ADD: new track message, Entity class and Position class

This commit is contained in:
Henry Winkel
2022-12-20 17:20:35 +01:00
parent 469ecfb099
commit 98ebb563a8
2114 changed files with 482360 additions and 24 deletions

View File

@@ -0,0 +1,532 @@
/**
* \file Math.hpp
* \brief Header for GeographicLib::Math class
*
* Copyright (c) Charles Karney (2008-2022) <charles@karney.com> and licensed
* under the MIT/X11 License. For more information, see
* https://geographiclib.sourceforge.io/
**********************************************************************/
// Constants.hpp includes Math.hpp. Place this include outside Math.hpp's
// include guard to enforce this ordering.
#include <GeographicLib/Constants.hpp>
#if !defined(GEOGRAPHICLIB_MATH_HPP)
#define GEOGRAPHICLIB_MATH_HPP 1
#if !defined(GEOGRAPHICLIB_WORDS_BIGENDIAN)
# define GEOGRAPHICLIB_WORDS_BIGENDIAN 0
#endif
#if !defined(GEOGRAPHICLIB_HAVE_LONG_DOUBLE)
# define GEOGRAPHICLIB_HAVE_LONG_DOUBLE 0
#endif
#if !defined(GEOGRAPHICLIB_PRECISION)
/**
* The precision of floating point numbers used in %GeographicLib. 1 means
* float (single precision); 2 (the default) means double; 3 means long double;
* 4 is reserved for quadruple precision. Nearly all the testing has been
* carried out with doubles and that's the recommended configuration. In order
* for long double to be used, GEOGRAPHICLIB_HAVE_LONG_DOUBLE needs to be
* defined. Note that with Microsoft Visual Studio, long double is the same as
* double.
**********************************************************************/
# define GEOGRAPHICLIB_PRECISION 2
#endif
#include <cmath>
#include <algorithm>
#include <limits>
#if GEOGRAPHICLIB_PRECISION == 4
#include <boost/version.hpp>
#include <boost/multiprecision/float128.hpp>
#include <boost/math/special_functions.hpp>
#elif GEOGRAPHICLIB_PRECISION == 5
#include <mpreal.h>
#endif
#if GEOGRAPHICLIB_PRECISION > 3
// volatile keyword makes no sense for multiprec types
#define GEOGRAPHICLIB_VOLATILE
// Signal a convergence failure with multiprec types by throwing an exception
// at loop exit.
#define GEOGRAPHICLIB_PANIC \
(throw GeographicLib::GeographicErr("Convergence failure"), false)
#else
#define GEOGRAPHICLIB_VOLATILE volatile
// Ignore convergence failures with standard floating points types by allowing
// loop to exit cleanly.
#define GEOGRAPHICLIB_PANIC false
#endif
namespace GeographicLib {
/**
* \brief Mathematical functions needed by %GeographicLib
*
* Define mathematical functions in order to localize system dependencies and
* to provide generic versions of the functions. In addition define a real
* type to be used by %GeographicLib.
*
* Example of use:
* \include example-Math.cpp
**********************************************************************/
class GEOGRAPHICLIB_EXPORT Math {
private:
void dummy(); // Static check for GEOGRAPHICLIB_PRECISION
Math() = delete; // Disable constructor
public:
#if GEOGRAPHICLIB_HAVE_LONG_DOUBLE
/**
* The extended precision type for real numbers, used for some testing.
* This is long double on computers with this type; otherwise it is double.
**********************************************************************/
typedef long double extended;
#else
typedef double extended;
#endif
#if GEOGRAPHICLIB_PRECISION == 2
/**
* The real type for %GeographicLib. Nearly all the testing has been done
* with \e real = double. However, the algorithms should also work with
* float and long double (where available). (<b>CAUTION</b>: reasonable
* accuracy typically cannot be obtained using floats.)
**********************************************************************/
typedef double real;
#elif GEOGRAPHICLIB_PRECISION == 1
typedef float real;
#elif GEOGRAPHICLIB_PRECISION == 3
typedef extended real;
#elif GEOGRAPHICLIB_PRECISION == 4
typedef boost::multiprecision::float128 real;
#elif GEOGRAPHICLIB_PRECISION == 5
typedef mpfr::mpreal real;
#else
typedef double real;
#endif
/**
* The constants defining the standard (Babylonian) meanings of degrees,
* minutes, and seconds, for angles. Read the constants as follows (for
* example): \e ms = 60 is the ratio 1 minute / 1 second. The
* abbreviations are
* - \e t a whole turn (360&deg;)
* - \e h a half turn (180&deg;)
* - \e q a quarter turn (a right angle = 90&deg;)
* - \e d a degree
* - \e m a minute
* - \e s a second
* .
