ADD: new track message, Entity class and Position class

This commit is contained in:
Henry Winkel
2022-12-20 17:20:35 +01:00
parent 469ecfb099
commit 98ebb563a8
2114 changed files with 482360 additions and 24 deletions

View File

@@ -0,0 +1,117 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008 Benoit Jacob <jacob.benoit.1@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_DETERMINANT_H
#define EIGEN_DETERMINANT_H
namespace Eigen {
namespace internal {
template<typename Derived>
EIGEN_DEVICE_FUNC
inline const typename Derived::Scalar bruteforce_det3_helper
(const MatrixBase<Derived>& matrix, int a, int b, int c)
{
return matrix.coeff(0,a)
* (matrix.coeff(1,b) * matrix.coeff(2,c) - matrix.coeff(1,c) * matrix.coeff(2,b));
}
template<typename Derived,
int DeterminantType = Derived::RowsAtCompileTime
> struct determinant_impl
{
static inline typename traits<Derived>::Scalar run(const Derived& m)
{
if(Derived::ColsAtCompileTime==Dynamic && m.rows()==0)
return typename traits<Derived>::Scalar(1);
return m.partialPivLu().determinant();
}
};
template<typename Derived> struct determinant_impl<Derived, 1>
{
static inline EIGEN_DEVICE_FUNC
typename traits<Derived>::Scalar run(const Derived& m)
{
return m.coeff(0,0);
}
};
template<typename Derived> struct determinant_impl<Derived, 2>
{
static inline EIGEN_DEVICE_FUNC
typename traits<Derived>::Scalar run(const Derived& m)
{
return m.coeff(0,0) * m.coeff(1,1) - m.coeff(1,0) * m.coeff(0,1);
}
};
template<typename Derived> struct determinant_impl<Derived, 3>
{
static inline EIGEN_DEVICE_FUNC
typename traits<Derived>::Scalar run(const Derived& m)
{
return bruteforce_det3_helper(m,0,1,2)
- bruteforce_det3_helper(m,1,0,2)
+ bruteforce_det3_helper(m,2,0,1);
}
};
template<typename Derived> struct determinant_impl<Derived, 4>
{
typedef typename traits<Derived>::Scalar Scalar;
static EIGEN_DEVICE_FUNC
Scalar run(const Derived& m)
{
Scalar d2_01 = det2(m, 0, 1);
Scalar d2_02 = det2(m, 0, 2);
Scalar d2_03 = det2(m, 0, 3);
Scalar d2_12 = det2(m, 1, 2);
Scalar d2_13 = det2(m, 1, 3);
Scalar d2_23 = det2(m, 2, 3);
Scalar d3_0 = det3(m, 1,d2_23, 2,d2_13, 3,d2_12);
Scalar d3_1 = det3(m, 0,d2_23, 2,d2_03, 3,d2_02);
Scalar d3_2 = det3(m, 0,d2_13, 1,d2_03, 3,d2_01);
Scalar d3_3 = det3(m, 0,d2_12, 1,d2_02, 2,d2_01);
return internal::pmadd(-m(0,3),d3_0, m(1,3)*d3_1) +
internal::pmadd(-m(2,3),d3_2, m(3,3)*d3_3);
}
protected:
static EIGEN_DEVICE_FUNC
Scalar det2(const Derived& m, Index i0, Index i1)
{
return m(i0,0) * m(i1,1) - m(i1,0) * m(i0,1);
}
static EIGEN_DEVICE_FUNC
Scalar det3(const Derived& m, Index i0, const Scalar& d0, Index i1, const Scalar& d1, Index i2, const Scalar& d2)
{
return internal::pmadd(m(i0,2), d0, internal::pmadd(-m(i1,2), d1, m(i2,2)*d2));
}
};
} // end namespace internal
/** \lu_module
*
* \returns the determinant of this matrix
*/
template<typename Derived>
EIGEN_DEVICE_FUNC
inline typename internal::traits<Derived>::Scalar MatrixBase<Derived>::determinant() const
{
eigen_assert(rows() == cols());
typedef typename internal::nested_eval<Derived,Base::RowsAtCompileTime>::type Nested;
return internal::determinant_impl<typename internal::remove_all<Nested>::type>::run(derived());
}
} // end namespace Eigen
#endif // EIGEN_DETERMINANT_H

