ADD: new track message, Entity class and Position class
This commit is contained in:
270
libs/geographiclib/develop/GeodesicLine30.cpp
Normal file
270
libs/geographiclib/develop/GeodesicLine30.cpp
Normal file
@@ -0,0 +1,270 @@
|
||||
/**
|
||||
* \file GeodesicLine30.cpp
|
||||
* \brief Implementation for GeographicLib::GeodesicLine30 class
|
||||
*
|
||||
* Copyright (c) Charles Karney (2009-2022) <charles@karney.com> and licensed
|
||||
* under the MIT/X11 License. For more information, see
|
||||
* https://geographiclib.sourceforge.io/
|
||||
*
|
||||
* This is a reformulation of the geodesic problem. The notation is as
|
||||
* follows:
|
||||
* - at a general point (no suffix or 1 or 2 as suffix)
|
||||
* - phi = latitude
|
||||
* - beta = latitude on auxiliary sphere
|
||||
* - omega = longitude on auxiliary sphere
|
||||
* - lambda = longitude
|
||||
* - alpha = azimuth of great circle
|
||||
* - sigma = arc length along great circle
|
||||
* - s = distance
|
||||
* - tau = scaled distance (= sigma at multiples of pi/2)
|
||||
* - at northwards equator crossing
|
||||
* - beta = phi = 0
|
||||
* - omega = lambda = 0
|
||||
* - alpha = alpha0
|
||||
* - sigma = s = 0
|
||||
* - a 12 suffix means a difference, e.g., s12 = s2 - s1.
|
||||
* - s and c prefixes mean sin and cos
|
||||
**********************************************************************/
|
||||
|
||||
#include "GeodesicLine30.hpp"
|
||||
|
||||
namespace GeographicLib {
|
||||
|
||||
using namespace std;
|
||||
|
||||
template<typename real>
|
||||
GeodesicLine30<real>::GeodesicLine30(const Geodesic30<real>& g,
|
||||
real lat1, real lon1, real azi1,
|
||||
unsigned caps)
|
||||
: _a(g._a)
|
||||
, _f(g._f)
|
||||
, _b(g._b)
|
||||
, _c2(g._c2)
|
||||
, _f1(g._f1)
|
||||
// Always allow latitude and azimuth
|
||||
, _caps(caps | LATITUDE | AZIMUTH)
|
||||
{
|
||||
azi1 = Math::AngNormalize(azi1);
|
||||
// Guard against underflow in salp0
|
||||
azi1 = Geodesic30<real>::AngRound(azi1);
|
||||
lon1 = Math::AngNormalize(lon1);
|
||||
_lat1 = lat1;
|
||||
_lon1 = lon1;
|
||||
_azi1 = azi1;
|
||||
// alp1 is in [0, pi]
|
||||
real alp1 = azi1 * Math::degree<real>();
|
||||
// Enforce sin(pi) == 0 and cos(pi/2) == 0. Better to face the ensuing
|
||||
// problems directly than to skirt them.
|
||||
_salp1 = azi1 == -180 ? 0 : sin(alp1);
|
||||
_calp1 = abs(azi1) == 90 ? 0 : cos(alp1);
|
||||
real cbet1, sbet1, phi;
|
||||
phi = lat1 * Math::degree<real>();
|
||||
// Ensure cbet1 = +epsilon at poles
|
||||
sbet1 = _f1 * sin(phi);
|
||||
cbet1 = abs(lat1) == 90 ? Geodesic30<real>::tiny_ : cos(phi);
|
||||
Geodesic30<real>::SinCosNorm(sbet1, cbet1);
|
||||
|
||||
// Evaluate alp0 from sin(alp1) * cos(bet1) = sin(alp0),
|
||||
_salp0 = _salp1 * cbet1; // alp0 in [0, pi/2 - |bet1|]
|
||||
// Alt: calp0 = hypot(sbet1, calp1 * cbet1). The following
|
||||
// is slightly better (consider the case salp1 = 0).
|
||||
_calp0 = hypot(_calp1, _salp1 * sbet1);
|
||||
// Evaluate sig with tan(bet1) = tan(sig1) * cos(alp1).
|
||||
// sig = 0 is nearest northward crossing of equator.