* Note that degree() is ratio 1 degree / 1 radian, thus, for example,
* Math::degree() * Math::qd is the ratio 1 quarter turn / 1 radian =
* &pi;/2.
*
* Defining all these in one place would mean that it's simple to convert
* to the centesimal system for measuring angles. The DMS class assumes
* that Math::dm and Math::ms are less than or equal to 100 (so that two
* digits suffice for the integer parts of the minutes and degrees
* components of an angle). Switching to the centesimal convention will
* break most of the tests. Also the normal definition of degree is baked
* into some classes, e.g., UTMUPS, MGRS, Georef, Geohash, etc.
**********************************************************************/
#if GEOGRAPHICLIB_PRECISION == 4
static const int
#else
enum dms {
#endif
qd = 90, ///< degrees per quarter turn
dm = 60, ///< minutes per degree
ms = 60, ///< seconds per minute
hd = 2 * qd, ///< degrees per half turn
td = 2 * hd, ///< degrees per turn
ds = dm * ms ///< seconds per degree
#if GEOGRAPHICLIB_PRECISION == 4
;
#else
};
#endif
/**
* @return the number of bits of precision in a real number.
**********************************************************************/
static int digits();
/**
* Set the binary precision of a real number.
*
* @param[in] ndigits the number of bits of precision.
* @return the resulting number of bits of precision.
*
* This only has an effect when GEOGRAPHICLIB_PRECISION = 5. See also
* Utility::set_digits for caveats about when this routine should be
* called.
**********************************************************************/
static int set_digits(int ndigits);
/**
* @return the number of decimal digits of precision in a real number.
**********************************************************************/
static int digits10();
/**
* Number of additional decimal digits of precision for real relative to
* double (0 for float).
**********************************************************************/
static int extra_digits();
/**
* true if the machine is big-endian.
**********************************************************************/
static const bool bigendian = GEOGRAPHICLIB_WORDS_BIGENDIAN;
/**
* @tparam T the type of the returned value.
* @return &pi;.
**********************************************************************/
template<typename T = real> static T pi() {
using std::atan2;
static const T pi = atan2(T(0), T(-1));
return pi;
}
/**
* @tparam T the type of the returned value.
* @return the number of radians in a degree.
**********************************************************************/
template<typename T = real> static T degree() {
static const T degree = pi<T>() / T(hd);
return degree;
}
/**
* Square a number.
*
* @tparam T the type of the argument and the returned value.
* @param[in] x
* @return <i>x</i><sup>2</sup>.
**********************************************************************/
template<typename T> static T sq(T x)
{ return x * x; }
/**
* Normalize a two-vector.
*
* @tparam T the type of the argument and the returned value.
* @param[in,out] x on output set to <i>x</i>/hypot(<i>x</i>, <i>y</i>).
* @param[in,out] y on output set to <i>y</i>/hypot(<i>x</i>, <i>y</i>).
**********************************************************************/
template<typename T> static void norm(T& x, T& y) {
#if defined(_MSC_VER) && defined(_M_IX86)
// hypot for Visual Studio (A=win32) fails monotonicity, e.g., with
// x = 0.6102683302836215
// y1 = 0.7906090004346522
// y2 = y1 + 1e-16
// the test
// hypot(x, y2) >= hypot(x, y1)
// fails. Reported 2021-03-14:
// https://developercommunity.visualstudio.com/t/1369259
// See also:
// https://bugs.python.org/issue43088
using std::sqrt; T h = sqrt(x * x + y * y);
#else
using std::hypot; T h = hypot(x, y);
#endif
x /= h; y /= h;
}
/**
* The error-free sum of two numbers.
*
* @tparam T the type of the argument and the returned value.
* @param[in] u
* @param[in] v
* @param[out] t the exact error given by (\e u + \e v) - \e s.
* @return \e s = round(\e u + \e v).
*
* See D. E. Knuth, TAOCP, Vol 2, 4.2.2, Theorem B.
*
* \note \e t can be the same as one of the first two arguments.
**********************************************************************/
template<typename T> static T sum(T u, T v, T& t);
/**
* Evaluate a polynomial.
*
* @tparam T the type of the arguments and returned value.
* @param[in] N the order of the polynomial.
* @param[in] p the coefficient array (of size \e N + 1) with
* <i>p</i><sub>0</sub> being coefficient of <i>x</i><sup><i>N</i></sup>.
* @param[in] x the variable.
* @return the value of the polynomial.
*
* Evaluate &sum;<sub><i>n</i>=0..<i>N</i></sub>
* <i>p</i><sub><i>n</i></sub> <i>x</i><sup><i>N</i>&minus;<i>n</i></sup>.
* Return 0 if \e N &lt; 0. Return <i>p</i><sub>0</sub>, if \e N = 0 (even
* if \e x is infinite or a nan). The evaluation uses Horner's method.
