ifndef EIGEN_COMPLEX_AVX_H
|
||||
#define EIGEN_COMPLEX_AVX_H
|
||||
|
||||
#include "../../InternalHeaderCheck.h"
|
||||
|
||||
namespace Eigen {
|
||||
|
||||
namespace internal {
|
||||
@@ -99,7 +101,9 @@ template<> EIGEN_STRONG_INLINE Packet4cf ploadu<Packet4cf>(const std::complex<fl
|
||||
|
||||
template<> EIGEN_STRONG_INLINE Packet4cf pset1<Packet4cf>(const std::complex<float>& from)
|
||||
{
|
||||
return Packet4cf(_mm256_castpd_ps(_mm256_broadcast_sd((const double*)(const void*)&from)));
|
||||
const float re = std::real(from);
|
||||
const float im = std::imag(from);
|
||||
return Packet4cf(_mm256_set_ps(im, re, im, re, im, re, im, re));
|
||||
}
|
||||
|
||||
template<> EIGEN_STRONG_INLINE Packet4cf ploaddup<Packet4cf>(const std::complex<float>* from)
|
||||
@@ -167,15 +171,12 @@ template<> EIGEN_STRONG_INLINE std::complex<float> predux_mul<Packet4cf>(const P
|
||||
Packet2cf(_mm256_extractf128_ps(a.v, 1))));
|
||||
}
|
||||
|
||||
|
||||
EIGEN_MAKE_CONJ_HELPER_CPLX_REAL(Packet4cf,Packet8f)
|
||||
|
||||
template<> EIGEN_STRONG_INLINE Packet4cf pdiv<Packet4cf>(const Packet4cf& a, const Packet4cf& b)
|
||||
{
|
||||
Packet4cf num = pmul(a, pconj(b));
|
||||
__m256 tmp = _mm256_mul_ps(b.v, b.v);
|
||||
__m256 tmp2 = _mm256_shuffle_ps(tmp,tmp,0xB1);
|
||||
__m256 denom = _mm256_add_ps(tmp, tmp2);
|
||||
return Packet4cf(_mm256_div_ps(num.v, denom));
|
||||
return pdiv_complex(a, b);
|
||||
}
|
||||
|
||||
template<> EIGEN_STRONG_INLINE Packet4cf pcplxflip<Packet4cf>(const Packet4cf& x)
|
||||
@@ -321,10 +322,7 @@ EIGEN_MAKE_CONJ_HELPER_CPLX_REAL(Packet2cd,Packet4d)
|
||||
|
||||
template<> EIGEN_STRONG_INLINE Packet2cd pdiv<Packet2cd>(const Packet2cd& a, const Packet2cd& b)
|
||||
{
|
||||
Packet2cd num = pmul(a, pconj(b));
|
||||
__m256d tmp = _mm256_mul_pd(b.v, b.v);
|
||||
__m256d denom = _mm256_hadd_pd(tmp, tmp);
|
||||
return Packet2cd(_mm256_div_pd(num.v, denom));
|
||||
return pdiv_complex(a, b);
|
||||
}
|
||||
|
||||
template<> EIGEN_STRONG_INLINE Packet2cd pcplxflip<Packet2cd>(const Packet2cd& x)
|
||||
|
||||
@@ -14,52 +14,78 @@
|
||||
* Julien Pommier's sse math library: http://gruntthepeon.free.fr/ssemath/
|
||||
*/
|
||||
|
||||
#include "../../InternalHeaderCheck.h"
|
||||
|
||||
namespace Eigen {
|
||||
|
||||
namespace internal {
|
||||
|
||||
template <>
|
||||
EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED Packet8f
|
||||
EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS Packet8f
|
||||
psin<Packet8f>(const Packet8f& _x) {
|
||||
return psin_float(_x);
|
||||
}
|
||||
|
||||
template <>
|
||||
EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED Packet8f
|
||||
EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS Packet8f
|
||||
pcos<Packet8f>(const Packet8f& _x) {
|
||||
return pcos_float(_x);
|
||||
}
|
||||
|
||||
template <>
|
||||
EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED Packet8f
|
||||
EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS Packet8f
|
||||
pasin<Packet8f>(const Packet8f& _x) {
|
||||
return pasin_float(_x);
|
||||
}
|
||||
|
||||
template <>
|
||||
EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS Packet8f
|
||||
pacos<Packet8f>(const Packet8f& _x) {
|
||||
return pacos_float(_x);
|
||||
}
|
||||
|
||||
template <>
|
||||
EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS Packet8f
|
||||
patan<Packet8f>(const Packet8f& _x) {
|
||||
return patan_float(_x);
|
||||
}
|
||||
|
||||
template <>
|
||||
EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS Packet4d
|
||||
patan<Packet4d>(const Packet4d& _x) {
|
||||
return patan_double(_x);
|
||||
}
|
||||
|
||||
template <>
|
||||
EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS Packet8f
|
||||
plog<Packet8f>(const Packet8f& _x) {
|
||||
return plog_float(_x);
|
||||
}
|
||||
|
||||
template <>
|
||||
EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED Packet4d
|
||||
EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS Packet4d
|
||||
plog<Packet4d>(const Packet4d& _x) {
|
||||
return plog_double(_x);
|
||||
}
|
||||
|
||||
template <>
|
||||
EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED Packet8f
|
||||
EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS Packet8f
|
||||
plog2<Packet8f>(const Packet8f& _x) {
|
||||
return plog2_float(_x);
|
||||
}
|
||||
|
||||
template <>
|
||||
EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED Packet4d
|
||||
EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS Packet4d
|
||||
plog2<Packet4d>(const Packet4d& _x) {
|
||||
return plog2_double(_x);
|
||||
}
|
||||
|
||||
template<> EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED
|
||||
template<> EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS
|
||||
Packet8f plog1p<Packet8f>(const Packet8f& _x) {
|
||||
return generic_plog1p(_x);
|
||||
}
|
||||
|
||||
template<> EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED
|
||||
template<> EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS
|
||||
Packet8f pexpm1<Packet8f>(const Packet8f& _x) {
|
||||
return generic_expm1(_x);
|
||||
}
|
||||
@@ -68,110 +94,59 @@ Packet8f pexpm1<Packet8f>(const Packet8f& _x) {
|
||||
// "m = floor(x/log(2)+1/2)" and "r" is the remainder. The result is then
|
||||
// "exp(x) = 2^m*exp(r)" where exp(r) is in the range [-1,1).
|
||||
template <>
|
||||
EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED Packet8f
|
||||
EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS Packet8f
|
||||
pexp<Packet8f>(const Packet8f& _x) {
|
||||
return pexp_float(_x);
|
||||
}
|
||||
|
||||
// Hyperbolic Tangent function.
|
||||
template <>
|
||||
EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED Packet8f
|
||||
EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS Packet8f
|
||||
ptanh<Packet8f>(const Packet8f& _x) {
|
||||
return internal::generic_fast_tanh_float(_x);
|
||||
}
|
||||
|
||||
// Exponential function for doubles.
|
||||
template <>
|
||||
EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED Packet4d
|
||||
EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS Packet4d
|
||||
pexp<Packet4d>(const Packet4d& _x) {
|
||||
return pexp_double(_x);
|
||||
}
|
||||
|
||||
// Functions for sqrt.
|
||||
// The EIGEN_FAST_MATH version uses the _mm_rsqrt_ps approximation and one step
|
||||
// of Newton's method, at a cost of 1-2 bits of precision as opposed to the
|
||||
// exact solution. It does not handle +inf, or denormalized numbers correctly.
|
||||
// The main advantage of this approach is not just speed, but also the fact that
|
||||
// it can be inlined and pipelined with other computations, further reducing its
|
||||
// effective latency. This is similar to Quake3's fast inverse square root.
|
||||
// For detail see here: http://www.beyond3d.com/content/articles/8/
|
||||
#if EIGEN_FAST_MATH
|
||||
template <>
|
||||
EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED
|
||||
Packet8f psqrt<Packet8f>(const Packet8f& _x) {
|
||||
Packet8f minus_half_x = pmul(_x, pset1<Packet8f>(-0.5f));
|
||||
Packet8f denormal_mask = pandnot(
|
||||
pcmp_lt(_x, pset1<Packet8f>((std::numeric_limits<float>::min)())),
|
||||
pcmp_lt(_x, pzero(_x)));
|
||||
|
||||
// Compute approximate reciprocal sqrt.
|
||||
Packet8f x = _mm256_rsqrt_ps(_x);
|
||||
// Do a single step of Newton's iteration.
|
||||
x = pmul(x, pmadd(minus_half_x, pmul(x,x), pset1<Packet8f>(1.5f)));
|
||||
// Flush results for denormals to zero.
|
||||
return pandnot(pmul(_x,x), denormal_mask);
|
||||
}
|
||||
|
||||
#else
|
||||
|
||||
template <> EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED
|
||||
// Notice that for newer processors, it is counterproductive to use Newton
|
||||
// iteration for square root. In particular, Skylake and Zen2 processors
|
||||
// have approximately doubled throughput of the _mm_sqrt_ps instruction
|
||||
// compared to their predecessors.
|
||||
template <> EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS
|
||||
Packet8f psqrt<Packet8f>(const Packet8f& _x) {
|
||||
return _mm256_sqrt_ps(_x);
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
template <> EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED
|
||||
template <> EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS
|
||||
Packet4d psqrt<Packet4d>(const Packet4d& _x) {
|
||||
return _mm256_sqrt_pd(_x);
|
||||
}
|
||||
|
||||
|
||||
// Even on Skylake, using Newton iteration is a win for reciprocal square root.
|
||||
#if EIGEN_FAST_MATH
|
||||
template<> EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED
|
||||
Packet8f prsqrt<Packet8f>(const Packet8f& _x) {
|
||||
_EIGEN_DECLARE_CONST_Packet8f_FROM_INT(inf, 0x7f800000);
|
||||
_EIGEN_DECLARE_CONST_Packet8f(one_point_five, 1.5f);
|
||||
_EIGEN_DECLARE_CONST_Packet8f(minus_half, -0.5f);
|
||||
_EIGEN_DECLARE_CONST_Packet8f_FROM_INT(flt_min, 0x00800000);
|
||||
|
||||
Packet8f neg_half = pmul(_x, p8f_minus_half);
|
||||
|
||||
// select only the inverse sqrt of positive normal inputs (denormals are
|
||||
// flushed to zero and cause infs as well).
|
||||
Packet8f lt_min_mask = _mm256_cmp_ps(_x, p8f_flt_min, _CMP_LT_OQ);
|
||||
Packet8f inf_mask = _mm256_cmp_ps(_x, p8f_inf, _CMP_EQ_OQ);
|
||||
Packet8f not_normal_finite_mask = _mm256_or_ps(lt_min_mask, inf_mask);
|
||||
|
||||
// Compute an approximate result using the rsqrt intrinsic.
|
||||
Packet8f y_approx = _mm256_rsqrt_ps(_x);
|
||||
|
||||
// Do a single step of Newton-Raphson iteration to improve the approximation.
|
||||
// This uses the formula y_{n+1} = y_n * (1.5 - y_n * (0.5 * x) * y_n).
|
||||
// It is essential to evaluate the inner term like this because forming
|
||||
// y_n^2 may over- or underflow.
|
||||
Packet8f y_newton = pmul(y_approx, pmadd(y_approx, pmul(neg_half, y_approx), p8f_one_point_five));
|
||||
|
||||
// Select the result of the Newton-Raphson step for positive normal arguments.
|
||||
// For other arguments, choose the output of the intrinsic. This will
|
||||
// return rsqrt(+inf) = 0, rsqrt(x) = NaN if x < 0, and rsqrt(x) = +inf if
|
||||
// x is zero or a positive denormalized float (equivalent to flushing positive
|
||||
// denormalized inputs to zero).
|
||||
return pselect<Packet8f>(not_normal_finite_mask, y_approx, y_newton);
|
||||
template<> EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS
|
||||
Packet8f prsqrt<Packet8f>(const Packet8f& a) {
|
||||
// _mm256_rsqrt_ps returns -inf for negative denormals.
|
||||
// _mm512_rsqrt**_ps returns -NaN for negative denormals. We may want
|
||||
// consistency here.