|
||||
// With bet1 = 0, alp1 = pi/2, we have sig1 = 0 (equatorial line).
|
||||
// With bet1 = pi/2, alp1 = -pi, sig1 = pi/2
|
||||
// With bet1 = -pi/2, alp1 = 0 , sig1 = -pi/2
|
||||
// Evaluate omg1 with tan(omg1) = sin(alp0) * tan(sig1).
|
||||
// With alp0 in (0, pi/2], quadrants for sig and omg coincide.
|
||||
// No atan2(0,0) ambiguity at poles since cbet1 = +epsilon.
|
||||
// With alp0 = 0, omg1 = 0 for alp1 = 0, omg1 = pi for alp1 = pi.
|
||||
_ssig1 = sbet1; _somg1 = _salp0 * sbet1;
|
||||
_csig1 = _comg1 = sbet1 != 0 || _calp1 != 0 ? cbet1 * _calp1 : 1;
|
||||
Geodesic30<real>::SinCosNorm(_ssig1, _csig1); // sig1 in (-pi, pi]
|
||||
Geodesic30<real>::SinCosNorm(_somg1, _comg1);
|
||||
|
||||
_k2 = Math::sq(_calp0) * g._ep2;
|
||||
real eps = _k2 / (2 * (1 + sqrt(1 + _k2)) + _k2);
|
||||
|
||||
if (_caps & CAP_C1) {
|
||||
_A1m1 = Geodesic30<real>::A1m1f(eps);
|
||||
Geodesic30<real>::C1f(eps, _C1a);
|
||||
_B11 = Geodesic30<real>::SinCosSeries(true, _ssig1, _csig1, _C1a, nC1_);
|
||||
real s = sin(_B11), c = cos(_B11);
|
||||
// tau1 = sig1 + B11
|
||||
_stau1 = _ssig1 * c + _csig1 * s;
|
||||
_ctau1 = _csig1 * c - _ssig1 * s;
|
||||
// Not necessary because C1pa reverts C1a
|
||||
// _B11 = -SinCosSeries(true, _stau1, _ctau1, _C1pa, nC1p_);
|
||||
}
|
||||
|
||||
if (_caps & CAP_C1p)
|
||||
Geodesic30<real>::C1pf(eps, _C1pa);
|
||||
|
||||
if (_caps & CAP_C2) {
|
||||
_A2m1 = Geodesic30<real>::A2m1f(eps);
|
||||
Geodesic30<real>::C2f(eps, _C2a);
|
||||
_B21 = Geodesic30<real>::SinCosSeries(true, _ssig1, _csig1, _C2a, nC2_);
|
||||
}
|
||||
|
||||
if (_caps & CAP_C3) {
|
||||
g.C3f(eps, _C3a);
|
||||
_A3c = -_f * _salp0 * g.A3f(eps);
|
||||
_B31 = Geodesic30<real>::SinCosSeries(true, _ssig1, _csig1,
|
||||
_C3a, nC3_-1);
|
||||
}
|
||||
|
||||
if (_caps & CAP_C4) {
|
||||
g.C4f(_k2, _C4a);
|
||||
// Multiplier = a^2 * e^2 * cos(alpha0) * sin(alpha0)
|
||||
_A4 = Math::sq(_a) * _calp0 * _salp0 * g._e2;
|
||||
_B41 = Geodesic30<real>::SinCosSeries(false, _ssig1, _csig1, _C4a, nC4_);
|
||||
}
|
||||
}
|
||||
|
||||
template<typename real>
|
||||
real GeodesicLine30<real>::GenPosition(bool arcmode, real s12_a12,
|
||||
unsigned outmask,
|
||||
real& lat2, real& lon2, real& azi2,
|
||||
real& s12, real& m12,
|
||||
real& M12, real& M21,
|
||||
real& S12)
|
||||
const {
|
||||
outmask &= _caps & OUT_ALL;
|
||||
if (!( Init() && (arcmode || (_caps & DISTANCE_IN & OUT_ALL)) ))
|
||||
// Uninitialized or impossible distance calculation requested
|
||||
return Math::NaN<real>();
|
||||
|
||||
// Avoid warning about uninitialized B12.
