ADD: new track message, Entity class and Position class
This commit is contained in:
172
libs/geographiclib/src/Geocentric.cpp
Normal file
172
libs/geographiclib/src/Geocentric.cpp
Normal file
@@ -0,0 +1,172 @@
|
||||
/**
|
||||
* \file Geocentric.cpp
|
||||
* \brief Implementation for GeographicLib::Geocentric class
|
||||
*
|
||||
* Copyright (c) Charles Karney (2008-2022) <charles@karney.com> and licensed
|
||||
* under the MIT/X11 License. For more information, see
|
||||
* https://geographiclib.sourceforge.io/
|
||||
**********************************************************************/
|
||||
|
||||
#include <GeographicLib/Geocentric.hpp>
|
||||
|
||||
namespace GeographicLib {
|
||||
|
||||
using namespace std;
|
||||
|
||||
Geocentric::Geocentric(real a, real f)
|
||||
: _a(a)
|
||||
, _f(f)
|
||||
, _e2(_f * (2 - _f))
|
||||
, _e2m(Math::sq(1 - _f)) // 1 - _e2
|
||||
, _e2a(fabs(_e2))
|
||||
, _e4a(Math::sq(_e2))
|
||||
, _maxrad(2 * _a / numeric_limits<real>::epsilon())
|
||||
{
|
||||
if (!(isfinite(_a) && _a > 0))
|
||||
throw GeographicErr("Equatorial radius is not positive");
|
||||
if (!(isfinite(_f) && _f < 1))
|
||||
throw GeographicErr("Polar semi-axis is not positive");
|
||||
}
|
||||
|
||||
const Geocentric& Geocentric::WGS84() {
|
||||
static const Geocentric wgs84(Constants::WGS84_a(), Constants::WGS84_f());
|
||||
return wgs84;
|
||||
}
|
||||
|
||||
void Geocentric::IntForward(real lat, real lon, real h,
|
||||
real& X, real& Y, real& Z,
|
||||
real M[dim2_]) const {
|
||||
real sphi, cphi, slam, clam;
|
||||
Math::sincosd(Math::LatFix(lat), sphi, cphi);
|
||||
Math::sincosd(lon, slam, clam);
|
||||
real n = _a/sqrt(1 - _e2 * Math::sq(sphi));
|
||||
Z = (_e2m * n + h) * sphi;
|
||||
X = (n + h) * cphi;
|
||||
Y = X * slam;
|
||||
X *= clam;
|
||||
if (M)
|
||||
Rotation(sphi, cphi, slam, clam, M);
|
||||
}
|
||||
|
||||
void Geocentric::IntReverse(real X, real Y, real Z,
|
||||
real& lat, real& lon, real& h,
|
||||
real M[dim2_]) const {
|
||||
real
|
||||
R = hypot(X, Y),
|
||||
slam = R != 0 ? Y / R : 0,
|
||||
clam = R != 0 ? X / R : 1;
|
||||
h = hypot(R, Z); // Distance to center of earth
|
||||
real sphi, cphi;
|
||||
if (h > _maxrad) {
|
||||
// We really far away (> 12 million light years); treat the earth as a
|
||||
// point and h, above, is an acceptable approximation to the height.
|
||||
// This avoids overflow, e.g., in the computation of disc below. It's
|
||||
// possible that h has overflowed to inf; but that's OK.
|
||||
//
|
||||
// Treat the case X, Y finite, but R overflows to +inf by scaling by 2.
|
||||
R = hypot(X/2, Y/2);
|
||||
slam = R != 0 ? (Y/2) / R : 0;
|
||||
clam = R != 0 ? (X/2) / R : 1;
|
||||
real H = hypot(Z/2, R);
|
||||
sphi = (Z/2) / H;
|
||||
cphi = R / H;
|
||||
} else if (_e4a == 0) {
|
||||
// Treat the spherical case. Dealing with underflow in the general case
|
||||
// with _e2 = 0 is difficult. Origin maps to N pole same as with
|
||||
// ellipsoid.
|
||||
real H = hypot(h == 0 ? 1 : Z, R);
|
||||
sphi = (h == 0 ? 1 : Z) / H;
|
||||
cphi = R / H;
|
||||
h -= _a;
|
||||
} else {
|
||||
// Treat prolate spheroids by swapping R and Z here and by switching
|
||||
// the arguments to phi = atan2(...) at the end.
|
||||
real
|
||||
p = Math::sq(R / _a),
|
||||
q = _e2m * Math::sq(Z / _a),
|
||||
r = (p + q - _e4a) / 6;
|
||||
if (_f < 0) swap(p, q);
|
||||
if ( !(_e4a * q == 0 && r <= 0) ) {
|
||||
real
|
||||
// Avoid possible division by zero when r = 0 by multiplying
|
||||
// equations for s and t by r^3 and r, resp.
