ADD: new track message, Entity class and Position class
This commit is contained in:
326
libs/geographiclib/src/GeodesicLine.cpp
Normal file
326
libs/geographiclib/src/GeodesicLine.cpp
Normal file
@@ -0,0 +1,326 @@
|
||||
/**
|
||||
* \file GeodesicLine.cpp
|
||||
* \brief Implementation for GeographicLib::GeodesicLine class
|
||||
*
|
||||
* Copyright (c) Charles Karney (2009-2022) <charles@karney.com> and licensed
|
||||
* under the MIT/X11 License. For more information, see
|
||||
* https://geographiclib.sourceforge.io/
|
||||
*
|
||||
* This is a reformulation of the geodesic problem. The notation is as
|
||||
* follows:
|
||||
* - at a general point (no suffix or 1 or 2 as suffix)
|
||||
* - phi = latitude
|
||||
* - beta = latitude on auxiliary sphere
|
||||
* - omega = longitude on auxiliary sphere
|
||||
* - lambda = longitude
|
||||
* - alpha = azimuth of great circle
|
||||
* - sigma = arc length along great circle
|
||||
* - s = distance
|
||||
* - tau = scaled distance (= sigma at multiples of pi/2)
|
||||
* - at northwards equator crossing
|
||||
* - beta = phi = 0
|
||||
* - omega = lambda = 0
|
||||
* - alpha = alpha0
|
||||
* - sigma = s = 0
|
||||
* - a 12 suffix means a difference, e.g., s12 = s2 - s1.
|
||||
* - s and c prefixes mean sin and cos
|
||||
**********************************************************************/
|
||||
|
||||
#include <GeographicLib/GeodesicLine.hpp>
|
||||
|
||||
#if defined(_MSC_VER)
|
||||
// Squelch warnings about mixing enums
|
||||
# pragma warning (disable: 5054)
|
||||
#endif
|
||||
|
||||
namespace GeographicLib {
|
||||
|
||||
using namespace std;
|
||||
|
||||
void GeodesicLine::LineInit(const Geodesic& g,
|
||||
real lat1, real lon1,
|
||||
real azi1, real salp1, real calp1,
|
||||
unsigned caps) {
|
||||
tiny_ = g.tiny_;
|
||||
_lat1 = Math::LatFix(lat1);
|
||||
_lon1 = lon1;
|
||||
_azi1 = azi1;
|
||||
_salp1 = salp1;
|
||||
_calp1 = calp1;
|
||||
_a = g._a;
|
||||
_f = g._f;
|
||||
_b = g._b;
|
||||
_c2 = g._c2;
|
||||
_f1 = g._f1;
|
||||
// Always allow latitude and azimuth and unrolling of longitude
|
||||
_caps = caps | LATITUDE | AZIMUTH | LONG_UNROLL;
|
||||
|
||||
real cbet1, sbet1;
|
||||
Math::sincosd(Math::AngRound(_lat1), sbet1, cbet1); sbet1 *= _f1;
|
||||
// Ensure cbet1 = +epsilon at poles
|
||||
Math::norm(sbet1, cbet1); cbet1 = fmax(tiny_, cbet1);
|
||||
_dn1 = sqrt(1 + g._ep2 * Math::sq(sbet1));
|
||||
|
||||
// Evaluate alp0 from sin(alp1) * cos(bet1) = sin(alp0),
|
||||
_salp0 = _salp1 * cbet1; // alp0 in [0, pi/2 - |bet1|]
|
||||
// Alt: calp0 = hypot(sbet1, calp1 * cbet1). The following
|
||||
// is slightly better (consider the case salp1 = 0).
|
||||
_calp0 = hypot(_calp1, _salp1 * sbet1);
|
||||
// Evaluate sig with tan(bet1) = tan(sig1) * cos(alp1).
|
||||
// sig = 0 is nearest northward crossing of equator.
|
||||
// With bet1 = 0, alp1 = pi/2, we have sig1 = 0 (equatorial line).