|
||||
real sig12, ssig12, csig12, B12 = 0, AB1 = 0;
|
||||
if (arcmode) {
|
||||
// Interpret s12_a12 as spherical arc length
|
||||
sig12 = s12_a12 * Math::degree<real>();
|
||||
real s12a = abs(s12_a12);
|
||||
s12a -= 180 * floor(s12a / 180);
|
||||
ssig12 = s12a == 0 ? 0 : sin(sig12);
|
||||
csig12 = s12a == 90 ? 0 : cos(sig12);
|
||||
} else {
|
||||
// Interpret s12_a12 as distance
|
||||
real
|
||||
tau12 = s12_a12 / (_b * (1 + _A1m1)),
|
||||
s = sin(tau12),
|
||||
c = cos(tau12);
|
||||
// tau2 = tau1 + tau12
|
||||
B12 = - Geodesic30<real>::SinCosSeries(true, _stau1 * c + _ctau1 * s,
|
||||
_ctau1 * c - _stau1 * s,
|
||||
_C1pa, nC1p_);
|
||||
sig12 = tau12 - (B12 - _B11);
|
||||
ssig12 = sin(sig12);
|
||||
csig12 = cos(sig12);
|
||||
}
|
||||
|
||||
real omg12, lam12, lon12;
|
||||
real ssig2, csig2, sbet2, cbet2, somg2, comg2, salp2, calp2;
|
||||
// sig2 = sig1 + sig12
|
||||
ssig2 = _ssig1 * csig12 + _csig1 * ssig12;
|
||||
csig2 = _csig1 * csig12 - _ssig1 * ssig12;
|
||||
if (outmask & (DISTANCE | REDUCEDLENGTH | GEODESICSCALE)) {
|
||||
if (arcmode)
|
||||
B12 = Geodesic30<real>::SinCosSeries(true, ssig2, csig2, _C1a, nC1_);
|
||||
AB1 = (1 + _A1m1) * (B12 - _B11);
|
||||
}
|
||||
// sin(bet2) = cos(alp0) * sin(sig2)
|
||||
sbet2 = _calp0 * ssig2;
|
||||
// Alt: cbet2 = hypot(csig2, salp0 * ssig2);
|
||||
cbet2 = hypot(_salp0, _calp0 * csig2);
|
||||
if (cbet2 == 0)
|
||||
// I.e., salp0 = 0, csig2 = 0. Break the degeneracy in this case
|
||||
cbet2 = csig2 = Geodesic30<real>::tiny_;
|
||||
// tan(omg2) = sin(alp0) * tan(sig2)
|
||||
somg2 = _salp0 * ssig2; comg2 = csig2; // No need to normalize
|
||||
// tan(alp0) = cos(sig2)*tan(alp2)
|
||||
salp2 = _salp0; calp2 = _calp0 * csig2; // No need to normalize
|
||||
// omg12 = omg2 - omg1
|
||||
omg12 = atan2(somg2 * _comg1 - comg2 * _somg1,
|
||||
comg2 * _comg1 + somg2 * _somg1);
|
||||
|
||||
if (outmask & DISTANCE)
|
||||
s12 = arcmode ? _b * ((1 + _A1m1) * sig12 + AB1) : s12_a12;
|
||||
|
||||
if (outmask & LONGITUDE) {
|
||||
lam12 = omg12 + _A3c *
|
||||
( sig12 +
|
||||
(Geodesic30<real>::SinCosSeries(true, ssig2, csig2, _C3a, nC3_-1)
|
||||
- _B31));
|
||||
lon12 = lam12 / Math::degree<real>();
|
||||
lon12 = Math::AngNormalize(lon12);
|
||||
lon2 = Math::AngNormalize(_lon1 + lon12);
|
||||
}
|
||||
|
||||
if (outmask & LATITUDE)
|
||||
lat2 = atan2(sbet2, _f1 * cbet2) / Math::degree<real>();
|
||||
|
||||
if (outmask & AZIMUTH)
|
||||
// minus signs give range [-180, 180). 0- converts -0 to +0.