|
||||
S = _e4a * p * q / 4, // S = r^3 * s
|
||||
r2 = Math::sq(r),
|
||||
r3 = r * r2,
|
||||
disc = S * (2 * r3 + S);
|
||||
real u = r;
|
||||
if (disc >= 0) {
|
||||
real T3 = S + r3;
|
||||
// Pick the sign on the sqrt to maximize abs(T3). This minimizes
|
||||
// loss of precision due to cancellation. The result is unchanged
|
||||
// because of the way the T is used in definition of u.
|
||||
T3 += T3 < 0 ? -sqrt(disc) : sqrt(disc); // T3 = (r * t)^3
|
||||
// N.B. cbrt always returns the real root. cbrt(-8) = -2.
|
||||
real T = cbrt(T3); // T = r * t
|
||||
// T can be zero; but then r2 / T -> 0.
|
||||
u += T + (T != 0 ? r2 / T : 0);
|
||||
} else {
|
||||
// T is complex, but the way u is defined the result is real.
|
||||
real ang = atan2(sqrt(-disc), -(S + r3));
|
||||
// There are three possible cube roots. We choose the root which
|
||||
// avoids cancellation. Note that disc < 0 implies that r < 0.
|
||||
u += 2 * r * cos(ang / 3);
|
||||
}
|
||||
real
|
||||
v = sqrt(Math::sq(u) + _e4a * q), // guaranteed positive
|
||||
// Avoid loss of accuracy when u < 0. Underflow doesn't occur in
|
||||
// e4 * q / (v - u) because u ~ e^4 when q is small and u < 0.
|
||||
uv = u < 0 ? _e4a * q / (v - u) : u + v, // u+v, guaranteed positive
|
||||
// Need to guard against w going negative due to roundoff in uv - q.
|
||||
w = fmax(real(0), _e2a * (uv - q) / (2 * v)),
|
||||
// Rearrange expression for k to avoid loss of accuracy due to
|
||||
// subtraction. Division by 0 not possible because uv > 0, w >= 0.
|
||||
k = uv / (sqrt(uv + Math::sq(w)) + w),
|
||||
k1 = _f >= 0 ? k : k - _e2,
|
||||
k2 = _f >= 0 ? k + _e2 : k,
|
||||
d = k1 * R / k2,
|
||||
H = hypot(Z/k1, R/k2);
|
||||
sphi = (Z/k1) / H;
|
||||
cphi = (R/k2) / H;
|
||||
h = (1 - _e2m/k1) * hypot(d, Z);
|
||||
} else { // e4 * q == 0 && r <= 0
|
||||
// This leads to k = 0 (oblate, equatorial plane) and k + e^2 = 0
|
||||
// (prolate, rotation axis) and the generation of 0/0 in the general
|
||||
// formulas for phi and h. using the general formula and division by 0
|
||||
// in formula for h. So handle this case by taking the limits:
|
||||
// f > 0: z -> 0, k -> e2 * sqrt(q)/sqrt(e4 - p)
|
||||
// f < 0: R -> 0, k + e2 -> - e2 * sqrt(q)/sqrt(e4 - p)
|
||||
real
|
||||
zz = sqrt((_f >= 0 ? _e4a - p : p) / _e2m),
|
||||
xx = sqrt( _f < 0 ? _e4a - p : p ),
|
||||
H = hypot(zz, xx);
|
||||
sphi = zz / H;
|
||||
cphi = xx / H;
|
||||
if (Z < 0) sphi = -sphi; // for tiny negative Z (not for prolate)
|
||||
h = - _a * (_f >= 0 ? _e2m : 1) * H / _e2a;
|
||||
}
|
||||
}
|
||||
lat = Math::atan2d(sphi, cphi);
|
||||
lon = Math::atan2d(slam, clam);
|
||||
if (M)
|
||||
Rotation(sphi, cphi, slam, clam, M);
|
||||
}
|
||||
|
||||
void Geocentric::Rotation(real sphi, real cphi, real slam, real clam,
|
||||
real M[dim2_]) {
|
||||
// This rotation matrix is given by the following quaternion operations
|
||||
// qrot(lam, [0,0,1]) * qrot(phi, [0,-1,0]) * [1,1,1,1]/2
|
||||
// or
|
||||
// qrot(pi/2 + lam, [0,0,1]) * qrot(-pi/2 + phi , [-1,0,0])
|
||||
// where
|
||||
// qrot(t,v) = [cos(t/2), sin(t/2)*v[1], sin(t/2)*v[2], sin(t/2)*v[3]]
|
||||
|
||||
// Local X axis (east) in geocentric coords
|
||||
M[0] = -slam; M[3] = clam; M[6] = 0;
|
||||
// Local Y axis (north) in geocentric coords
|
||||
M[1] = -clam * sphi; M[4] = -slam * sphi; M[7] = cphi;
|
||||
// Local Z axis (up) in geocentric coords
|
||||
M[2] = clam * cphi; M[5] = slam * cphi; M[8] = sphi;
|
||||
}
|
||||
|
||||
} // namespace GeographicLib
|
||||
Reference in New Issue
Block a user