|
||||
// const Packet8f rsqrt = pselect(pcmp_lt(a, pzero(a)),
|
||||
// pset1<Packet8f>(-NumTraits<float>::quiet_NaN()),
|
||||
// _mm256_rsqrt_ps(a));
|
||||
return generic_rsqrt_newton_step<Packet8f, /*Steps=*/1>::run(a, _mm256_rsqrt_ps(a));
|
||||
}
|
||||
|
||||
#else
|
||||
template <> EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED
|
||||
Packet8f prsqrt<Packet8f>(const Packet8f& _x) {
|
||||
_EIGEN_DECLARE_CONST_Packet8f(one, 1.0f);
|
||||
return _mm256_div_ps(p8f_one, _mm256_sqrt_ps(_x));
|
||||
template<> EIGEN_STRONG_INLINE Packet8f preciprocal<Packet8f>(const Packet8f& a) {
|
||||
return generic_reciprocal_newton_step<Packet8f, /*Steps=*/1>::run(a, _mm256_rcp_ps(a));
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
template <> EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED
|
||||
Packet4d prsqrt<Packet4d>(const Packet4d& _x) {
|
||||
_EIGEN_DECLARE_CONST_Packet4d(one, 1.0);
|
||||
return _mm256_div_pd(p4d_one, _mm256_sqrt_pd(_x));
|
||||
}
|
||||
|
||||
F16_PACKET_FUNCTION(Packet8f, Packet8h, psin)
|
||||
F16_PACKET_FUNCTION(Packet8f, Packet8h, pcos)
|
||||
@@ -183,6 +158,7 @@ F16_PACKET_FUNCTION(Packet8f, Packet8h, pexp)
|
||||
F16_PACKET_FUNCTION(Packet8f, Packet8h, ptanh)
|
||||
F16_PACKET_FUNCTION(Packet8f, Packet8h, psqrt)
|
||||
F16_PACKET_FUNCTION(Packet8f, Packet8h, prsqrt)
|
||||
F16_PACKET_FUNCTION(Packet8f, Packet8h, preciprocal)
|
||||
|
||||
template <>
|
||||
EIGEN_STRONG_INLINE Packet8h pfrexp(const Packet8h& a, Packet8h& exponent) {
|
||||
@@ -207,6 +183,7 @@ BF16_PACKET_FUNCTION(Packet8f, Packet8bf, pexp)
|
||||
BF16_PACKET_FUNCTION(Packet8f, Packet8bf, ptanh)
|
||||
BF16_PACKET_FUNCTION(Packet8f, Packet8bf, psqrt)
|
||||
BF16_PACKET_FUNCTION(Packet8f, Packet8bf, prsqrt)
|
||||
BF16_PACKET_FUNCTION(Packet8f, Packet8bf, preciprocal)
|
||||
|
||||
template <>
|
||||
EIGEN_STRONG_INLINE Packet8bf pfrexp(const Packet8bf& a, Packet8bf& exponent) {
|
||||
|
||||
@@ -10,6 +10,8 @@
|
||||
#ifndef EIGEN_PACKET_MATH_AVX_H
|
||||
#define EIGEN_PACKET_MATH_AVX_H
|
||||
|
||||
#include "../../InternalHeaderCheck.h"
|
||||
|
||||
namespace Eigen {
|
||||
|
||||
namespace internal {
|
||||
@@ -29,28 +31,29 @@ namespace internal {
|
||||
#endif
|
||||
|
||||
typedef __m256 Packet8f;
|
||||
typedef __m256i Packet8i;
|
||||
typedef eigen_packet_wrapper<__m256i, 0> Packet8i;
|
||||
typedef __m256d Packet4d;
|
||||
#ifndef EIGEN_VECTORIZE_AVX512FP16
|
||||
typedef eigen_packet_wrapper<__m128i, 2> Packet8h;
|
||||
#endif
|
||||
typedef eigen_packet_wrapper<__m128i, 3> Packet8bf;
|
||||
|
||||
#ifdef EIGEN_VECTORIZE_AVX2
|
||||
// Start from 3 to be compatible with AVX512
|
||||
typedef eigen_packet_wrapper<__m256i, 3> Packet4l;
|
||||
#endif
|
||||
|
||||
template<> struct is_arithmetic<__m256> { enum { value = true }; };
|
||||
template<> struct is_arithmetic<__m256i> { enum { value = true }; };
|
||||
template<> struct is_arithmetic<__m256d> { enum { value = true }; };
|
||||
template<> struct is_arithmetic<Packet8i> { enum { value = true }; };
|
||||
#ifndef EIGEN_VECTORIZE_AVX512FP16
|
||||
template<> struct is_arithmetic<Packet8h> { enum { value = true }; };
|
||||
#endif
|
||||
template<> struct is_arithmetic<Packet8bf> { enum { value = true }; };
|
||||
|
||||
#define _EIGEN_DECLARE_CONST_Packet8f(NAME,X) \
|
||||
const Packet8f p8f_##NAME = pset1<Packet8f>(X)
|
||||
|
||||
#define _EIGEN_DECLARE_CONST_Packet4d(NAME,X) \
|
||||
const Packet4d p4d_##NAME = pset1<Packet4d>(X)
|
||||
|
||||
#define _EIGEN_DECLARE_CONST_Packet8f_FROM_INT(NAME,X) \
|
||||
const Packet8f p8f_##NAME = _mm256_castsi256_ps(pset1<Packet8i>(X))
|
||||
|
||||
#define _EIGEN_DECLARE_CONST_Packet8i(NAME,X) \
|
||||
const Packet8i p8i_##NAME = pset1<Packet8i>(X)
|
||||
#ifdef EIGEN_VECTORIZE_AVX2
|
||||
template<> struct is_arithmetic<Packet4l> { enum { value = true }; };
|
||||
#endif
|
||||
|
||||
// Use the packet_traits defined in AVX512/PacketMath.h instead if we're going
|
||||
// to leverage AVX512 instructions.
|
||||
@@ -67,8 +70,12 @@ template<> struct packet_traits<float> : default_packet_traits
|
||||
|
||||
HasCmp = 1,
|
||||
HasDiv = 1,
|
||||
HasReciprocal = EIGEN_FAST_MATH,
|
||||
HasSin = EIGEN_FAST_MATH,
|
||||
HasCos = EIGEN_FAST_MATH,
|
||||
HasACos = 1,
|
||||
HasASin = 1,
|
||||
HasATan = 1,
|
||||
HasLog = 1,
|
||||
HasLog1p = 1,
|
||||
HasExpm1 = 1,
|
||||
@@ -102,6 +109,7 @@ template<> struct packet_traits<double> : default_packet_traits
|
||||
HasExp = 1,
|
||||
HasSqrt = 1,
|
||||
HasRsqrt = 1,
|
||||
HasATan = 1,
|
||||
HasBlend = 1,
|
||||
HasRound = 1,
|
||||
HasFloor = 1,
|
||||
@@ -196,38 +204,74 @@ struct packet_traits<bfloat16> : default_packet_traits {
|
||||
HasNdtri = 1
|
||||
};
|
||||
};
|
||||
|
||||
template<> struct packet_traits<int> : default_packet_traits
|
||||
{
|
||||
typedef Packet8i type;
|
||||
typedef Packet4i half;
|
||||
enum {
|
||||
Vectorizable = 1,
|
||||
AlignedOnScalar = 1,
|
||||
HasCmp = 1,
|
||||
HasDiv = 1,
|
||||
size=8
|
||||
};
|
||||
};
|
||||
|
||||
#ifdef EIGEN_VECTORIZE_AVX2
|
||||
template<> struct packet_traits<int64_t> : default_packet_traits
|
||||
{
|
||||
typedef Packet4l type;
|
||||
// There is no half-size packet for current Packet4l.
|
||||
// TODO: support as SSE path.
|
||||
typedef Packet4l half;
|
||||
enum {
|
||||
Vectorizable = 1,
|
||||
AlignedOnScalar = 1,
|
||||
HasCmp = 1,
|
||||
size=4
|
||||
};
|
||||
};
|
||||
#endif
|
||||
|
||||
#endif
|
||||
|
||||
template<> struct scalar_div_cost<float,true> { enum { value = 14 }; };
|
||||
template<> struct scalar_div_cost<double,true> { enum { value = 16 }; };
|
||||
|
||||
/* Proper support for integers is only provided by AVX2. In the meantime, we'll
|
||||
use SSE instructions and packets to deal with integers.
|
||||
template<> struct packet_traits<int> : default_packet_traits
|
||||
{
|
||||
typedef Packet8i type;
|
||||
enum {
|
||||
Vectorizable = 1,
|
||||
AlignedOnScalar = 1,
|
||||
size=8
|
||||
};
|
||||
};
|
||||
*/
|
||||
|
||||
template<> struct unpacket_traits<Packet8f> {
|
||||
typedef float type;
|
||||
typedef Packet4f half;
|
||||
typedef Packet8i integer_packet;
|
||||
typedef uint8_t mask_t;
|
||||
enum {size=8, alignment=Aligned32, vectorizable=true, masked_load_available=true, masked_store_available=true};
|
||||
enum {size=8, alignment=Aligned32, vectorizable=true, masked_load_available=true, masked_store_available=true
|
||||
#ifdef EIGEN_VECTORIZE_AVX512
|
||||
, masked_fpops_available=true
|
||||
#endif
|
||||
};
|
||||
};
|
||||
template<> struct unpacket_traits<Packet4d> {
|
||||
typedef double type;
|
||||
typedef Packet2d half;
|
||||
enum {size=4, alignment=Aligned32, vectorizable=true, masked_load_available=false, masked_store_available=false};
|
||||
};
|
||||
template<> struct unpacket_traits<Packet8i> { typedef int type; typedef Packet4i half; enum {size=8, alignment=Aligned32, vectorizable=false, masked_load_available=false, masked_store_available=false}; };
|
||||
template<> struct unpacket_traits<Packet8bf> { typedef bfloat16 type; typedef Packet8bf half; enum {size=8, alignment=Aligned16, vectorizable=true, masked_load_available=false, masked_store_available=false}; };
|
||||
template<> struct unpacket_traits<Packet8i> {
|
||||
typedef int type;
|
||||
typedef Packet4i half;
|
||||
enum {size=8, alignment=Aligned32, vectorizable=true, masked_load_available=false, masked_store_available=false};
|
||||
};
|
||||
#ifdef EIGEN_VECTORIZE_AVX2
|
||||
template<> struct unpacket_traits<Packet4l> {
|
||||
typedef int64_t type;
|
||||
typedef Packet4l half;
|
||||
enum {size=4, alignment=Aligned32, vectorizable=true, masked_load_available=false, masked_store_available=false};
|
||||
};
|
||||
#endif
|
||||
template<> struct unpacket_traits<Packet8bf> {
|
||||
typedef bfloat16 type;
|
||||
typedef Packet8bf half;
|
||||
enum {size=8, alignment=Aligned16, vectorizable=true, masked_load_available=false, masked_store_available=false};
|
||||
};
|
||||
|
||||
// Helper function for bit packing snippet of low precision comparison.
|
||||
// It packs the flags from 16x16 to 8x16.
|
||||
@@ -236,6 +280,210 @@ EIGEN_STRONG_INLINE __m128i Pack16To8(Packet8f rf) {
|
||||
_mm256_extractf128_si256(_mm256_castps_si256(rf), 1));
|
||||
}
|
||||
|
||||
#ifdef EIGEN_VECTORIZE_AVX2
|
||||
template <>
|
||||
EIGEN_STRONG_INLINE Packet4l pset1<Packet4l>(const int64_t& from) {
|
||||
return _mm256_set1_epi64x(from);
|
||||
}
|
||||
template <>
|
||||
EIGEN_STRONG_INLINE Packet4l pzero(const Packet4l& /*a*/) {
|
||||
return _mm256_setzero_si256();
|
||||
}
|
||||
template <>
|
||||
EIGEN_STRONG_INLINE Packet4l peven_mask(const Packet4l& /*a*/) {
|
||||
return _mm256_set_epi64x(0ll, -1ll, 0ll, -1ll);
|
||||
}
|
||||
template <>
|
||||
EIGEN_STRONG_INLINE Packet4l pload1<Packet4l>(const int64_t* from) {
|
||||
return _mm256_set1_epi64x(*from);
|
||||
}
|
||||
template <>
|
||||
EIGEN_STRONG_INLINE Packet4l padd<Packet4l>(const Packet4l& a, const Packet4l& b) {
|
||||
return _mm256_add_epi64(a, b);
|
||||
}
|
||||
template <>
|
||||
EIGEN_STRONG_INLINE Packet4l plset<Packet4l>(const int64_t& a) {
|
||||
return padd(pset1<Packet4l>(a), Packet4l(_mm256_set_epi64x(3ll, 2ll, 1ll, 0ll)));
|
||||
}
|
||||
template <>
|
||||
EIGEN_STRONG_INLINE Packet4l psub<Packet4l>(const Packet4l& a, const Packet4l& b) {
|
||||
return _mm256_sub_epi64(a, b);
|
||||
}
|
||||
template <>
|
||||
EIGEN_STRONG_INLINE Packet4l pnegate(const Packet4l& a) {
|
||||
return psub(pzero(a), a);
|
||||
}
|
||||
template <>
|
||||
EIGEN_STRONG_INLINE Packet4l pconj(const Packet4l& a) {
|
||||
return a;
|
||||
}
|
||||
template <>
|
||||
EIGEN_STRONG_INLINE Packet4l pcmp_le(const Packet4l& a, const Packet4l& b) {
|
||||
return _mm256_xor_si256(_mm256_cmpgt_epi64(a, b), _mm256_set1_epi32(-1));
|
||||
}
|
||||
template <>
|
||||
EIGEN_STRONG_INLINE Packet4l pcmp_lt(const Packet4l& a, const Packet4l& b) {
|
||||
return _mm256_cmpgt_epi64(b, a);
|
||||
}
|
||||
template <>
|
||||
EIGEN_STRONG_INLINE Packet4l pcmp_eq(const Packet4l& a, const Packet4l& b) {
|
||||
return _mm256_cmpeq_epi64(a, b);
|
||||
}
|
||||
template <>
|
||||
EIGEN_STRONG_INLINE Packet4l ptrue<Packet4l>(const Packet4l& a) {
|
||||
return _mm256_cmpeq_epi64(a, a);
|
||||
}
|
||||
template <>
|
||||
EIGEN_STRONG_INLINE Packet4l pand<Packet4l>(const Packet4l& a, const Packet4l& b) {
|
||||
return _mm256_and_si256(a, b);
|
||||
}
|
||||
template <>
|
||||
EIGEN_STRONG_INLINE Packet4l por<Packet4l>(const Packet4l& a, const Packet4l& b) {
|
||||
return _mm256_or_si256(a, b);
|
||||
}
|
||||
template <>
|
||||
EIGEN_STRONG_INLINE Packet4l pxor<Packet4l>(const Packet4l& a, const Packet4l& b) {
|
||||
return _mm256_xor_si256(a, b);
|
||||
}
|
||||
template <>
|
||||
EIGEN_STRONG_INLINE Packet4l pandnot<Packet4l>(const Packet4l& a, const Packet4l& b) {
|
||||
return _mm256_andnot_si256(b, a);
|
||||
}
|
||||
template <int N>
|
||||
EIGEN_STRONG_INLINE Packet4l plogical_shift_right(Packet4l a) {
|
||||
return _mm256_srli_epi64(a, N);
|
||||
}
|
||||
template <int N>
|
||||
EIGEN_STRONG_INLINE Packet4l plogical_shift_left(Packet4l a) {
|
||||
return _mm256_slli_epi64(a, N);
|
||||
}
|
||||
#ifdef EIGEN_VECTORIZE_AVX512FP16
|
||||
template <int N>
|
||||
EIGEN_STRONG_INLINE Packet4l parithmetic_shift_right(Packet4l a) { return _mm256_srai_epi64(a, N); }
|
||||
#else