|
||||
// With bet1 = pi/2, alp1 = -pi, sig1 = pi/2
|
||||
// With bet1 = -pi/2, alp1 = 0 , sig1 = -pi/2
|
||||
// Evaluate omg1 with tan(omg1) = sin(alp0) * tan(sig1).
|
||||
// With alp0 in (0, pi/2], quadrants for sig and omg coincide.
|
||||
// No atan2(0,0) ambiguity at poles since cbet1 = +epsilon.
|
||||
// With alp0 = 0, omg1 = 0 for alp1 = 0, omg1 = pi for alp1 = pi.
|
||||
_ssig1 = sbet1; _somg1 = _salp0 * sbet1;
|
||||
_csig1 = _comg1 = sbet1 != 0 || _calp1 != 0 ? cbet1 * _calp1 : 1;
|
||||
Math::norm(_ssig1, _csig1); // sig1 in (-pi, pi]
|
||||
// Math::norm(_somg1, _comg1); -- don't need to normalize!
|
||||
|
||||
_k2 = Math::sq(_calp0) * g._ep2;
|
||||
real eps = _k2 / (2 * (1 + sqrt(1 + _k2)) + _k2);
|
||||
|
||||
if (_caps & CAP_C1) {
|
||||
_aA1m1 = Geodesic::A1m1f(eps);
|
||||
Geodesic::C1f(eps, _cC1a);
|
||||
_bB11 = Geodesic::SinCosSeries(true, _ssig1, _csig1, _cC1a, nC1_);
|
||||
real s = sin(_bB11), c = cos(_bB11);
|
||||
// tau1 = sig1 + B11
|
||||
_stau1 = _ssig1 * c + _csig1 * s;
|
||||
_ctau1 = _csig1 * c - _ssig1 * s;
|
||||
// Not necessary because C1pa reverts C1a
|
||||
// _bB11 = -SinCosSeries(true, _stau1, _ctau1, _cC1pa, nC1p_);
|
||||
}
|
||||
|
||||
if (_caps & CAP_C1p)
|
||||
Geodesic::C1pf(eps, _cC1pa);
|
||||
|
||||
if (_caps & CAP_C2) {
|
||||
_aA2m1 = Geodesic::A2m1f(eps);
|
||||
Geodesic::C2f(eps, _cC2a);
|
||||
_bB21 = Geodesic::SinCosSeries(true, _ssig1, _csig1, _cC2a, nC2_);
|
||||
}
|
||||
|
||||
if (_caps & CAP_C3) {
|
||||
g.C3f(eps, _cC3a);
|
||||
_aA3c = -_f * _salp0 * g.A3f(eps);
|
||||
_bB31 = Geodesic::SinCosSeries(true, _ssig1, _csig1, _cC3a, nC3_-1);
|
||||
}
|
||||
|
||||
if (_caps & CAP_C4) {
|
||||
g.C4f(eps, _cC4a);
|
||||
// Multiplier = a^2 * e^2 * cos(alpha0) * sin(alpha0)
|
||||
_aA4 = Math::sq(_a) * _calp0 * _salp0 * g._e2;
|
||||
_bB41 = Geodesic::SinCosSeries(false, _ssig1, _csig1, _cC4a, nC4_);
|
||||
}
|
||||
|
||||
_a13 = _s13 = Math::NaN();
|
||||
}
|
||||
|
||||
GeodesicLine::GeodesicLine(const Geodesic& g,
|
||||
real lat1, real lon1, real azi1,
|
||||
unsigned caps) {
|
||||
azi1 = Math::AngNormalize(azi1);
|
||||
real salp1, calp1;
|
||||
// Guard against underflow in salp0. Also -0 is converted to +0.