**********************************************************************/
template<typename T> static T polyval(int N, const T p[], T x) {
// This used to employ Math::fma; but that's too slow and it seemed not
// to improve the accuracy noticeably. This might change when there's
// direct hardware support for fma.
T y = N < 0 ? 0 : *p++;
while (--N >= 0) y = y * x + *p++;
return y;
}
/**
* Normalize an angle.
*
* @tparam T the type of the argument and returned value.
* @param[in] x the angle in degrees.
* @return the angle reduced to the range [&minus;180&deg;, 180&deg;].
*
* The range of \e x is unrestricted. If the result is &plusmn;0&deg; or
* &plusmn;180&deg; then the sign is the sign of \e x.
**********************************************************************/
template<typename T> static T AngNormalize(T x);
/**
* Normalize a latitude.
*
* @tparam T the type of the argument and returned value.
* @param[in] x the angle in degrees.
* @return x if it is in the range [&minus;90&deg;, 90&deg;], otherwise
* return NaN.
**********************************************************************/
template<typename T> static T LatFix(T x)
{ using std::fabs; return fabs(x) > T(qd) ? NaN<T>() : x; }
/**
* The exact difference of two angles reduced to
* [&minus;180&deg;, 180&deg;].
*
* @tparam T the type of the arguments and returned value.
* @param[in] x the first angle in degrees.
* @param[in] y the second angle in degrees.
* @param[out] e the error term in degrees.
* @return \e d, the truncated value of \e y &minus; \e x.
*
* This computes \e z = \e y &minus; \e x exactly, reduced to
* [&minus;180&deg;, 180&deg;]; and then sets \e z = \e d + \e e where \e d
* is the nearest representable number to \e z and \e e is the truncation
* error. If \e z = &plusmn;0&deg; or &plusmn;180&deg;, then the sign of
* \e d is given by the sign of \e y &minus; \e x. The maximum absolute
* value of \e e is 2<sup>&minus;26</sup> (for doubles).
**********************************************************************/
template<typename T> static T AngDiff(T x, T y, T& e);
/**
* Difference of two angles reduced to [&minus;180&deg;, 180&deg;]
*
* @tparam T the type of the arguments and returned value.
* @param[in] x the first angle in degrees.
* @param[in] y the second angle in degrees.
* @return \e y &minus; \e x, reduced to the range [&minus;180&deg;,
* 180&deg;].
*
* The result is equivalent to computing the difference exactly, reducing
* it to [&minus;180&deg;, 180&deg;] and rounding the result.
**********************************************************************/
template<typename T> static T AngDiff(T x, T y)
{ T e; return AngDiff(x, y, e); }
/**
* Coarsen a value close to zero.
*
* @tparam T the type of the argument and returned value.
* @param[in] x
* @return the coarsened value.
*
* The makes the smallest gap in \e x = 1/16 &minus; nextafter(1/16, 0) =
* 1/2<sup>57</sup> for doubles = 0.8 pm on the earth if \e x is an angle
* in degrees. (This is about 2000 times more resolution than we get with
* angles around 90&deg;.) We use this to avoid having to deal with near
* singular cases when \e x is non-zero but tiny (e.g.,
* 10<sup>&minus;200</sup>). This sign of &plusmn;0 is preserved.
**********************************************************************/
template<typename T> static T AngRound(T x);
/**
* Evaluate the sine and cosine function with the argument in degrees
*
* @tparam T the type of the arguments.
* @param[in] x in degrees.
* @param[out] sinx sin(<i>x</i>).
* @param[out] cosx cos(<i>x</i>).
*
* The results obey exactly the elementary properties of the trigonometric
* functions, e.g., sin 9&deg; = cos 81&deg; = &minus; sin 123456789&deg;.
* If x = &minus;0 or a negative multiple of 180&deg;, then \e sinx =
* &minus;0; this is the only case where &minus;0 is returned.
**********************************************************************/
template<typename T> static void sincosd(T x, T& sinx, T& cosx);
/**
* Evaluate the sine and cosine with reduced argument plus correction
*
* @tparam T the type of the arguments.
* @param[in] x reduced angle in degrees.
* @param[in] t correction in degrees.
* @param[out] sinx sin(<i>x</i> + <i>t</i>).
* @param[out] cosx cos(<i>x</i> + <i>t</i>).
*
* This is a variant of Math::sincosd allowing a correction to the angle to
* be supplied. \e x must be in [&minus;180&deg;, 180&deg;] and \e t is
* assumed to be a <i>small</i> correction. Math::AngRound is applied to
* the reduced angle to prevent problems with \e x + \e t being extremely
* close but not exactly equal to one of the four cardinal directions.
**********************************************************************/
template<typename T> static void sincosde(T x, T t, T& sinx, T& cosx);
/**
* Evaluate the sine function with the argument in degrees
*
* @tparam T the type of the argument and the returned value.