|
||||
template <int N>
|
||||
EIGEN_STRONG_INLINE std::enable_if_t< (N == 0), Packet4l> parithmetic_shift_right(Packet4l a) {
|
||||
return a;
|
||||
}
|
||||
template <int N>
|
||||
EIGEN_STRONG_INLINE std::enable_if_t< (N > 0) && (N < 32), Packet4l> parithmetic_shift_right(Packet4l a) {
|
||||
__m256i hi_word = _mm256_srai_epi32(a, N);
|
||||
__m256i lo_word = _mm256_srli_epi64(a, N);
|
||||
return _mm256_blend_epi32(hi_word, lo_word, 0b01010101);
|
||||
}
|
||||
template <int N>
|
||||
EIGEN_STRONG_INLINE std::enable_if_t< (N >= 32) && (N < 63), Packet4l> parithmetic_shift_right(Packet4l a) {
|
||||
__m256i hi_word = _mm256_srai_epi32(a, 31);
|
||||
__m256i lo_word = _mm256_shuffle_epi32(_mm256_srai_epi32(a, N - 32), (shuffle_mask<1, 1, 3, 3>::mask));
|
||||
return _mm256_blend_epi32(hi_word, lo_word, 0b01010101);
|
||||
}
|
||||
template <int N>
|
||||
EIGEN_STRONG_INLINE std::enable_if_t< (N == 63), Packet4l> parithmetic_shift_right(Packet4l a) {
|
||||
return _mm256_shuffle_epi32(_mm256_srai_epi32(a, 31), (shuffle_mask<1, 1, 3, 3>::mask));
|
||||
}
|
||||
template <int N>
|
||||
EIGEN_STRONG_INLINE std::enable_if_t< (N < 0) || (N > 63), Packet4l> parithmetic_shift_right(Packet4l a) {
|
||||
return parithmetic_shift_right<int(N&63)>(a);
|
||||
}
|
||||
#endif
|
||||
template <>
|
||||
EIGEN_STRONG_INLINE Packet4l pload<Packet4l>(const int64_t* from) {
|
||||
EIGEN_DEBUG_ALIGNED_LOAD return _mm256_load_si256(reinterpret_cast<const __m256i*>(from));
|
||||
}
|
||||
template <>
|
||||
EIGEN_STRONG_INLINE Packet4l ploadu<Packet4l>(const int64_t* from) {
|
||||
EIGEN_DEBUG_UNALIGNED_LOAD return _mm256_loadu_si256(reinterpret_cast<const __m256i*>(from));
|
||||
}
|
||||
// Loads 2 int64_ts from memory a returns the packet {a0, a0, a1, a1}
|
||||
template <>
|
||||
EIGEN_STRONG_INLINE Packet4l ploaddup<Packet4l>(const int64_t* from) {
|
||||
const Packet4l a = _mm256_castsi128_si256(_mm_loadu_si128(reinterpret_cast<const __m128i*>(from)));
|
||||
return _mm256_permutevar8x32_epi32(a, _mm256_setr_epi32(0, 1, 0, 1, 2, 3, 2, 3));
|
||||
}
|
||||
template <>
|
||||
EIGEN_STRONG_INLINE void pstore<int64_t>(int64_t* to, const Packet4l& from) {
|
||||
EIGEN_DEBUG_ALIGNED_STORE _mm256_storeu_si256(reinterpret_cast<__m256i*>(to), from);
|
||||
}
|
||||
template <>
|
||||
EIGEN_STRONG_INLINE void pstoreu<int64_t>(int64_t* to, const Packet4l& from) {
|
||||
EIGEN_DEBUG_UNALIGNED_STORE _mm256_storeu_si256(reinterpret_cast<__m256i*>(to), from);
|
||||
}
|
||||
template <>
|
||||
EIGEN_DEVICE_FUNC inline Packet4l pgather<int64_t, Packet4l>(const int64_t* from, Index stride) {
|
||||
return _mm256_set_epi64x(from[3 * stride], from[2 * stride], from[1 * stride], from[0 * stride]);
|
||||
}
|
||||
template <>
|
||||
EIGEN_DEVICE_FUNC inline void pscatter<int64_t, Packet4l>(int64_t* to, const Packet4l& from, Index stride) {
|
||||
__m128i low = _mm256_extractf128_si256(from, 0);
|
||||
to[stride * 0] = _mm_extract_epi64(low, 0);
|
||||
to[stride * 1] = _mm_extract_epi64(low, 1);
|
||||
|
||||
__m128i high = _mm256_extractf128_si256(from, 1);
|
||||
to[stride * 2] = _mm_extract_epi64(high, 0);
|
||||
to[stride * 3] = _mm_extract_epi64(high, 1);
|
||||
}
|
||||
template <>
|
||||
EIGEN_STRONG_INLINE void pstore1<Packet4l>(int64_t* to, const int64_t& a) {
|
||||
Packet4l pa = pset1<Packet4l>(a);
|
||||
pstore(to, pa);
|
||||
}
|
||||
template <>
|
||||
EIGEN_STRONG_INLINE int64_t pfirst<Packet4l>(const Packet4l& a) {
|
||||
return _mm_cvtsi128_si64(_mm256_castsi256_si128(a));
|
||||
}
|
||||
template <>
|
||||
EIGEN_STRONG_INLINE int64_t predux<Packet4l>(const Packet4l& a) {
|
||||
__m128i r = _mm_add_epi64(_mm256_castsi256_si128(a), _mm256_extractf128_si256(a, 1));
|
||||
return _mm_extract_epi64(r, 0) + _mm_extract_epi64(r, 1);
|
||||
}
|
||||
#define MM256_SHUFFLE_EPI64(A, B, M) _mm256_shuffle_pd(_mm256_castsi256_pd(A), _mm256_castsi256_pd(B), M)
|
||||
EIGEN_DEVICE_FUNC inline void ptranspose(PacketBlock<Packet4l, 4>& kernel) {
|
||||
__m256d T0 = MM256_SHUFFLE_EPI64(kernel.packet[0], kernel.packet[1], 15);
|
||||
__m256d T1 = MM256_SHUFFLE_EPI64(kernel.packet[0], kernel.packet[1], 0);
|
||||
__m256d T2 = MM256_SHUFFLE_EPI64(kernel.packet[2], kernel.packet[3], 15);
|
||||
__m256d T3 = MM256_SHUFFLE_EPI64(kernel.packet[2], kernel.packet[3], 0);
|
||||
|
||||
kernel.packet[1] = _mm256_castpd_si256(_mm256_permute2f128_pd(T0, T2, 32));
|
||||
kernel.packet[3] = _mm256_castpd_si256(_mm256_permute2f128_pd(T0, T2, 49));
|
||||
kernel.packet[0] = _mm256_castpd_si256(_mm256_permute2f128_pd(T1, T3, 32));
|
||||
kernel.packet[2] = _mm256_castpd_si256(_mm256_permute2f128_pd(T1, T3, 49));
|
||||
}
|
||||
template <>
|
||||
EIGEN_STRONG_INLINE Packet4l pmin<Packet4l>(const Packet4l& a, const Packet4l& b) {
|
||||
__m256i cmp = _mm256_cmpgt_epi64(a, b);
|
||||
__m256i a_min = _mm256_andnot_si256(cmp, a);
|
||||
__m256i b_min = _mm256_and_si256(cmp, b);
|
||||
return Packet4l(_mm256_or_si256(a_min, b_min));
|
||||
}
|
||||
template <>
|
||||
EIGEN_STRONG_INLINE Packet4l pmax<Packet4l>(const Packet4l& a, const Packet4l& b) {
|
||||
__m256i cmp = _mm256_cmpgt_epi64(a, b);
|
||||
__m256i a_min = _mm256_and_si256(cmp, a);
|
||||
__m256i b_min = _mm256_andnot_si256(cmp, b);
|
||||
return Packet4l(_mm256_or_si256(a_min, b_min));
|
||||
}
|
||||
template <>
|
||||
EIGEN_STRONG_INLINE Packet4l pabs<Packet4l>(const Packet4l& a) {
|
||||
Packet4l pz = pzero<Packet4l>(a);
|
||||
Packet4l cmp = _mm256_cmpgt_epi64(a, pz);
|
||||
return psub(cmp, pxor(a, cmp));
|
||||
}
|
||||
template <>
|
||||
EIGEN_STRONG_INLINE Packet4l pmul<Packet4l>(const Packet4l& a, const Packet4l& b) {
|
||||
// 64-bit mul requires avx512, so do this with 32-bit multiplication
|
||||
__m256i upper32_a = _mm256_srli_epi64(a, 32);
|
||||
__m256i upper32_b = _mm256_srli_epi64(b, 32);
|
||||
|
||||
// upper * lower
|
||||
__m256i mul1 = _mm256_mul_epu32(upper32_a, b);
|
||||
__m256i mul2 = _mm256_mul_epu32(upper32_b, a);
|
||||
// Gives us both upper*upper and lower*lower
|
||||
__m256i mul3 = _mm256_mul_epu32(a, b);
|
||||
|
||||
__m256i high = _mm256_slli_epi64(_mm256_add_epi64(mul1, mul2), 32);
|
||||
return _mm256_add_epi64(high, mul3);
|
||||
}
|
||||
#endif
|
||||
|
||||
template<> EIGEN_STRONG_INLINE Packet8f pset1<Packet8f>(const float& from) { return _mm256_set1_ps(from); }
|
||||
template<> EIGEN_STRONG_INLINE Packet4d pset1<Packet4d>(const double& from) { return _mm256_set1_pd(from); }
|
||||
@@ -256,10 +504,17 @@ template<> EIGEN_STRONG_INLINE Packet4d peven_mask(const Packet4d& /*a*/) { retu
|
||||
template<> EIGEN_STRONG_INLINE Packet8f pload1<Packet8f>(const float* from) { return _mm256_broadcast_ss(from); }
|
||||
template<> EIGEN_STRONG_INLINE Packet4d pload1<Packet4d>(const double* from) { return _mm256_broadcast_sd(from); }
|
||||
|
||||
template<> EIGEN_STRONG_INLINE Packet8f plset<Packet8f>(const float& a) { return _mm256_add_ps(_mm256_set1_ps(a), _mm256_set_ps(7.0,6.0,5.0,4.0,3.0,2.0,1.0,0.0)); }
|
||||
template<> EIGEN_STRONG_INLINE Packet4d plset<Packet4d>(const double& a) { return _mm256_add_pd(_mm256_set1_pd(a), _mm256_set_pd(3.0,2.0,1.0,0.0)); }
|
||||
|
||||
template<> EIGEN_STRONG_INLINE Packet8f padd<Packet8f>(const Packet8f& a, const Packet8f& b) { return _mm256_add_ps(a,b); }
|
||||
#ifdef EIGEN_VECTORIZE_AVX512
|
||||
template <>
|
||||
EIGEN_STRONG_INLINE Packet8f padd<Packet8f>(const Packet8f& a, const Packet8f& b, uint8_t umask) {
|
||||
__mmask16 mask = static_cast<__mmask16>(umask & 0x00FF);
|
||||
return _mm512_castps512_ps256(_mm512_maskz_add_ps(
|
||||
mask,
|
||||
_mm512_castps256_ps512(a),
|
||||
_mm512_castps256_ps512(b)));
|
||||
}
|
||||
#endif
|
||||
template<> EIGEN_STRONG_INLINE Packet4d padd<Packet4d>(const Packet4d& a, const Packet4d& b) { return _mm256_add_pd(a,b); }
|
||||
template<> EIGEN_STRONG_INLINE Packet8i padd<Packet8i>(const Packet8i& a, const Packet8i& b) {
|
||||
#ifdef EIGEN_VECTORIZE_AVX2
|
||||
@@ -271,6 +526,10 @@ template<> EIGEN_STRONG_INLINE Packet8i padd<Packet8i>(const Packet8i& a, const
|
||||
#endif
|
||||
}
|
||||
|
||||
template<> EIGEN_STRONG_INLINE Packet8f plset<Packet8f>(const float& a) { return padd(pset1<Packet8f>(a), _mm256_set_ps(7.0,6.0,5.0,4.0,3.0,2.0,1.0,0.0)); }
|
||||
template<> EIGEN_STRONG_INLINE Packet4d plset<Packet4d>(const double& a) { return padd(pset1<Packet4d>(a), _mm256_set_pd(3.0,2.0,1.0,0.0)); }
|
||||
template<> EIGEN_STRONG_INLINE Packet8i plset<Packet8i>(const int& a) { return padd(pset1<Packet8i>(a), (Packet8i)_mm256_set_epi32(7,6,5,4,3,2,1,0)); }
|
||||
|
||||
template<> EIGEN_STRONG_INLINE Packet8f psub<Packet8f>(const Packet8f& a, const Packet8f& b) { return _mm256_sub_ps(a,b); }
|
||||
template<> EIGEN_STRONG_INLINE Packet4d psub<Packet4d>(const Packet4d& a, const Packet4d& b) { return _mm256_sub_pd(a,b); }
|
||||
template<> EIGEN_STRONG_INLINE Packet8i psub<Packet8i>(const Packet8i& a, const Packet8i& b) {
|
||||
@@ -285,11 +544,17 @@ template<> EIGEN_STRONG_INLINE Packet8i psub<Packet8i>(const Packet8i& a, const
|
||||
|
||||
template<> EIGEN_STRONG_INLINE Packet8f pnegate(const Packet8f& a)
|
||||
{
|
||||
return _mm256_sub_ps(_mm256_set1_ps(0.0),a);
|
||||
const Packet8f mask = _mm256_castsi256_ps(_mm256_set1_epi32(0x80000000));
|
||||
return _mm256_xor_ps(a, mask);
|
||||
}
|
||||
template<> EIGEN_STRONG_INLINE Packet4d pnegate(const Packet4d& a)
|
||||
{
|
||||
return _mm256_sub_pd(_mm256_set1_pd(0.0),a);
|
||||
const Packet4d mask = _mm256_castsi256_pd(_mm256_set1_epi64x(0x8000000000000000ULL));
|
||||
return _mm256_xor_pd(a, mask);
|
||||
}
|
||||
template<> EIGEN_STRONG_INLINE Packet8i pnegate(const Packet8i& a)
|
||||
{
|
||||
return psub(pzero(a), a);
|
||||
}
|
||||
|
||||
template<> EIGEN_STRONG_INLINE Packet8f pconj(const Packet8f& a) { return a; }
|
||||
@@ -310,36 +575,58 @@ template<> EIGEN_STRONG_INLINE Packet8i pmul<Packet8i>(const Packet8i& a, const
|
||||
|
||||
template<> EIGEN_STRONG_INLINE Packet8f pdiv<Packet8f>(const Packet8f& a, const Packet8f& b) { return _mm256_div_ps(a,b); }
|
||||
template<> EIGEN_STRONG_INLINE Packet4d pdiv<Packet4d>(const Packet4d& a, const Packet4d& b) { return _mm256_div_pd(a,b); }
|
||||
template<> EIGEN_STRONG_INLINE Packet8i pdiv<Packet8i>(const Packet8i& /*a*/, const Packet8i& /*b*/)
|
||||
{ eigen_assert(false && "packet integer division are not supported by AVX");
|
||||
return pset1<Packet8i>(0);
|
||||
|
||||
template<> EIGEN_STRONG_INLINE Packet8i pdiv<Packet8i>(const Packet8i& a, const Packet8i& b)
|
||||
{
|
||||
#ifdef EIGEN_VECTORIZE_AVX512
|
||||
return _mm512_cvttpd_epi32(_mm512_div_pd(_mm512_cvtepi32_pd(a), _mm512_cvtepi32_pd(b)));
|
||||
#else
|
||||
Packet4i lo = pdiv<Packet4i>(_mm256_extractf128_si256(a, 0), _mm256_extractf128_si256(b, 0));
|
||||
Packet4i hi = pdiv<Packet4i>(_mm256_extractf128_si256(a, 1), _mm256_extractf128_si256(b, 1));
|
||||
return _mm256_insertf128_si256(_mm256_castsi128_si256(lo), hi, 1);
|
||||
#endif
|
||||
}
|
||||
|
||||
#ifdef EIGEN_VECTORIZE_FMA
|
||||
template<> EIGEN_STRONG_INLINE Packet8f pmadd(const Packet8f& a, const Packet8f& b, const Packet8f& c) {
|
||||
#if ( (EIGEN_COMP_GNUC_STRICT && EIGEN_COMP_GNUC<80) || (EIGEN_COMP_CLANG) )
|
||||
// Clang stupidly generates a vfmadd213ps instruction plus some vmovaps on registers,
|
||||
// and even register spilling with clang>=6.0 (bug 1637).