|
||||
Math::sincosd(Math::AngRound(azi1), salp1, calp1);
|
||||
LineInit(g, lat1, lon1, azi1, salp1, calp1, caps);
|
||||
}
|
||||
|
||||
GeodesicLine::GeodesicLine(const Geodesic& g,
|
||||
real lat1, real lon1,
|
||||
real azi1, real salp1, real calp1,
|
||||
unsigned caps, bool arcmode, real s13_a13) {
|
||||
LineInit(g, lat1, lon1, azi1, salp1, calp1, caps);
|
||||
GenSetDistance(arcmode, s13_a13);
|
||||
}
|
||||
|
||||
Math::real GeodesicLine::GenPosition(bool arcmode, real s12_a12,
|
||||
unsigned outmask,
|
||||
real& lat2, real& lon2, real& azi2,
|
||||
real& s12, real& m12,
|
||||
real& M12, real& M21,
|
||||
real& S12) const {
|
||||
outmask &= _caps & OUT_MASK;
|
||||
if (!( Init() && (arcmode || (_caps & (OUT_MASK & DISTANCE_IN))) ))
|
||||
// Uninitialized or impossible distance calculation requested
|
||||
return Math::NaN();
|
||||
|
||||
// Avoid warning about uninitialized B12.
|
||||
real sig12, ssig12, csig12, B12 = 0, AB1 = 0;
|
||||
if (arcmode) {
|
||||
// Interpret s12_a12 as spherical arc length
|
||||
sig12 = s12_a12 * Math::degree();
|
||||
Math::sincosd(s12_a12, ssig12, csig12);
|
||||
} else {
|
||||
// Interpret s12_a12 as distance
|
||||
real
|
||||
tau12 = s12_a12 / (_b * (1 + _aA1m1)),
|
||||
s = sin(tau12),
|
||||
c = cos(tau12);
|
||||
// tau2 = tau1 + tau12
|
||||
B12 = - Geodesic::SinCosSeries(true,
|
||||
_stau1 * c + _ctau1 * s,
|
||||
_ctau1 * c - _stau1 * s,
|
||||
_cC1pa, nC1p_);
|
||||
sig12 = tau12 - (B12 - _bB11);
|
||||
ssig12 = sin(sig12); csig12 = cos(sig12);
|
||||
if (fabs(_f) > 0.01) {
|
||||
// Reverted distance series is inaccurate for |f| > 1/100, so correct
|
||||
// sig12 with 1 Newton iteration. The following table shows the
|
||||
// approximate maximum error for a = WGS_a() and various f relative to
|
||||
// GeodesicExact.
|
||||
// erri = the error in the inverse solution (nm)
|
||||
// errd = the error in the direct solution (series only) (nm)
|
||||
// errda = the error in the direct solution
|
||||
// (series + 1 Newton) (nm)
|
||||
//
|
||||
// f erri errd errda
|
||||
// -1/5 12e6 1.2e9 69e6
|
||||
// -1/10 123e3 12e6 765e3
|
||||
// -1/20 1110 108e3 7155
|
||||
// -1/50 18.63 200.9 27.12
|
||||
// -1/100 18.63 23.78 23.37
|
||||
// -1/150 18.63 21.05 20.26
|
||||
// 1/150 22.35 24.73 25.83
|
||||
// 1/100 22.35 25.03 25.31
|
||||
// 1/50 29.80 231.9 30.44
|
||||
// 1/20 5376 146e3 10e3
|
||||
// 1/10 829e3 22e6 1.5e6
|
||||
// 1/5 157e6 3.8e9 280e6
|
||||
real
|
||||
ssig2 = _ssig1 * csig12 + _csig1 * ssig12,
|
||||
csig2 = _csig1 * csig12 - _ssig1 * ssig12;
|
||||
B12 = Geodesic::SinCosSeries(true, ssig2, csig2, _cC1a, nC1_);
|