* @param[in] x in degrees.
* @return sin(<i>x</i>).
*
* The result is +0 for \e x = +0 and positive multiples of 180&deg;. The
* result is &minus;0 for \e x = -0 and negative multiples of 180&deg;.
**********************************************************************/
template<typename T> static T sind(T x);
/**
* Evaluate the cosine function with the argument in degrees
*
* @tparam T the type of the argument and the returned value.
* @param[in] x in degrees.
* @return cos(<i>x</i>).
*
* The result is +0 for \e x an odd multiple of 90&deg;.
**********************************************************************/
template<typename T> static T cosd(T x);
/**
* Evaluate the tangent function with the argument in degrees
*
* @tparam T the type of the argument and the returned value.
* @param[in] x in degrees.
* @return tan(<i>x</i>).
*
* If \e x is an odd multiple of 90&deg;, then a suitably large (but
* finite) value is returned.
**********************************************************************/
template<typename T> static T tand(T x);
/**
* Evaluate the atan2 function with the result in degrees
*
* @tparam T the type of the arguments and the returned value.
* @param[in] y
* @param[in] x
* @return atan2(<i>y</i>, <i>x</i>) in degrees.
*
* The result is in the range [&minus;180&deg; 180&deg;]. N.B.,
* atan2d(&plusmn;0, &minus;1) = &plusmn;180&deg;.
**********************************************************************/
template<typename T> static T atan2d(T y, T x);
/**
* Evaluate the atan function with the result in degrees
*
* @tparam T the type of the argument and the returned value.
* @param[in] x
* @return atan(<i>x</i>) in degrees.
**********************************************************************/
template<typename T> static T atand(T x);
/**
* Evaluate <i>e</i> atanh(<i>e x</i>)
*
* @tparam T the type of the argument and the returned value.
* @param[in] x
* @param[in] es the signed eccentricity = sign(<i>e</i><sup>2</sup>)
* sqrt(|<i>e</i><sup>2</sup>|)
* @return <i>e</i> atanh(<i>e x</i>)
*
* If <i>e</i><sup>2</sup> is negative (<i>e</i> is imaginary), the
* expression is evaluated in terms of atan.
**********************************************************************/
template<typename T> static T eatanhe(T x, T es);
/**
* tan&chi; in terms of tan&phi;
*
* @tparam T the type of the argument and the returned value.
* @param[in] tau &tau; = tan&phi;
* @param[in] es the signed eccentricity = sign(<i>e</i><sup>2</sup>)
* sqrt(|<i>e</i><sup>2</sup>|)
* @return &tau;&prime; = tan&chi;
*
* See Eqs. (7--9) of
* C. F. F. Karney,
* <a href="https://doi.org/10.1007/s00190-011-0445-3">
* Transverse Mercator with an accuracy of a few nanometers,</a>
* J. Geodesy 85(8), 475--485 (Aug. 2011)
* (preprint
* <a href="https://arxiv.org/abs/1002.1417">arXiv:1002.1417</a>).
**********************************************************************/
template<typename T> static T taupf(T tau, T es);
/**
* tan&phi; in terms of tan&chi;
*
* @tparam T the type of the argument and the returned value.
* @param[in] taup &tau;&prime; = tan&chi;
* @param[in] es the signed eccentricity = sign(<i>e</i><sup>2</sup>)
* sqrt(|<i>e</i><sup>2</sup>|)
* @return &tau; = tan&phi;
*
* See Eqs. (19--21) of
* C. F. F. Karney,
* <a href="https://doi.org/10.1007/s00190-011-0445-3">
* Transverse Mercator with an accuracy of a few nanometers,</a>
* J. Geodesy 85(8), 475--485 (Aug. 2011)
* (preprint
* <a href="https://arxiv.org/abs/1002.1417">arXiv:1002.1417</a>).
**********************************************************************/
template<typename T> static T tauf(T taup, T es);
/**
* The NaN (not a number)
*
* @tparam T the type of the returned value.
* @return NaN if available, otherwise return the max real of type T.
**********************************************************************/
template<typename T = real> static T NaN();
/**
* Infinity
*
* @tparam T the type of the returned value.
* @return infinity if available, otherwise return the max real.
**********************************************************************/
template<typename T = real> static T infinity();
/**
* Swap the bytes of a quantity
*
* @tparam T the type of the argument and the returned value.
* @param[in] x
* @return x with its bytes swapped.
**********************************************************************/
template<typename T> static T swab(T x) {
union {
T r;
unsigned char c[sizeof(T)];
} b;
b.r = x;
for (int i = sizeof(T)/2; i--; )
std::swap(b.c[i], b.c[sizeof(T) - 1 - i]);
return b.r;
}
};
} // namespace GeographicLib
#endif // GEOGRAPHICLIB_MATH_HPP