|
||||
// Gcc stupidly generates a vfmadd132ps instruction.
|
||||
// So let's enforce it to generate a vfmadd231ps instruction since the most common use
|
||||
// case is to accumulate the result of the product.
|
||||
Packet8f res = c;
|
||||
__asm__("vfmadd231ps %[a], %[b], %[c]" : [c] "+x" (res) : [a] "x" (a), [b] "x" (b));
|
||||
return res;
|
||||
#else
|
||||
return _mm256_fmadd_ps(a,b,c);
|
||||
#endif
|
||||
template <>
|
||||
EIGEN_STRONG_INLINE Packet8f pmadd(const Packet8f& a, const Packet8f& b, const Packet8f& c) {
|
||||
return _mm256_fmadd_ps(a, b, c);
|
||||
}
|
||||
template<> EIGEN_STRONG_INLINE Packet4d pmadd(const Packet4d& a, const Packet4d& b, const Packet4d& c) {
|
||||
#if ( (EIGEN_COMP_GNUC_STRICT && EIGEN_COMP_GNUC<80) || (EIGEN_COMP_CLANG) )
|
||||
// see above
|
||||
Packet4d res = c;
|
||||
__asm__("vfmadd231pd %[a], %[b], %[c]" : [c] "+x" (res) : [a] "x" (a), [b] "x" (b));
|
||||
return res;
|
||||
#else
|
||||
return _mm256_fmadd_pd(a,b,c);
|
||||
#endif
|
||||
template <>
|
||||
EIGEN_STRONG_INLINE Packet4d pmadd(const Packet4d& a, const Packet4d& b, const Packet4d& c) {
|
||||
return _mm256_fmadd_pd(a, b, c);
|
||||
}
|
||||
|
||||
template <>
|
||||
EIGEN_STRONG_INLINE Packet8f pmsub(const Packet8f& a, const Packet8f& b, const Packet8f& c) {
|
||||
return _mm256_fmsub_ps(a, b, c);
|
||||
}
|
||||
|
||||
template <>
|
||||
EIGEN_STRONG_INLINE Packet4d pmsub(const Packet4d& a, const Packet4d& b, const Packet4d& c) {
|
||||
return _mm256_fmsub_pd(a, b, c);
|
||||
}
|
||||
|
||||
template <>
|
||||
EIGEN_STRONG_INLINE Packet8f pnmadd(const Packet8f& a, const Packet8f& b, const Packet8f& c) {
|
||||
return _mm256_fnmadd_ps(a, b, c);
|
||||
}
|
||||
|
||||
template <>
|
||||
EIGEN_STRONG_INLINE Packet4d pnmadd(const Packet4d& a, const Packet4d& b, const Packet4d& c) {
|
||||
return _mm256_fnmadd_pd(a, b, c);
|
||||
}
|
||||
|
||||
template <>
|
||||
EIGEN_STRONG_INLINE Packet8f pnmsub(const Packet8f& a, const Packet8f& b, const Packet8f& c) {
|
||||
return _mm256_fnmsub_ps(a, b, c);
|
||||
}
|
||||
|
||||
template <>
|
||||
EIGEN_STRONG_INLINE Packet4d pnmsub(const Packet4d& a, const Packet4d& b, const Packet4d& c) {
|
||||
return _mm256_fnmsub_pd(a, b, c);
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
template<> EIGEN_STRONG_INLINE Packet8f pcmp_le(const Packet8f& a, const Packet8f& b) { return _mm256_cmp_ps(a,b,_CMP_LE_OQ); }
|
||||
@@ -352,7 +639,26 @@ template<> EIGEN_STRONG_INLINE Packet4d pcmp_lt(const Packet4d& a, const Packet4
|
||||
template<> EIGEN_STRONG_INLINE Packet4d pcmp_lt_or_nan(const Packet4d& a, const Packet4d& b) { return _mm256_cmp_pd(a, b, _CMP_NGE_UQ); }
|
||||
template<> EIGEN_STRONG_INLINE Packet4d pcmp_eq(const Packet4d& a, const Packet4d& b) { return _mm256_cmp_pd(a,b,_CMP_EQ_OQ); }
|
||||
|
||||
|
||||
template<> EIGEN_STRONG_INLINE Packet8i pcmp_le(const Packet8i& a, const Packet8i& b) {
|
||||
#ifdef EIGEN_VECTORIZE_AVX2
|
||||
return _mm256_xor_si256(_mm256_cmpgt_epi32(a,b), _mm256_set1_epi32(-1));
|
||||
#else
|
||||
__m128i lo = _mm_cmpgt_epi32(_mm256_extractf128_si256(a, 0), _mm256_extractf128_si256(b, 0));
|
||||
lo = _mm_xor_si128(lo, _mm_set1_epi32(-1));
|
||||
__m128i hi = _mm_cmpgt_epi32(_mm256_extractf128_si256(a, 1), _mm256_extractf128_si256(b, 1));
|
||||
hi = _mm_xor_si128(hi, _mm_set1_epi32(-1));
|
||||
return _mm256_insertf128_si256(_mm256_castsi128_si256(lo), (hi), 1);
|
||||
#endif
|
||||
}
|
||||
template<> EIGEN_STRONG_INLINE Packet8i pcmp_lt(const Packet8i& a, const Packet8i& b) {
|
||||
#ifdef EIGEN_VECTORIZE_AVX2
|
||||
return _mm256_cmpgt_epi32(b,a);
|
||||
#else
|
||||
__m128i lo = _mm_cmpgt_epi32(_mm256_extractf128_si256(b, 0), _mm256_extractf128_si256(a, 0));
|
||||
__m128i hi = _mm_cmpgt_epi32(_mm256_extractf128_si256(b, 1), _mm256_extractf128_si256(a, 1));
|
||||
return _mm256_insertf128_si256(_mm256_castsi128_si256(lo), (hi), 1);
|
||||
#endif
|
||||
}
|
||||
template<> EIGEN_STRONG_INLINE Packet8i pcmp_eq(const Packet8i& a, const Packet8i& b) {
|
||||
#ifdef EIGEN_VECTORIZE_AVX2
|
||||
return _mm256_cmpeq_epi32(a,b);
|
||||
@@ -388,6 +694,15 @@ template<> EIGEN_STRONG_INLINE Packet4d pmin<Packet4d>(const Packet4d& a, const
|
||||
return _mm256_min_pd(b,a);
|
||||
#endif
|
||||
}
|
||||
template<> EIGEN_STRONG_INLINE Packet8i pmin<Packet8i>(const Packet8i& a, const Packet8i& b) {
|
||||
#ifdef EIGEN_VECTORIZE_AVX2
|
||||
return _mm256_min_epi32(a, b);
|
||||
#else
|
||||
__m128i lo = _mm_min_epi32(_mm256_extractf128_si256(a, 0), _mm256_extractf128_si256(b, 0));
|
||||
__m128i hi = _mm_min_epi32(_mm256_extractf128_si256(a, 1), _mm256_extractf128_si256(b, 1));
|
||||
return _mm256_insertf128_si256(_mm256_castsi128_si256(lo), (hi), 1);
|
||||
#endif
|
||||
}
|
||||
|
||||
template<> EIGEN_STRONG_INLINE Packet8f pmax<Packet8f>(const Packet8f& a, const Packet8f& b) {
|
||||
#if EIGEN_COMP_GNUC && EIGEN_COMP_GNUC < 63
|
||||
@@ -411,6 +726,21 @@ template<> EIGEN_STRONG_INLINE Packet4d pmax<Packet4d>(const Packet4d& a, const
|
||||
return _mm256_max_pd(b,a);
|
||||
#endif
|
||||
}
|
||||
template<> EIGEN_STRONG_INLINE Packet8i pmax<Packet8i>(const Packet8i& a, const Packet8i& b) {
|
||||
#ifdef EIGEN_VECTORIZE_AVX2
|
||||
return _mm256_max_epi32(a, b);
|
||||
#else
|
||||
__m128i lo = _mm_max_epi32(_mm256_extractf128_si256(a, 0), _mm256_extractf128_si256(b, 0));
|
||||
__m128i hi = _mm_max_epi32(_mm256_extractf128_si256(a, 1), _mm256_extractf128_si256(b, 1));
|
||||
return _mm256_insertf128_si256(_mm256_castsi128_si256(lo), (hi), 1);
|
||||
#endif
|
||||
}
|
||||
|
||||
#ifdef EIGEN_VECTORIZE_AVX2
|
||||
template<> EIGEN_STRONG_INLINE Packet8i psign(const Packet8i& a) {
|
||||
return _mm256_sign_epi32(_mm256_set1_epi32(1), a);
|
||||
}
|
||||
#endif
|
||||
|
||||
// Add specializations for min/max with prescribed NaN progation.