||||
real serr = (1 + _aA1m1) * (sig12 + (B12 - _bB11)) - s12_a12 / _b;
|
||||
sig12 = sig12 - serr / sqrt(1 + _k2 * Math::sq(ssig2));
|
||||
ssig12 = sin(sig12); csig12 = cos(sig12);
|
||||
// Update B12 below
|
||||
}
|
||||
}
|
||||
|
||||
real ssig2, csig2, sbet2, cbet2, salp2, calp2;
|
||||
// sig2 = sig1 + sig12
|
||||
ssig2 = _ssig1 * csig12 + _csig1 * ssig12;
|
||||
csig2 = _csig1 * csig12 - _ssig1 * ssig12;
|
||||
real dn2 = sqrt(1 + _k2 * Math::sq(ssig2));
|
||||
if (outmask & (DISTANCE | REDUCEDLENGTH | GEODESICSCALE)) {
|
||||
if (arcmode || fabs(_f) > 0.01)
|
||||
B12 = Geodesic::SinCosSeries(true, ssig2, csig2, _cC1a, nC1_);
|
||||
AB1 = (1 + _aA1m1) * (B12 - _bB11);
|
||||
}
|
||||
// sin(bet2) = cos(alp0) * sin(sig2)
|
||||
sbet2 = _calp0 * ssig2;
|
||||
// Alt: cbet2 = hypot(csig2, salp0 * ssig2);
|
||||
cbet2 = hypot(_salp0, _calp0 * csig2);
|
||||
if (cbet2 == 0)
|
||||
// I.e., salp0 = 0, csig2 = 0. Break the degeneracy in this case
|
||||
cbet2 = csig2 = tiny_;
|
||||
// tan(alp0) = cos(sig2)*tan(alp2)
|
||||
salp2 = _salp0; calp2 = _calp0 * csig2; // No need to normalize
|
||||
|
||||
if (outmask & DISTANCE)
|
||||
s12 = arcmode ? _b * ((1 + _aA1m1) * sig12 + AB1) : s12_a12;
|
||||
|
||||
if (outmask & LONGITUDE) {
|
||||
// tan(omg2) = sin(alp0) * tan(sig2)
|
||||
real somg2 = _salp0 * ssig2, comg2 = csig2, // No need to normalize
|
||||
E = copysign(real(1), _salp0); // east-going?
|
||||
// omg12 = omg2 - omg1
|
||||
real omg12 = outmask & LONG_UNROLL
|
||||
? E * (sig12
|
||||
- (atan2( ssig2, csig2) - atan2( _ssig1, _csig1))
|
||||
+ (atan2(E * somg2, comg2) - atan2(E * _somg1, _comg1)))
|
||||
: atan2(somg2 * _comg1 - comg2 * _somg1,
|
||||
comg2 * _comg1 + somg2 * _somg1);
|
||||
real lam12 = omg12 + _aA3c *
|
||||
( sig12 + (Geodesic::SinCosSeries(true, ssig2, csig2, _cC3a, nC3_-1)
|
||||
- _bB31));
|
||||
real lon12 = lam12 / Math::degree();
|
||||
lon2 = outmask & LONG_UNROLL ? _lon1 + lon12 :
|
||||
Math::AngNormalize(Math::AngNormalize(_lon1) +
|
||||
Math::AngNormalize(lon12));
|
||||
}
|
||||
|
||||
if (outmask & LATITUDE)
|
||||
lat2 = Math::atan2d(sbet2, _f1 * cbet2);
|
||||
|
||||
if (outmask & AZIMUTH)
|
||||
azi2 = Math::atan2d(salp2, calp2);
|
||||
|
||||
if (outmask & (REDUCEDLENGTH | GEODESICSCALE)) {
|
||||
real
|
||||
B22 = Geodesic::SinCosSeries(true, ssig2, csig2, _cC2a, nC2_),
|
||||
AB2 = (1 + _aA2m1) * (B22 - _bB21),
|
||||
J12 = (_aA1m1 - _aA2m1) * sig12 + (AB1 - AB2);
|
||||
if (outmask & REDUCEDLENGTH)
|
||||
// Add parens around (_csig1 * ssig2) and (_ssig1 * csig2) to ensure
|
||||
// accurate cancellation in the case of coincident points.