|
||||
azi2 = 0 - atan2(-salp2, calp2) / Math::degree<real>();
|
||||
|
||||
if (outmask & (REDUCEDLENGTH | GEODESICSCALE)) {
|
||||
real
|
||||
ssig1sq = Math::sq(_ssig1),
|
||||
ssig2sq = Math::sq( ssig2),
|
||||
w1 = sqrt(1 + _k2 * ssig1sq),
|
||||
w2 = sqrt(1 + _k2 * ssig2sq),
|
||||
B22 = Geodesic30<real>::SinCosSeries(true, ssig2, csig2, _C2a, nC2_),
|
||||
AB2 = (1 + _A2m1) * (B22 - _B21),
|
||||
J12 = (_A1m1 - _A2m1) * sig12 + (AB1 - AB2);
|
||||
if (outmask & REDUCEDLENGTH)
|
||||
// Add parens around (_csig1 * ssig2) and (_ssig1 * csig2) to ensure
|
||||
// accurate cancellation in the case of coincident points.
|
||||
m12 = _b * ((w2 * (_csig1 * ssig2) - w1 * (_ssig1 * csig2))
|
||||
- _csig1 * csig2 * J12);
|
||||
if (outmask & GEODESICSCALE) {
|
||||
M12 = csig12 + (_k2 * (ssig2sq - ssig1sq) * ssig2 / (w1 + w2)
|
||||
- csig2 * J12) * _ssig1 / w1;
|
||||
M21 = csig12 - (_k2 * (ssig2sq - ssig1sq) * _ssig1 / (w1 + w2)
|
||||
- _csig1 * J12) * ssig2 / w2;
|
||||
}
|
||||
}
|
||||
|
||||
if (outmask & AREA) {
|
||||
real
|
||||
B42 = Geodesic30<real>::SinCosSeries(false, ssig2, csig2, _C4a, nC4_);
|
||||
real salp12, calp12;
|
||||
if (_calp0 == 0 || _salp0 == 0) {
|
||||
// alp12 = alp2 - alp1, used in atan2 so no need to normalize
|
||||
salp12 = salp2 * _calp1 - calp2 * _salp1;
|
||||
calp12 = calp2 * _calp1 + salp2 * _salp1;
|
||||
// The right thing appears to happen if alp1 = +/-180 and alp2 = 0, viz
|
||||
// salp12 = -0 and alp12 = -180. However this depends on the sign
|
||||
// being attached to 0 correctly. The following ensures the correct
|
||||
// behavior.
|
||||
if (salp12 == 0 && calp12 < 0) {
|
||||
salp12 = Geodesic30<real>::tiny_ * _calp1;
|
||||
calp12 = -1;
|
||||
}
|
||||
} else {
|
||||
// tan(alp) = tan(alp0) * sec(sig)
|
||||
// tan(alp2-alp1) = (tan(alp2) -tan(alp1)) / (tan(alp2)*tan(alp1)+1)
|
||||
// = calp0 * salp0 * (csig1-csig2) / (salp0^2 + calp0^2 * csig1*csig2)
|
||||
// If csig12 > 0, write
|
||||
// csig1 - csig2 = ssig12 * (csig1 * ssig12 / (1 + csig12) + ssig1)
|
||||
// else
|
||||
// csig1 - csig2 = csig1 * (1 - csig12) + ssig12 * ssig1
|
||||
// No need to normalize
|
||||
salp12 = _calp0 * _salp0 *
|
||||
(csig12 <= 0 ? _csig1 * (1 - csig12) + ssig12 * _ssig1 :
|
||||
ssig12 * (_csig1 * ssig12 / (1 + csig12) + _ssig1));
|
||||
calp12 = Math::sq(_salp0) + Math::sq(_calp0) * _csig1 * csig2;
|
||||
}
|
||||
S12 = _c2 * atan2(salp12, calp12) + _A4 * (B42 - _B41);
|
||||
}
|
||||
|
||||
return arcmode ? s12_a12 : sig12 / Math::degree<real>();
|
||||
}
|
||||
|
||||
template class GeodesicLine30<double>;
|
||||
#if GEOGRAPHICLIB_HAVE_LONG_DOUBLE
|
||||
template class GeodesicLine30<long double>;
|
||||
#endif
|
||||
|
||||
} // namespace GeographicLib
|
||||
Reference in New Issue
Block a user