|
||||
template<>
|
||||
@@ -583,11 +913,16 @@ template<> EIGEN_STRONG_INLINE Packet4d ploadu<Packet4d>(const double* from) { E
|
||||
template<> EIGEN_STRONG_INLINE Packet8i ploadu<Packet8i>(const int* from) { EIGEN_DEBUG_UNALIGNED_LOAD return _mm256_loadu_si256(reinterpret_cast<const __m256i*>(from)); }
|
||||
|
||||
template<> EIGEN_STRONG_INLINE Packet8f ploadu<Packet8f>(const float* from, uint8_t umask) {
|
||||
#ifdef EIGEN_VECTORIZE_AVX512
|
||||
__mmask16 mask = static_cast<__mmask16>(umask & 0x00FF);
|
||||
EIGEN_DEBUG_UNALIGNED_LOAD return _mm512_castps512_ps256(_mm512_maskz_loadu_ps(mask, from));
|
||||
#else
|
||||
Packet8i mask = _mm256_set1_epi8(static_cast<char>(umask));
|
||||
const Packet8i bit_mask = _mm256_set_epi32(0xffffff7f, 0xffffffbf, 0xffffffdf, 0xffffffef, 0xfffffff7, 0xfffffffb, 0xfffffffd, 0xfffffffe);
|
||||
mask = por<Packet8i>(mask, bit_mask);
|
||||
mask = pcmp_eq<Packet8i>(mask, _mm256_set1_epi32(0xffffffff));
|
||||
EIGEN_DEBUG_UNALIGNED_LOAD return _mm256_maskload_ps(from, mask);
|
||||
#endif
|
||||
}
|
||||
|
||||
// Loads 4 floats from memory a returns the packet {a0, a0 a1, a1, a2, a2, a3, a3}
|
||||
@@ -605,12 +940,26 @@ template<> EIGEN_STRONG_INLINE Packet8f ploaddup<Packet8f>(const float* from)
|
||||
// then we can perform a consistent permutation on the global register to get everything in shape:
|
||||
return _mm256_permute_ps(tmp, _MM_SHUFFLE(3,3,2,2));
|
||||
}
|
||||
// Loads 2 doubles from memory a returns the packet {a0, a0 a1, a1}
|
||||
// Loads 2 doubles from memory a returns the packet {a0, a0, a1, a1}
|
||||
template<> EIGEN_STRONG_INLINE Packet4d ploaddup<Packet4d>(const double* from)
|
||||
{
|
||||
Packet4d tmp = _mm256_broadcast_pd((const __m128d*)(const void*)from);
|
||||
return _mm256_permute_pd(tmp, 3<<2);
|
||||
}
|
||||
// Loads 4 integers from memory a returns the packet {a0, a0, a1, a1, a2, a2, a3, a3}
|
||||
template<> EIGEN_STRONG_INLINE Packet8i ploaddup<Packet8i>(const int* from)
|
||||
{
|
||||
#ifdef EIGEN_VECTORIZE_AVX2
|
||||
const Packet8i a = _mm256_castsi128_si256(ploadu<Packet4i>(from));
|
||||
return _mm256_permutevar8x32_epi32(a, _mm256_setr_epi32(0, 0, 1, 1, 2, 2, 3, 3));
|
||||
#else
|
||||
__m256 tmp = _mm256_broadcast_ps((const __m128*)(const void*)from);
|
||||
// mimic an "inplace" permutation of the lower 128bits using a blend
|
||||
tmp = _mm256_blend_ps(tmp,_mm256_castps128_ps256(_mm_permute_ps( _mm256_castps256_ps128(tmp), _MM_SHUFFLE(1,0,1,0))), 15);
|
||||
// then we can perform a consistent permutation on the global register to get everything in shape:
|
||||
return _mm256_castps_si256(_mm256_permute_ps(tmp, _MM_SHUFFLE(3,3,2,2)));
|
||||
#endif
|
||||
}
|
||||
|
||||
// Loads 2 floats from memory a returns the packet {a0, a0 a0, a0, a1, a1, a1, a1}
|
||||
template<> EIGEN_STRONG_INLINE Packet8f ploadquad<Packet8f>(const float* from)
|
||||
@@ -618,6 +967,10 @@ template<> EIGEN_STRONG_INLINE Packet8f ploadquad<Packet8f>(const float* from)
|
||||
Packet8f tmp = _mm256_castps128_ps256(_mm_broadcast_ss(from));
|
||||
return _mm256_insertf128_ps(tmp, _mm_broadcast_ss(from+1), 1);
|
||||
}
|
||||
template<> EIGEN_STRONG_INLINE Packet8i ploadquad<Packet8i>(const int* from)
|
||||
{
|
||||
return _mm256_insertf128_si256(_mm256_set1_epi32(*from), _mm_set1_epi32(*(from+1)), 1);
|
||||
}
|
||||
|
||||
template<> EIGEN_STRONG_INLINE void pstore<float>(float* to, const Packet8f& from) { EIGEN_DEBUG_ALIGNED_STORE _mm256_store_ps(to, from); }
|
||||
template<> EIGEN_STRONG_INLINE void pstore<double>(double* to, const Packet4d& from) { EIGEN_DEBUG_ALIGNED_STORE _mm256_store_pd(to, from); }
|
||||
@@ -628,11 +981,16 @@ template<> EIGEN_STRONG_INLINE void pstoreu<double>(double* to, const Packet4d&
|
||||
template<> EIGEN_STRONG_INLINE void pstoreu<int>(int* to, const Packet8i& from) { EIGEN_DEBUG_UNALIGNED_STORE _mm256_storeu_si256(reinterpret_cast<__m256i*>(to), from); }
|
||||
|
||||
template<> EIGEN_STRONG_INLINE void pstoreu<float>(float* to, const Packet8f& from, uint8_t umask) {
|
||||
#ifdef EIGEN_VECTORIZE_AVX512
|
||||
__mmask16 mask = static_cast<__mmask16>(umask & 0x00FF);
|
||||
EIGEN_DEBUG_UNALIGNED_STORE return _mm512_mask_storeu_ps(to, mask, _mm512_castps256_ps512(from));
|
||||
#else
|
||||
Packet8i mask = _mm256_set1_epi8(static_cast<char>(umask));
|
||||
const Packet8i bit_mask = _mm256_set_epi32(0xffffff7f, 0xffffffbf, 0xffffffdf, 0xffffffef, 0xfffffff7, 0xfffffffb, 0xfffffffd, 0xfffffffe);
|
||||
mask = por<Packet8i>(mask, bit_mask);
|
||||
mask = pcmp_eq<Packet8i>(mask, _mm256_set1_epi32(0xffffffff));
|
||||
EIGEN_DEBUG_UNALIGNED_STORE return _mm256_maskstore_ps(to, mask, from);
|
||||
#endif
|
||||
}
|
||||
|
||||
// NOTE: leverage _mm256_i32gather_ps and _mm256_i32gather_pd if AVX2 instructions are available
|
||||
@@ -646,6 +1004,11 @@ template<> EIGEN_DEVICE_FUNC inline Packet4d pgather<double, Packet4d>(const dou
|
||||
{
|
||||
return _mm256_set_pd(from[3*stride], from[2*stride], from[1*stride], from[0*stride]);
|
||||
}
|
||||
template<> EIGEN_DEVICE_FUNC inline Packet8i pgather<int, Packet8i>(const int* from, Index stride)
|
||||
{
|
||||
return _mm256_set_epi32(from[7*stride], from[6*stride], from[5*stride], from[4*stride],
|
||||
from[3*stride], from[2*stride], from[1*stride], from[0*stride]);
|
||||
}
|
||||
|
||||
template<> EIGEN_DEVICE_FUNC inline void pscatter<float, Packet8f>(float* to, const Packet8f& from, Index stride)
|
||||
{
|
||||
@@ -670,6 +1033,20 @@ template<> EIGEN_DEVICE_FUNC inline void pscatter<double, Packet4d>(double* to,
|
||||
to[stride*2] = _mm_cvtsd_f64(high);
|
||||
to[stride*3] = _mm_cvtsd_f64(_mm_shuffle_pd(high, high, 1));
|
||||
}
|
||||
template<> EIGEN_DEVICE_FUNC inline void pscatter<int, Packet8i>(int* to, const Packet8i& from, Index stride)
|
||||
{
|
||||
__m128i low = _mm256_extractf128_si256(from, 0);
|
||||
to[stride*0] = _mm_extract_epi32(low, 0);
|
||||
to[stride*1] = _mm_extract_epi32(low, 1);
|
||||
to[stride*2] = _mm_extract_epi32(low, 2);
|
||||
to[stride*3] = _mm_extract_epi32(low, 3);
|
||||
|
||||
__m128i high = _mm256_extractf128_si256(from, 1);
|
||||
to[stride*4] = _mm_extract_epi32(high, 0);
|
||||
to[stride*5] = _mm_extract_epi32(high, 1);
|
||||
to[stride*6] = _mm_extract_epi32(high, 2);
|
||||
to[stride*7] = _mm_extract_epi32(high, 3);
|
||||
}
|
||||
|
||||
template<> EIGEN_STRONG_INLINE void pstore1<Packet8f>(float* to, const float& a)
|
||||
{
|
||||
@@ -720,6 +1097,17 @@ template<> EIGEN_STRONG_INLINE Packet4d preverse(const Packet4d& a)
|
||||
return _mm256_permute_pd(swap_halves,5);
|
||||
#endif
|
||||
}
|
||||
template<> EIGEN_STRONG_INLINE Packet8i preverse(const Packet8i& a)
|
||||
{
|
||||
return _mm256_castps_si256(preverse(_mm256_castsi256_ps(a)));
|
||||
}
|
||||
|
||||
#ifdef EIGEN_VECTORIZE_AVX2
|
||||
template<> EIGEN_STRONG_INLINE Packet4l preverse(const Packet4l& a)
|
||||
{
|
||||
return _mm256_castpd_si256(preverse(_mm256_castsi256_pd(a)));
|
||||
}
|
||||
#endif
|
||||
|
||||
// pabs should be ok
|
||||
template<> EIGEN_STRONG_INLINE Packet8f pabs(const Packet8f& a)
|
||||
@@ -732,6 +1120,23 @@ template<> EIGEN_STRONG_INLINE Packet4d pabs(const Packet4d& a)
|
||||
const Packet4d mask = _mm256_castsi256_pd(_mm256_setr_epi32(0xFFFFFFFF,0x7FFFFFFF,0xFFFFFFFF,0x7FFFFFFF,0xFFFFFFFF,0x7FFFFFFF,0xFFFFFFFF,0x7FFFFFFF));
|
||||
return _mm256_and_pd(a,mask);
|
||||
}
|
||||
template<> EIGEN_STRONG_INLINE Packet8i pabs(const Packet8i& a)
|
||||
{
|
||||
#ifdef EIGEN_VECTORIZE_AVX2
|
||||
return _mm256_abs_epi32(a);
|
||||
#else
|
||||
__m128i lo = _mm_abs_epi32(_mm256_extractf128_si256(a, 0));
|
||||
__m128i hi = _mm_abs_epi32(_mm256_extractf128_si256(a, 1));
|
||||
return _mm256_insertf128_si256(_mm256_castsi128_si256(lo), (hi), 1);
|
||||
#endif
|
||||
}
|
||||
|
||||
template<> EIGEN_STRONG_INLINE Packet8h psignbit(const Packet8h& a) { return _mm_srai_epi16(a, 15); }
|
||||
template<> EIGEN_STRONG_INLINE Packet8bf psignbit(const Packet8bf& a) { return _mm_srai_epi16(a, 15); }
|
||||
template<> EIGEN_STRONG_INLINE Packet8f psignbit(const Packet8f& a) { return _mm256_castsi256_ps(parithmetic_shift_right<31>((Packet8i)_mm256_castps_si256(a))); }
|
||||
#ifdef EIGEN_VECTORIZE_AVX2
|
||||
template<> EIGEN_STRONG_INLINE Packet4d psignbit(const Packet4d& a) { return _mm256_castsi256_pd(parithmetic_shift_right<63>((Packet4l)_mm256_castpd_si256(a))); }
|
||||
#endif
|
||||
|
||||
template<> EIGEN_STRONG_INLINE Packet8f pfrexp<Packet8f>(const Packet8f& a, Packet8f& exponent) {
|
||||
return pfrexp_generic(a,exponent);
|
||||
@@ -803,11 +1208,19 @@ template<> EIGEN_STRONG_INLINE double predux<Packet4d>(const Packet4d& a)
|
||||
{
|
||||
return predux(Packet2d(_mm_add_pd(_mm256_castpd256_pd128(a),_mm256_extractf128_pd(a,1))));
|
||||
}
|
||||
template<> EIGEN_STRONG_INLINE int predux<Packet8i>(const Packet8i& a)
|
||||
{
|
||||
return predux(Packet4i(_mm_add_epi32(_mm256_castsi256_si128(a),_mm256_extractf128_si256(a,1))));
|
||||
}
|
||||
|
||||
template<> EIGEN_STRONG_INLINE Packet4f predux_half_dowto4<Packet8f>(const Packet8f& a)
|
||||
{
|
||||
return _mm_add_ps(_mm256_castps256_ps128(a),_mm256_extractf128_ps(a,1));
|
||||
}
|
||||
template<> EIGEN_STRONG_INLINE Packet4i predux_half_dowto4<Packet8i>(const Packet8i& a)
|
||||
{
|
||||
return _mm_add_epi32(_mm256_castsi256_si128(a),_mm256_extractf128_si256(a,1));
|
||||
}
|
||||
|
||||
template<> EIGEN_STRONG_INLINE float predux_mul<Packet8f>(const Packet8f& a)
|
||||
{
|
||||
@@ -856,7 +1269,12 @@ template<> EIGEN_STRONG_INLINE double predux_max<Packet4d>(const Packet4d& a)
|
||||
|
||||
template<> EIGEN_STRONG_INLINE bool predux_any(const Packet8f& x)
|
||||
{
|
||||
return _mm256_movemask_ps(x)!=0;
|
||||
return _mm256_movemask_ps(x) != 0;
|
||||
}
|
||||
|
||||
template<> EIGEN_STRONG_INLINE bool predux_any(const Packet8i& x)