|
||||
m12 = _b * ((dn2 * (_csig1 * ssig2) - _dn1 * (_ssig1 * csig2))
|
||||
- _csig1 * csig2 * J12);
|
||||
if (outmask & GEODESICSCALE) {
|
||||
real t = _k2 * (ssig2 - _ssig1) * (ssig2 + _ssig1) / (_dn1 + dn2);
|
||||
M12 = csig12 + (t * ssig2 - csig2 * J12) * _ssig1 / _dn1;
|
||||
M21 = csig12 - (t * _ssig1 - _csig1 * J12) * ssig2 / dn2;
|
||||
}
|
||||
}
|
||||
|
||||
if (outmask & AREA) {
|
||||
real
|
||||
B42 = Geodesic::SinCosSeries(false, ssig2, csig2, _cC4a, nC4_);
|
||||
real salp12, calp12;
|
||||
if (_calp0 == 0 || _salp0 == 0) {
|
||||
// alp12 = alp2 - alp1, used in atan2 so no need to normalize
|
||||
salp12 = salp2 * _calp1 - calp2 * _salp1;
|
||||
calp12 = calp2 * _calp1 + salp2 * _salp1;
|
||||
// We used to include here some patch up code that purported to deal
|
||||
// with nearly meridional geodesics properly. However, this turned out
|
||||
// to be wrong once _salp1 = -0 was allowed (via
|
||||
// Geodesic::InverseLine). In fact, the calculation of {s,c}alp12
|
||||
// was already correct (following the IEEE rules for handling signed
|
||||
// zeros). So the patch up code was unnecessary (as well as
|
||||
// dangerous).
|
||||
} else {
|
||||
// tan(alp) = tan(alp0) * sec(sig)
|
||||
// tan(alp2-alp1) = (tan(alp2) -tan(alp1)) / (tan(alp2)*tan(alp1)+1)
|
||||
// = calp0 * salp0 * (csig1-csig2) / (salp0^2 + calp0^2 * csig1*csig2)
|
||||
// If csig12 > 0, write
|
||||
// csig1 - csig2 = ssig12 * (csig1 * ssig12 / (1 + csig12) + ssig1)
|
||||
// else
|
||||
// csig1 - csig2 = csig1 * (1 - csig12) + ssig12 * ssig1
|
||||
// No need to normalize
|
||||
salp12 = _calp0 * _salp0 *
|
||||
(csig12 <= 0 ? _csig1 * (1 - csig12) + ssig12 * _ssig1 :
|
||||
ssig12 * (_csig1 * ssig12 / (1 + csig12) + _ssig1));
|
||||
calp12 = Math::sq(_salp0) + Math::sq(_calp0) * _csig1 * csig2;
|
||||
}
|
||||
S12 = _c2 * atan2(salp12, calp12) + _aA4 * (B42 - _bB41);
|
||||
}
|
||||
|
||||
return arcmode ? s12_a12 : sig12 / Math::degree();
|
||||
}
|
||||
|
||||
void GeodesicLine::SetDistance(real s13) {
|
||||
_s13 = s13;
|
||||
real t;
|
||||
// This will set _a13 to NaN if the GeodesicLine doesn't have the
|
||||
// DISTANCE_IN capability.
|
||||
_a13 = GenPosition(false, _s13, 0u, t, t, t, t, t, t, t, t);
|
||||
}
|
||||
|
||||
void GeodesicLine::SetArc(real a13) {
|
||||
_a13 = a13;
|
||||
// In case the GeodesicLine doesn't have the DISTANCE capability.
|
||||
_s13 = Math::NaN();
|
||||
real t;
|
||||
GenPosition(true, _a13, DISTANCE, t, t, t, _s13, t, t, t, t);
|
||||
}
|
||||
|
||||
void GeodesicLine::GenSetDistance(bool arcmode, real s13_a13) {
|
||||
arcmode ? SetArc(s13_a13) : SetDistance(s13_a13);
|
||||
}
|
||||
|
||||
} // namespace GeographicLib
|
||||
Reference in New Issue
Block a user