|
||||
{
|
||||
return _mm256_movemask_ps(_mm256_castsi256_ps(x)) != 0;
|
||||
}
|
||||
|
||||
EIGEN_DEVICE_FUNC inline void
|
||||
@@ -905,6 +1323,66 @@ ptranspose(PacketBlock<Packet8f,4>& kernel) {
|
||||
kernel.packet[3] = _mm256_permute2f128_ps(S2, S3, 0x31);
|
||||
}
|
||||
|
||||
#define MM256_SHUFFLE_EPI32(A, B, M) \
|
||||
_mm256_castps_si256(_mm256_shuffle_ps(_mm256_castsi256_ps(A), _mm256_castsi256_ps(B), M))
|
||||
|
||||
#ifndef EIGEN_VECTORIZE_AVX2
|
||||
#define MM256_UNPACKLO_EPI32(A, B) \
|
||||
_mm256_castps_si256(_mm256_unpacklo_ps(_mm256_castsi256_ps(A), _mm256_castsi256_ps(B)))
|
||||
#define MM256_UNPACKHI_EPI32(A, B) \
|
||||
_mm256_castps_si256(_mm256_unpackhi_ps(_mm256_castsi256_ps(A), _mm256_castsi256_ps(B)))
|
||||
#else
|
||||
#define MM256_UNPACKLO_EPI32(A, B) _mm256_unpacklo_epi32(A, B)
|
||||
#define MM256_UNPACKHI_EPI32(A, B) _mm256_unpackhi_epi32(A, B)
|
||||
#endif
|
||||
|
||||
|
||||
EIGEN_DEVICE_FUNC inline void
|
||||
ptranspose(PacketBlock<Packet8i,8>& kernel) {
|
||||
__m256i T0 = MM256_UNPACKLO_EPI32(kernel.packet[0], kernel.packet[1]);
|
||||
__m256i T1 = MM256_UNPACKHI_EPI32(kernel.packet[0], kernel.packet[1]);
|
||||
__m256i T2 = MM256_UNPACKLO_EPI32(kernel.packet[2], kernel.packet[3]);
|
||||
__m256i T3 = MM256_UNPACKHI_EPI32(kernel.packet[2], kernel.packet[3]);
|
||||
__m256i T4 = MM256_UNPACKLO_EPI32(kernel.packet[4], kernel.packet[5]);
|
||||
__m256i T5 = MM256_UNPACKHI_EPI32(kernel.packet[4], kernel.packet[5]);
|
||||
__m256i T6 = MM256_UNPACKLO_EPI32(kernel.packet[6], kernel.packet[7]);
|
||||
__m256i T7 = MM256_UNPACKHI_EPI32(kernel.packet[6], kernel.packet[7]);
|
||||
__m256i S0 = MM256_SHUFFLE_EPI32(T0,T2,_MM_SHUFFLE(1,0,1,0));
|
||||
__m256i S1 = MM256_SHUFFLE_EPI32(T0,T2,_MM_SHUFFLE(3,2,3,2));
|
||||
__m256i S2 = MM256_SHUFFLE_EPI32(T1,T3,_MM_SHUFFLE(1,0,1,0));
|
||||
__m256i S3 = MM256_SHUFFLE_EPI32(T1,T3,_MM_SHUFFLE(3,2,3,2));
|
||||
__m256i S4 = MM256_SHUFFLE_EPI32(T4,T6,_MM_SHUFFLE(1,0,1,0));
|
||||
__m256i S5 = MM256_SHUFFLE_EPI32(T4,T6,_MM_SHUFFLE(3,2,3,2));
|
||||
__m256i S6 = MM256_SHUFFLE_EPI32(T5,T7,_MM_SHUFFLE(1,0,1,0));
|
||||
__m256i S7 = MM256_SHUFFLE_EPI32(T5,T7,_MM_SHUFFLE(3,2,3,2));
|
||||
kernel.packet[0] = _mm256_permute2f128_si256(S0, S4, 0x20);
|
||||
kernel.packet[1] = _mm256_permute2f128_si256(S1, S5, 0x20);
|
||||
kernel.packet[2] = _mm256_permute2f128_si256(S2, S6, 0x20);
|
||||
kernel.packet[3] = _mm256_permute2f128_si256(S3, S7, 0x20);
|
||||
kernel.packet[4] = _mm256_permute2f128_si256(S0, S4, 0x31);
|
||||
kernel.packet[5] = _mm256_permute2f128_si256(S1, S5, 0x31);
|
||||
kernel.packet[6] = _mm256_permute2f128_si256(S2, S6, 0x31);
|
||||
kernel.packet[7] = _mm256_permute2f128_si256(S3, S7, 0x31);
|
||||
}
|
||||
|
||||
EIGEN_DEVICE_FUNC inline void
|
||||
ptranspose(PacketBlock<Packet8i,4>& kernel) {
|
||||
__m256i T0 = MM256_UNPACKLO_EPI32(kernel.packet[0], kernel.packet[1]);
|
||||
__m256i T1 = MM256_UNPACKHI_EPI32(kernel.packet[0], kernel.packet[1]);
|
||||
__m256i T2 = MM256_UNPACKLO_EPI32(kernel.packet[2], kernel.packet[3]);
|
||||
__m256i T3 = MM256_UNPACKHI_EPI32(kernel.packet[2], kernel.packet[3]);
|
||||
|
||||
__m256i S0 = MM256_SHUFFLE_EPI32(T0,T2,_MM_SHUFFLE(1,0,1,0));
|
||||
__m256i S1 = MM256_SHUFFLE_EPI32(T0,T2,_MM_SHUFFLE(3,2,3,2));
|
||||
__m256i S2 = MM256_SHUFFLE_EPI32(T1,T3,_MM_SHUFFLE(1,0,1,0));
|
||||
__m256i S3 = MM256_SHUFFLE_EPI32(T1,T3,_MM_SHUFFLE(3,2,3,2));
|
||||
|
||||
kernel.packet[0] = _mm256_permute2f128_si256(S0, S1, 0x20);
|
||||
kernel.packet[1] = _mm256_permute2f128_si256(S2, S3, 0x20);
|
||||
kernel.packet[2] = _mm256_permute2f128_si256(S0, S1, 0x31);
|
||||
kernel.packet[3] = _mm256_permute2f128_si256(S2, S3, 0x31);
|
||||
}
|
||||
|
||||
EIGEN_DEVICE_FUNC inline void
|
||||
ptranspose(PacketBlock<Packet4d,4>& kernel) {
|
||||
__m256d T0 = _mm256_shuffle_pd(kernel.packet[0], kernel.packet[1], 15);
|
||||
@@ -919,21 +1397,37 @@ ptranspose(PacketBlock<Packet4d,4>& kernel) {
|
||||
}
|
||||
|
||||
template<> EIGEN_STRONG_INLINE Packet8f pblend(const Selector<8>& ifPacket, const Packet8f& thenPacket, const Packet8f& elsePacket) {
|
||||
#ifdef EIGEN_VECTORIZE_AVX2
|
||||
const __m256i zero = _mm256_setzero_si256();
|
||||
const __m256i select = _mm256_set_epi32(ifPacket.select[7], ifPacket.select[6], ifPacket.select[5], ifPacket.select[4], ifPacket.select[3], ifPacket.select[2], ifPacket.select[1], ifPacket.select[0]);
|
||||
__m256i false_mask = _mm256_cmpeq_epi32(zero, select);
|
||||
return _mm256_blendv_ps(thenPacket, elsePacket, _mm256_castsi256_ps(false_mask));
|
||||
#else
|
||||
const __m256 zero = _mm256_setzero_ps();
|
||||
const __m256 select = _mm256_set_ps(ifPacket.select[7], ifPacket.select[6], ifPacket.select[5], ifPacket.select[4], ifPacket.select[3], ifPacket.select[2], ifPacket.select[1], ifPacket.select[0]);
|
||||
__m256 false_mask = _mm256_cmp_ps(select, zero, _CMP_EQ_UQ);
|
||||
return _mm256_blendv_ps(thenPacket, elsePacket, false_mask);
|
||||
#endif
|
||||
}
|
||||
|
||||
template<> EIGEN_STRONG_INLINE Packet4d pblend(const Selector<4>& ifPacket, const Packet4d& thenPacket, const Packet4d& elsePacket) {
|
||||
#ifdef EIGEN_VECTORIZE_AVX2
|
||||
const __m256i zero = _mm256_setzero_si256();
|
||||
const __m256i select = _mm256_set_epi64x(ifPacket.select[3], ifPacket.select[2], ifPacket.select[1], ifPacket.select[0]);
|
||||
__m256i false_mask = _mm256_cmpeq_epi64(select, zero);
|
||||
return _mm256_blendv_pd(thenPacket, elsePacket, _mm256_castsi256_pd(false_mask));
|
||||
#else
|
||||
const __m256d zero = _mm256_setzero_pd();
|
||||
const __m256d select = _mm256_set_pd(ifPacket.select[3], ifPacket.select[2], ifPacket.select[1], ifPacket.select[0]);
|
||||
__m256d false_mask = _mm256_cmp_pd(select, zero, _CMP_EQ_UQ);
|
||||
return _mm256_blendv_pd(thenPacket, elsePacket, false_mask);
|
||||
#endif
|
||||
}
|
||||
|
||||
// Packet math for Eigen::half
|
||||
|
||||
#ifndef EIGEN_VECTORIZE_AVX512FP16
|
||||
template<> struct unpacket_traits<Packet8h> { typedef Eigen::half type; enum {size=8, alignment=Aligned16, vectorizable=true, masked_load_available=false, masked_store_available=false}; typedef Packet8h half; };
|
||||
#endif
|
||||
|
||||
template<> EIGEN_STRONG_INLINE Packet8h pset1<Packet8h>(const Eigen::half& from) {
|
||||
return _mm_set1_epi16(numext::bit_cast<numext::uint16_t>(from));
|
||||
@@ -989,18 +1483,9 @@ EIGEN_STRONG_INLINE Packet8f half2float(const Packet8h& a) {
|
||||
#ifdef EIGEN_HAS_FP16_C
|
||||
return _mm256_cvtph_ps(a);
|
||||
#else
|
||||
EIGEN_ALIGN32 Eigen::half aux[8];
|
||||
pstore(aux, a);
|
||||
float f0(aux[0]);
|
||||
float f1(aux[1]);
|
||||
float f2(aux[2]);
|
||||
float f3(aux[3]);
|
||||
float f4(aux[4]);
|
||||
float f5(aux[5]);
|
||||
float f6(aux[6]);
|
||||
float f7(aux[7]);
|
||||
|
||||
return _mm256_set_ps(f7, f6, f5, f4, f3, f2, f1, f0);
|
||||
Eigen::internal::Packet8f pp = _mm256_castsi256_ps(_mm256_insertf128_si256(
|
||||
_mm256_castsi128_si256(half2floatsse(a)), half2floatsse(_mm_srli_si128(a, 8)), 1));
|
||||
return pp;
|
||||
#endif
|
||||
}
|
||||
|
||||
@@ -1008,17 +1493,9 @@ EIGEN_STRONG_INLINE Packet8h float2half(const Packet8f& a) {
|
||||
#ifdef EIGEN_HAS_FP16_C
|
||||
return _mm256_cvtps_ph(a, _MM_FROUND_TO_NEAREST_INT|_MM_FROUND_NO_EXC);
|
||||
#else
|
||||
EIGEN_ALIGN32 float aux[8];
|
||||
pstore(aux, a);
|
||||
const numext::uint16_t s0 = numext::bit_cast<numext::uint16_t>(Eigen::half(aux[0]));
|
||||
const numext::uint16_t s1 = numext::bit_cast<numext::uint16_t>(Eigen::half(aux[1]));
|
||||
const numext::uint16_t s2 = numext::bit_cast<numext::uint16_t>(Eigen::half(aux[2]));
|
||||
const numext::uint16_t s3 = numext::bit_cast<numext::uint16_t>(Eigen::half(aux[3]));
|
||||
const numext::uint16_t s4 = numext::bit_cast<numext::uint16_t>(Eigen::half(aux[4]));
|
||||
const numext::uint16_t s5 = numext::bit_cast<numext::uint16_t>(Eigen::half(aux[5]));
|
||||
const numext::uint16_t s6 = numext::bit_cast<numext::uint16_t>(Eigen::half(aux[6]));
|
||||
const numext::uint16_t s7 = numext::bit_cast<numext::uint16_t>(Eigen::half(aux[7]));
|
||||
return _mm_set_epi16(s7, s6, s5, s4, s3, s2, s1, s0);
|
||||
__m128i lo = float2half(_mm256_extractf128_ps(a, 0));
|
||||
__m128i hi = float2half(_mm256_extractf128_ps(a, 1));
|
||||
return _mm_packus_epi32(lo, hi);
|
||||
#endif
|
||||
}
|
||||
|
||||
@@ -1097,6 +1574,7 @@ template<> EIGEN_STRONG_INLINE Packet8h pnegate(const Packet8h& a) {
|
||||
return _mm_xor_si128(a, sign_mask);
|
||||
}
|
||||
|
||||
#ifndef EIGEN_VECTORIZE_AVX512FP16
|
||||
template<> EIGEN_STRONG_INLINE Packet8h padd<Packet8h>(const Packet8h& a, const Packet8h& b) {
|
||||
Packet8f af = half2float(a);
|
||||
Packet8f bf = half2float(b);
|
||||
@@ -1124,6 +1602,7 @@ template<> EIGEN_STRONG_INLINE Packet8h pdiv<Packet8h>(const Packet8h& a, const
|
||||
Packet8f rf = pdiv(af, bf);
|
||||
return float2half(rf);
|
||||
}
|
||||
#endif
|
||||
|
||||
template<> EIGEN_STRONG_INLINE Packet8h pgather<Eigen::half, Packet8h>(const Eigen::half* from, Index stride)
|
||||
{
|
||||
@@ -1152,11 +1631,14 @@ template<> EIGEN_STRONG_INLINE void pscatter<Eigen::half, Packet8h>(Eigen::half*
|
||||
to[stride*7] = aux[7];
|
||||
}
|
||||
|
||||
|
||||
#ifndef EIGEN_VECTORIZE_AVX512FP16
|
||||
template<> EIGEN_STRONG_INLINE Eigen::half predux<Packet8h>(const Packet8h& a) {
|
||||
Packet8f af = half2float(a);
|
||||
float reduced = predux<Packet8f>(af);
|
||||
return Eigen::half(reduced);
|
||||
}
|
||||
#endif
|
||||
|
||||
template<> EIGEN_STRONG_INLINE Eigen::half predux_max<Packet8h>(const Packet8h& a) {
|
||||
Packet8f af = half2float(a);
|
||||
@@ -1272,7 +1754,6 @@ EIGEN_STRONG_INLINE Packet8f Bf16ToF32(const Packet8bf& a) {
|
||||
|
||||
// Convert float to bfloat16 according to round-to-nearest-even/denormals algorithm.
|
||||
EIGEN_STRONG_INLINE Packet8bf F32ToBf16(const Packet8f& a) {
|
||||
Packet8bf r;
|
||||
|
||||
__m256i input = _mm256_castps_si256(a);
|
||||
|
||||
|
||||
@@ -10,6 +10,8 @@
|
||||
#ifndef EIGEN_TYPE_CASTING_AVX_H
|
||||
#define EIGEN_TYPE_CASTING_AVX_H
|
||||
|
||||
#include "../../InternalHeaderCheck.h"
|
||||
|
||||
namespace Eigen {
|
||||
|
||||
namespace internal {
|
||||
|
||||
@@ -10,6 +10,8 @@
|
||||
#ifndef EIGEN_COMPLEX_AVX512_H
|
||||
#define EIGEN_COMPLEX_AVX512_H
|
||||
|
||||
#include "../../InternalHeaderCheck.h"
|
||||
|
||||
namespace Eigen {
|
||||
|
||||
namespace internal {
|
||||
@@ -97,7 +99,9 @@ template<> EIGEN_STRONG_INLINE Packet8cf ploadu<Packet8cf>(const std::complex<fl
|
||||
|
||||
template<> EIGEN_STRONG_INLINE Packet8cf pset1<Packet8cf>(const std::complex<float>& from)
|
||||
{
|
||||
return Packet8cf(_mm512_castpd_ps(pload1<Packet8d>((const double*)(const void*)&from)));
|
||||
const float re = std::real(from);
|
||||
const float im = std::imag(from);
|
||||
return Packet8cf(_mm512_set_ps(im, re, im, re, im, re, im, re, im, re, im, re, im, re, im, re));
|
||||
}
|
||||
|
||||
template<> EIGEN_STRONG_INLINE Packet8cf ploaddup<Packet8cf>(const std::complex<float>* from)
|
||||
@@ -157,11 +161,7 @@ EIGEN_MAKE_CONJ_HELPER_CPLX_REAL(Packet8cf,Packet16f)
|
||||
|
||||
template<> EIGEN_STRONG_INLINE Packet8cf pdiv<Packet8cf>(const Packet8cf& a, const Packet8cf& b)
|
||||
{
|
||||
Packet8cf num = pmul(a, pconj(b));
|
||||
__m512 tmp = _mm512_mul_ps(b.v, b.v);
|
||||
__m512 tmp2 = _mm512_shuffle_ps(tmp,tmp,0xB1);
|
||||
__m512 denom = _mm512_add_ps(tmp, tmp2);
|
||||
return Packet8cf(_mm512_div_ps(num.v, denom));
|
||||
return pdiv_complex(a, b);
|
||||
}
|
||||
|
||||
template<> EIGEN_STRONG_INLINE Packet8cf pcplxflip<Packet8cf>(const Packet8cf& x)
|
||||
@@ -253,11 +253,7 @@ template<> EIGEN_STRONG_INLINE Packet4cd ploadu<Packet4cd>(const std::complex<do
|
||||
|
||||
template<> EIGEN_STRONG_INLINE Packet4cd pset1<Packet4cd>(const std::complex<double>& from)
|
||||
{
|
||||
#ifdef EIGEN_VECTORIZE_AVX512DQ
|
||||
return Packet4cd(_mm512_broadcast_f64x2(pset1<Packet1cd>(from).v));
|
||||
#else
|
||||
return Packet4cd(_mm512_castps_pd(_mm512_broadcast_f32x4( _mm_castpd_ps(pset1<Packet1cd>(from).v))));
|
||||
#endif
|
||||
}
|
||||
|
||||
template<> EIGEN_STRONG_INLINE Packet4cd ploaddup<Packet4cd>(const std::complex<double>* from) {
|
||||
@@ -309,47 +305,11 @@ template<> EIGEN_STRONG_INLINE std::complex<double> predux_mul<Packet4cd>(const
|
||||
Packet2cd(_mm512_extractf64x4_pd(a.v,1))));
|
||||
}
|
||||
|
||||
template<> struct conj_helper<Packet4cd, Packet4cd, false,true>
|
||||
{
|
||||
EIGEN_STRONG_INLINE Packet4cd pmadd(const Packet4cd& x, const Packet4cd& y, const Packet4cd& c) const
|
||||
{ return padd(pmul(x,y),c); }
|
||||
|
||||
EIGEN_STRONG_INLINE Packet4cd pmul(const Packet4cd& a, const Packet4cd& b) const
|
||||
{
|
||||
return internal::pmul(a, pconj(b));
|
||||
}
|
||||
};
|
||||
|
||||
template<> struct conj_helper<Packet4cd, Packet4cd, true,false>
|
||||
{
|
||||
EIGEN_STRONG_INLINE Packet4cd pmadd(const Packet4cd& x, const Packet4cd& y, const Packet4cd& c) const
|
||||
{ return padd(pmul(x,y),c); }
|
||||
|
||||
EIGEN_STRONG_INLINE Packet4cd pmul(const Packet4cd& a, const Packet4cd& b) const
|
||||
{
|
||||
return internal::pmul(pconj(a), b);
|
||||
}
|
||||
};
|
||||
|
||||
template<> struct conj_helper<Packet4cd, Packet4cd, true,true>
|
||||
{
|
||||
EIGEN_STRONG_INLINE Packet4cd pmadd(const Packet4cd& x, const Packet4cd& y, const Packet4cd& c) const
|
||||
{ return padd(pmul(x,y),c); }
|
||||
|
||||
EIGEN_STRONG_INLINE Packet4cd pmul(const Packet4cd& a, const Packet4cd& b) const
|
||||
{
|
||||
return pconj(internal::pmul(a, b));
|
||||
}
|
||||
};
|
||||
|
||||
EIGEN_MAKE_CONJ_HELPER_CPLX_REAL(Packet4cd,Packet8d)
|
||||
|
||||
template<> EIGEN_STRONG_INLINE Packet4cd pdiv<Packet4cd>(const Packet4cd& a, const Packet4cd& b)
|
||||
{
|
||||
Packet4cd num = pmul(a, pconj(b));
|
||||
__m512d tmp = _mm512_mul_pd(b.v, b.v);
|
||||
__m512d denom = padd(_mm512_permute_pd(tmp,0x55), tmp);
|
||||
return Packet4cd(_mm512_div_pd(num.v, denom));
|
||||
return pdiv_complex(a, b);
|
||||
}
|
||||
|
||||
template<> EIGEN_STRONG_INLINE Packet4cd pcplxflip<Packet4cd>(const Packet4cd& x)
|
||||
|
||||
1235
libs/eigen/Eigen/src/Core/arch/AVX512/GemmKernel.h
Normal file
1235
libs/eigen/Eigen/src/Core/arch/AVX512/GemmKernel.h
Normal file
File diff suppressed because it is too large
Load Diff
@@ -10,39 +10,40 @@
|
||||
#ifndef THIRD_PARTY_EIGEN3_EIGEN_SRC_CORE_ARCH_AVX512_MATHFUNCTIONS_H_
|
||||
#define THIRD_PARTY_EIGEN3_EIGEN_SRC_CORE_ARCH_AVX512_MATHFUNCTIONS_H_
|
||||
|
||||
#include "../../InternalHeaderCheck.h"
|
||||
|
||||
namespace Eigen {
|
||||
|
||||
namespace internal {
|
||||
|
||||
// Disable the code for older versions of gcc that don't support many of the required avx512 instrinsics.
|
||||
#if EIGEN_GNUC_AT_LEAST(5, 3) || EIGEN_COMP_CLANG || EIGEN_COMP_MSVC >= 1923
|
||||
#if EIGEN_HAS_AVX512_MATH
|
||||
|
||||
#define _EIGEN_DECLARE_CONST_Packet16f(NAME, X) \
|
||||
#define EIGEN_DECLARE_CONST_Packet16f(NAME, X) \
|
||||
const Packet16f p16f_##NAME = pset1<Packet16f>(X)
|
||||
|
||||
#define _EIGEN_DECLARE_CONST_Packet16f_FROM_INT(NAME, X) \
|
||||
#define EIGEN_DECLARE_CONST_Packet16f_FROM_INT(NAME, X) \
|
||||
const Packet16f p16f_##NAME = preinterpret<Packet16f,Packet16i>(pset1<Packet16i>(X))
|
||||
|
||||
#define _EIGEN_DECLARE_CONST_Packet8d(NAME, X) \
|
||||
#define EIGEN_DECLARE_CONST_Packet8d(NAME, X) \
|
||||
const Packet8d p8d_##NAME = pset1<Packet8d>(X)
|
||||
|
||||
#define _EIGEN_DECLARE_CONST_Packet8d_FROM_INT64(NAME, X) \
|
||||
#define EIGEN_DECLARE_CONST_Packet8d_FROM_INT64(NAME, X) \
|
||||
const Packet8d p8d_##NAME = _mm512_castsi512_pd(_mm512_set1_epi64(X))
|
||||
|
||||
#define _EIGEN_DECLARE_CONST_Packet16bf(NAME, X) \
|
||||
#define EIGEN_DECLARE_CONST_Packet16bf(NAME, X) \
|
||||
const Packet16bf p16bf_##NAME = pset1<Packet16bf>(X)
|
||||
|
||||
#define _EIGEN_DECLARE_CONST_Packet16bf_FROM_INT(NAME, X) \
|
||||
#define EIGEN_DECLARE_CONST_Packet16bf_FROM_INT(NAME, X) \
|
||||
const Packet16bf p16bf_##NAME = preinterpret<Packet16bf,Packet16i>(pset1<Packet16i>(X))
|
||||
|
||||
template <>
|
||||
EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED Packet16f
|
||||
EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS Packet16f
|
||||
plog<Packet16f>(const Packet16f& _x) {
|
||||
return plog_float(_x);
|
||||
}
|
||||
|
||||
template <>
|
||||
EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED Packet8d
|
||||
EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS Packet8d
|
||||
plog<Packet8d>(const Packet8d& _x) {
|
||||
return plog_double(_x);
|
||||
}
|
||||
@@ -51,13 +52,13 @@ F16_PACKET_FUNCTION(Packet16f, Packet16h, plog)
|
||||
BF16_PACKET_FUNCTION(Packet16f, Packet16bf, plog)
|
||||
|
||||
template <>
|
||||
EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED Packet16f
|
||||
EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS Packet16f
|
||||
plog2<Packet16f>(const Packet16f& _x) {
|
||||
return plog2_float(_x);
|
||||
}
|
||||
|
||||
template <>
|
||||
EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED Packet8d
|
||||
EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS Packet8d
|
||||
plog2<Packet8d>(const Packet8d& _x) {
|
||||
return plog2_double(_x);
|
||||
}
|
||||
@@ -69,23 +70,23 @@ BF16_PACKET_FUNCTION(Packet16f, Packet16bf, plog2)
|
||||
// "m = floor(x/log(2)+1/2)" and "r" is the remainder. The result is then
|
||||
// "exp(x) = 2^m*exp(r)" where exp(r) is in the range [-1,1).
|
||||
template <>
|
||||
EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED Packet16f
|
||||
EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS Packet16f
|
||||
pexp<Packet16f>(const Packet16f& _x) {
|
||||
_EIGEN_DECLARE_CONST_Packet16f(1, 1.0f);
|
||||
_EIGEN_DECLARE_CONST_Packet16f(half, 0.5f);
|
||||
_EIGEN_DECLARE_CONST_Packet16f(127, 127.0f);
|
||||
EIGEN_DECLARE_CONST_Packet16f(1, 1.0f);
|
||||
EIGEN_DECLARE_CONST_Packet16f(half, 0.5f);
|
||||
EIGEN_DECLARE_CONST_Packet16f(127, 127.0f);
|
||||
|
||||
_EIGEN_DECLARE_CONST_Packet16f(exp_hi, 88.3762626647950f);
|
||||
_EIGEN_DECLARE_CONST_Packet16f(exp_lo, -88.3762626647949f);
|
||||
EIGEN_DECLARE_CONST_Packet16f(exp_hi, 88.3762626647950f);
|
||||
EIGEN_DECLARE_CONST_Packet16f(exp_lo, -88.3762626647949f);
|
||||
|
||||
_EIGEN_DECLARE_CONST_Packet16f(cephes_LOG2EF, 1.44269504088896341f);
|
||||
EIGEN_DECLARE_CONST_Packet16f(cephes_LOG2EF, 1.44269504088896341f);
|
||||
|
||||
_EIGEN_DECLARE_CONST_Packet16f(cephes_exp_p0, 1.9875691500E-4f);
|
||||
_EIGEN_DECLARE_CONST_Packet16f(cephes_exp_p1, 1.3981999507E-3f);
|
||||
_EIGEN_DECLARE_CONST_Packet16f(cephes_exp_p2, 8.3334519073E-3f);
|
||||
_EIGEN_DECLARE_CONST_Packet16f(cephes_exp_p3, 4.1665795894E-2f);
|
||||
_EIGEN_DECLARE_CONST_Packet16f(cephes_exp_p4, 1.6666665459E-1f);
|
||||
_EIGEN_DECLARE_CONST_Packet16f(cephes_exp_p5, 5.0000001201E-1f);
|
||||
EIGEN_DECLARE_CONST_Packet16f(cephes_exp_p0, 1.9875691500E-4f);
|
||||
EIGEN_DECLARE_CONST_Packet16f(cephes_exp_p1, 1.3981999507E-3f);
|
||||
EIGEN_DECLARE_CONST_Packet16f(cephes_exp_p2, 8.3334519073E-3f);
|
||||
EIGEN_DECLARE_CONST_Packet16f(cephes_exp_p3, 4.1665795894E-2f);
|
||||
EIGEN_DECLARE_CONST_Packet16f(cephes_exp_p4, 1.6666665459E-1f);
|
||||
EIGEN_DECLARE_CONST_Packet16f(cephes_exp_p5, 5.0000001201E-1f);
|
||||
|
||||
// Clamp x.
|
||||
Packet16f x = pmax(pmin(_x, p16f_exp_hi), p16f_exp_lo);
|
||||
@@ -96,7 +97,7 @@ pexp<Packet16f>(const Packet16f& _x) {
|
||||
|
||||
// Get r = x - m*ln(2). Note that we can do this without losing more than one
|
||||
// ulp precision due to the FMA instruction.
|
||||
_EIGEN_DECLARE_CONST_Packet16f(nln2, -0.6931471805599453f);
|
||||
EIGEN_DECLARE_CONST_Packet16f(nln2, -0.6931471805599453f);
|
||||
Packet16f r = _mm512_fmadd_ps(m, p16f_nln2, x);
|
||||
Packet16f r2 = pmul(r, r);
|
||||
Packet16f r3 = pmul(r2, r);
|
||||
@@ -120,7 +121,7 @@ pexp<Packet16f>(const Packet16f& _x) {
|
||||
}
|
||||
|
||||
template <>
|
||||
EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED Packet8d
|
||||
EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS Packet8d
|
||||
pexp<Packet8d>(const Packet8d& _x) {
|
||||
return pexp_double(_x);
|
||||
}
|
||||
@@ -154,49 +155,18 @@ EIGEN_STRONG_INLINE Packet16bf pldexp(const Packet16bf& a, const Packet16bf& exp
|
||||
return F32ToBf16(pldexp<Packet16f>(Bf16ToF32(a), Bf16ToF32(exponent)));
|
||||
}
|
||||
|
||||
// Functions for sqrt.
|
||||
// The EIGEN_FAST_MATH version uses the _mm_rsqrt_ps approximation and one step
|
||||
// of Newton's method, at a cost of 1-2 bits of precision as opposed to the
|
||||
// exact solution. The main advantage of this approach is not just speed, but
|
||||
// also the fact that it can be inlined and pipelined with other computations,
|
||||
// further reducing its effective latency.
|
||||
#if EIGEN_FAST_MATH
|
||||
template <>
|
||||
EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED Packet16f
|
||||
EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS Packet16f
|
||||
psqrt<Packet16f>(const Packet16f& _x) {
|
||||
Packet16f neg_half = pmul(_x, pset1<Packet16f>(-.5f));
|
||||
__mmask16 denormal_mask = _mm512_kand(
|
||||
_mm512_cmp_ps_mask(_x, pset1<Packet16f>((std::numeric_limits<float>::min)()),
|
||||
_CMP_LT_OQ),
|
||||
_mm512_cmp_ps_mask(_x, _mm512_setzero_ps(), _CMP_GE_OQ));
|
||||
|
||||
Packet16f x = _mm512_rsqrt14_ps(_x);
|
||||
|
||||
// Do a single step of Newton's iteration.
|
||||
x = pmul(x, pmadd(neg_half, pmul(x, x), pset1<Packet16f>(1.5f)));
|
||||
|
||||
// Flush results for denormals to zero.
|
||||
return _mm512_mask_blend_ps(denormal_mask, pmul(_x,x), _mm512_setzero_ps());
|
||||
return generic_sqrt_newton_step<Packet16f>::run(_x, _mm512_rsqrt14_ps(_x));
|
||||
}
|
||||
|
||||
template <>
|
||||
EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED Packet8d
|
||||
EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS Packet8d
|
||||
psqrt<Packet8d>(const Packet8d& _x) {
|
||||
Packet8d neg_half = pmul(_x, pset1<Packet8d>(-.5));
|
||||
__mmask16 denormal_mask = _mm512_kand(
|
||||
_mm512_cmp_pd_mask(_x, pset1<Packet8d>((std::numeric_limits<double>::min)()),
|
||||
_CMP_LT_OQ),
|
||||
_mm512_cmp_pd_mask(_x, _mm512_setzero_pd(), _CMP_GE_OQ));
|
||||
|
||||
Packet8d x = _mm512_rsqrt14_pd(_x);
|
||||
|
||||
// Do a single step of Newton's iteration.
|
||||
x = pmul(x, pmadd(neg_half, pmul(x, x), pset1<Packet8d>(1.5)));
|
||||
|
||||
// Do a second step of Newton's iteration.
|
||||
x = pmul(x, pmadd(neg_half, pmul(x, x), pset1<Packet8d>(1.5)));
|
||||
|
||||
return _mm512_mask_blend_pd(denormal_mask, pmul(_x,x), _mm512_setzero_pd());
|
||||
// Double requires 2 Newton-Raphson steps for convergence.
|
||||
return generic_sqrt_newton_step<Packet8d, /*Steps=*/2>::run(_x, _mm512_rsqrt14_pd(_x));
|
||||
}
|
||||
#else
|
||||
template <>
|
||||
@@ -223,40 +193,9 @@ EIGEN_STRONG_INLINE Packet16f prsqrt<Packet16f>(const Packet16f& x) {
|
||||
#elif EIGEN_FAST_MATH
|
||||
|
||||
template <>
|
||||
EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED Packet16f
|
||||
EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS Packet16f
|
||||
prsqrt<Packet16f>(const Packet16f& _x) {
|
||||
_EIGEN_DECLARE_CONST_Packet16f_FROM_INT(inf, 0x7f800000);
|
||||
_EIGEN_DECLARE_CONST_Packet16f(one_point_five, 1.5f);
|
||||
_EIGEN_DECLARE_CONST_Packet16f(minus_half, -0.5f);
|
||||
|
||||
Packet16f neg_half = pmul(_x, p16f_minus_half);
|
||||
|
||||
// Identity infinite, negative and denormal arguments.
|
||||
__mmask16 inf_mask = _mm512_cmp_ps_mask(_x, p16f_inf, _CMP_EQ_OQ);
|
||||
__mmask16 not_pos_mask = _mm512_cmp_ps_mask(_x, _mm512_setzero_ps(), _CMP_LE_OQ);
|
||||
__mmask16 not_finite_pos_mask = not_pos_mask | inf_mask;
|
||||
|
||||
// Compute an approximate result using the rsqrt intrinsic, forcing +inf
|
||||
// for denormals for consistency with AVX and SSE implementations.
|
||||
Packet16f y_approx = _mm512_rsqrt14_ps(_x);
|
||||
|
||||
// Do a single step of Newton-Raphson iteration to improve the approximation.
|
||||
// This uses the formula y_{n+1} = y_n * (1.5 - y_n * (0.5 * x) * y_n).
|
||||
// It is essential to evaluate the inner term like this because forming
|
||||
// y_n^2 may over- or underflow.
|
||||
Packet16f y_newton = pmul(y_approx, pmadd(y_approx, pmul(neg_half, y_approx), p16f_one_point_five));
|
||||
|
||||
// Select the result of the Newton-Raphson step for positive finite arguments.
|
||||
// For other arguments, choose the output of the intrinsic. This will
|
||||
// return rsqrt(+inf) = 0, rsqrt(x) = NaN if x < 0, and rsqrt(0) = +inf.
|
||||
return _mm512_mask_blend_ps(not_finite_pos_mask, y_newton, y_approx);
|
||||
}
|
||||
#else
|
||||
|
||||
template <>
|
||||
EIGEN_STRONG_INLINE Packet16f prsqrt<Packet16f>(const Packet16f& x) {
|
||||
_EIGEN_DECLARE_CONST_Packet16f(one, 1.0f);
|
||||
return _mm512_div_ps(p16f_one, _mm512_sqrt_ps(x));
|
||||
return generic_rsqrt_newton_step<Packet16f, /*Steps=*/1>::run(_x, _mm512_rsqrt14_ps(_x));
|
||||
}
|
||||
#endif
|
||||
|
||||
@@ -266,51 +205,28 @@ BF16_PACKET_FUNCTION(Packet16f, Packet16bf, prsqrt)
|
||||
// prsqrt for double.
|
||||
#if EIGEN_FAST_MATH
|
||||
template <>
|
||||
EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED Packet8d
|
||||
EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS Packet8d
|
||||
prsqrt<Packet8d>(const Packet8d& _x) {
|
||||
_EIGEN_DECLARE_CONST_Packet8d(one_point_five, 1.5);
|
||||
_EIGEN_DECLARE_CONST_Packet8d(minus_half, -0.5);
|
||||
_EIGEN_DECLARE_CONST_Packet8d_FROM_INT64(inf, 0x7ff0000000000000LL);
|
||||
|
||||
Packet8d neg_half = pmul(_x, p8d_minus_half);
|
||||
|
||||
// Identity infinite, negative and denormal arguments.
|
||||
__mmask8 inf_mask = _mm512_cmp_pd_mask(_x, p8d_inf, _CMP_EQ_OQ);
|
||||
__mmask8 not_pos_mask = _mm512_cmp_pd_mask(_x, _mm512_setzero_pd(), _CMP_LE_OQ);
|
||||
__mmask8 not_finite_pos_mask = not_pos_mask | inf_mask;
|
||||
|
||||
// Compute an approximate result using the rsqrt intrinsic, forcing +inf
|
||||
// for denormals for consistency with AVX and SSE implementations.
|
||||
#if defined(EIGEN_VECTORIZE_AVX512ER)
|
||||
Packet8d y_approx = _mm512_rsqrt28_pd(_x);
|
||||
#else
|
||||
Packet8d y_approx = _mm512_rsqrt14_pd(_x);
|
||||
#endif
|
||||
// Do one or two steps of Newton-Raphson's to improve the approximation, depending on the
|
||||
// starting accuracy (either 2^-14 or 2^-28, depending on whether AVX512ER is available).
|
||||
// The Newton-Raphson algorithm has quadratic convergence and roughly doubles the number
|
||||
// of correct digits for each step.
|
||||
// This uses the formula y_{n+1} = y_n * (1.5 - y_n * (0.5 * x) * y_n).
|
||||
// It is essential to evaluate the inner term like this because forming
|
||||
// y_n^2 may over- or underflow.
|
||||
Packet8d y_newton = pmul(y_approx, pmadd(neg_half, pmul(y_approx, y_approx), p8d_one_point_five));
|
||||
#if !defined(EIGEN_VECTORIZE_AVX512ER)
|
||||
y_newton = pmul(y_newton, pmadd(y_newton, pmul(neg_half, y_newton), p8d_one_point_five));
|
||||
#endif
|
||||
// Select the result of the Newton-Raphson step for positive finite arguments.
|
||||
// For other arguments, choose the output of the intrinsic. This will
|
||||
// return rsqrt(+inf) = 0, rsqrt(x) = NaN if x < 0, and rsqrt(0) = +inf.
|
||||
return _mm512_mask_blend_pd(not_finite_pos_mask, y_newton, y_approx);
|
||||
#ifdef EIGEN_VECTORIZE_AVX512ER
|
||||
return generic_rsqrt_newton_step<Packet8d, /*Steps=*/1>::run(_x, _mm512_rsqrt28_pd(_x));
|
||||
#else
|
||||
return generic_rsqrt_newton_step<Packet8d, /*Steps=*/2>::run(_x, _mm512_rsqrt14_pd(_x));
|
||||
#endif
|
||||
}
|
||||
|
||||
template<> EIGEN_STRONG_INLINE Packet16f preciprocal<Packet16f>(const Packet16f& a) {
|
||||
#ifdef EIGEN_VECTORIZE_AVX512ER
|
||||
return _mm512_rcp28_ps(a);
|
||||
#else
|
||||
template <>
|
||||
EIGEN_STRONG_INLINE Packet8d prsqrt<Packet8d>(const Packet8d& x) {
|
||||
_EIGEN_DECLARE_CONST_Packet8d(one, 1.0f);
|
||||
return _mm512_div_pd(p8d_one, _mm512_sqrt_pd(x));
|
||||
return generic_reciprocal_newton_step<Packet16f, /*Steps=*/1>::run(a, _mm512_rcp14_ps(a));
|
||||
#endif
|
||||
}
|
||||
|
||||
F16_PACKET_FUNCTION(Packet16f, Packet16h, preciprocal)
|
||||
BF16_PACKET_FUNCTION(Packet16f, Packet16bf, preciprocal)
|
||||
#endif
|
||||
|
||||
template<> EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED
|
||||
template<> EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS
|
||||
Packet16f plog1p<Packet16f>(const Packet16f& _x) {
|
||||
return generic_plog1p(_x);
|
||||
}
|
||||
@@ -318,7 +234,7 @@ Packet16f plog1p<Packet16f>(const Packet16f& _x) {
|
||||
F16_PACKET_FUNCTION(Packet16f, Packet16h, plog1p)
|
||||
BF16_PACKET_FUNCTION(Packet16f, Packet16bf, plog1p)
|
||||
|
||||
template<> EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED
|
||||
template<> EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS
|
||||
Packet16f pexpm1<Packet16f>(const Packet16f& _x) {
|
||||
return generic_expm1(_x);
|
||||
}
|
||||
@@ -326,23 +242,47 @@ Packet16f pexpm1<Packet16f>(const Packet16f& _x) {
|
||||
F16_PACKET_FUNCTION(Packet16f, Packet16h, pexpm1)
|
||||
BF16_PACKET_FUNCTION(Packet16f, Packet16bf, pexpm1)
|
||||
|
||||
#endif
|
||||
#endif // EIGEN_HAS_AVX512_MATH
|
||||
|
||||
|
||||
template <>
|
||||
EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED Packet16f
|
||||
EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS Packet16f
|
||||
psin<Packet16f>(const Packet16f& _x) {
|
||||
return psin_float(_x);
|
||||
}
|
||||
|
||||
template <>
|
||||
EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED Packet16f
|
||||
EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS Packet16f
|
||||
pcos<Packet16f>(const Packet16f& _x) {
|
||||
return pcos_float(_x);
|
||||
}
|
||||
|
||||
template <>
|
||||
EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED Packet16f
|
||||
EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS Packet16f
|
||||
pacos<Packet16f>(const Packet16f& _x) {
|
||||
return pacos_float(_x);
|
||||
}
|
||||
|
||||
template <>
|
||||
EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS Packet16f
|
||||
pasin<Packet16f>(const Packet16f& _x) {
|
||||
return pasin_float(_x);
|
||||
}
|
||||
|
||||
template <>
|
||||
EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS Packet16f
|
||||
patan<Packet16f>(const Packet16f& _x) {
|
||||
return patan_float(_x);
|
||||
}
|
||||
|
||||
template <>
|
||||
EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS Packet8d
|
||||
patan<Packet8d>(const Packet8d& _x) {
|
||||
return patan_double(_x);
|
||||
}
|
||||
|
||||
template <>
|
||||
EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS Packet16f
|
||||
ptanh<Packet16f>(const Packet16f& _x) {
|
||||
return internal::generic_fast_tanh_float(_x);
|
||||
}
|
||||
|
||||
File diff suppressed because it is too large
Load Diff
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user