View File

@@ -0,0 +1,877 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2006-2009 Benoit Jacob <jacob.benoit.1@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_LU_H
#define EIGEN_LU_H
namespace Eigen {
namespace internal {
template<typename _MatrixType> struct traits<FullPivLU<_MatrixType> >
: traits<_MatrixType>
{
typedef MatrixXpr XprKind;
typedef SolverStorage StorageKind;
typedef int StorageIndex;
enum { Flags = 0 };
};
} // end namespace internal
/** \ingroup LU_Module
*
* \class FullPivLU
*
* \brief LU decomposition of a matrix with complete pivoting, and related features
*
* \tparam _MatrixType the type of the matrix of which we are computing the LU decomposition
*
* This class represents a LU decomposition of any matrix, with complete pivoting: the matrix A is
* decomposed as \f$ A = P^{-1} L U Q^{-1} \f$ where L is unit-lower-triangular, U is
* upper-triangular, and P and Q are permutation matrices. This is a rank-revealing LU
* decomposition. The eigenvalues (diagonal coefficients) of U are sorted in such a way that any
* zeros are at the end.
*
* This decomposition provides the generic approach to solving systems of linear equations, computing
* the rank, invertibility, inverse, kernel, and determinant.
*
* This LU decomposition is very stable and well tested with large matrices. However there are use cases where the SVD
* decomposition is inherently more stable and/or flexible. For example, when computing the kernel of a matrix,
* working with the SVD allows to select the smallest singular values of the matrix, something that
* the LU decomposition doesn't see.
*
* The data of the LU decomposition can be directly accessed through the methods matrixLU(),
* permutationP(), permutationQ().
*
* As an example, here is how the original matrix can be retrieved:
* \include class_FullPivLU.cpp
* Output: \verbinclude class_FullPivLU.out
*
* This class supports the \link InplaceDecomposition inplace decomposition \endlink mechanism.
*
* \sa MatrixBase::fullPivLu(), MatrixBase::determinant(), MatrixBase::inverse()
*/
template<typename _MatrixType> class FullPivLU
: public SolverBase<FullPivLU<_MatrixType> >
{
public:
typedef _MatrixType MatrixType;
typedef SolverBase<FullPivLU> Base;
friend class SolverBase<FullPivLU>;
EIGEN_GENERIC_PUBLIC_INTERFACE(FullPivLU)
enum {
MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime
};
typedef typename internal::plain_row_type<MatrixType, StorageIndex>::type IntRowVectorType;
typedef typename internal::plain_col_type<MatrixType, StorageIndex>::type IntColVectorType;
typedef PermutationMatrix<ColsAtCompileTime, MaxColsAtCompileTime> PermutationQType;
typedef PermutationMatrix<RowsAtCompileTime, MaxRowsAtCompileTime> PermutationPType;
typedef typename MatrixType::PlainObject PlainObject;
/**
* \brief Default Constructor.
*
* The default constructor is useful in cases in which the user intends to
* perform decompositions via LU::compute(const MatrixType&).
*/
FullPivLU();
/** \brief Default Constructor with memory preallocation
*
* Like the default constructor but with preallocation of the internal data
* according to the specified problem \a size.
* \sa FullPivLU()
*/
FullPivLU(Index rows, Index cols);
/** Constructor.
*
* \param matrix the matrix of which to compute the LU decomposition.
* It is required to be nonzero.
*/
template<typename InputType>
explicit FullPivLU(const EigenBase<InputType>& matrix);
/** \brief Constructs a LU factorization from a given matrix
*
* This overloaded constructor is provided for \link InplaceDecomposition inplace decomposition \endlink when \c MatrixType is a Eigen::Ref.
*
* \sa FullPivLU(const EigenBase&)
*/
template<typename InputType>
explicit FullPivLU(EigenBase<InputType>& matrix);
/** Computes the LU decomposition of the given matrix.
*
* \param matrix the matrix of which to compute the LU decomposition.
* It is required to be nonzero.
*
* \returns a reference to *this
*/
template<typename InputType>
FullPivLU& compute(const EigenBase<InputType>& matrix) {
m_lu = matrix.derived();
computeInPlace();
return *this;
}
/** \returns the LU decomposition matrix: the upper-triangular part is U, the
* unit-lower-triangular part is L (at least for square matrices; in the non-square
* case, special care is needed, see the documentation of class FullPivLU).
*
* \sa matrixL(), matrixU()
*/
inline const MatrixType& matrixLU() const
{
eigen_assert(m_isInitialized && "LU is not initialized.");
return m_lu;
}
/** \returns the number of nonzero pivots in the LU decomposition.
* Here nonzero is meant in the exact sense, not in a fuzzy sense.
* So that notion isn't really intrinsically interesting, but it is
* still useful when implementing algorithms.
*
* \sa rank()
*/
inline Index nonzeroPivots() const
{
eigen_assert(m_isInitialized && "LU is not initialized.");
return m_nonzero_pivots;
}
/** \returns the absolute value of the biggest pivot, i.e. the biggest
* diagonal coefficient of U.
*/
RealScalar maxPivot() const { return m_maxpivot; }
/** \returns the permutation matrix P
*
* \sa permutationQ()
*/
EIGEN_DEVICE_FUNC inline const PermutationPType& permutationP() const
{
eigen_assert(m_isInitialized && "LU is not initialized.");
return m_p;
}
/** \returns the permutation matrix Q
*
* \sa permutationP()
*/
inline const PermutationQType& permutationQ() const
{
eigen_assert(m_isInitialized && "LU is not initialized.");
return m_q;
}
/** \returns the kernel of the matrix, also called its null-space. The columns of the returned matrix
* will form a basis of the kernel.
*
* \note If the kernel has dimension zero, then the returned matrix is a column-vector filled with zeros.
*
* \note This method has to determine which pivots should be considered nonzero.
* For that, it uses the threshold value that you can control by calling
* setThreshold(const RealScalar&).
*
* Example: \include FullPivLU_kernel.cpp
* Output: \verbinclude FullPivLU_kernel.out
*
* \sa image()
*/
inline const internal::kernel_retval<FullPivLU> kernel() const
{
eigen_assert(m_isInitialized && "LU is not initialized.");
return internal::kernel_retval<FullPivLU>(*this);
}
/** \returns the image of the matrix, also called its column-space. The columns of the returned matrix
* will form a basis of the image (column-space).
*
* \param originalMatrix the original matrix, of which *this is the LU decomposition.
* The reason why it is needed to pass it here, is that this allows
* a large optimization, as otherwise this method would need to reconstruct it
* from the LU decomposition.
*
* \note If the image has dimension zero, then the returned matrix is a column-vector filled with zeros.
*
* \note This method has to determine which pivots should be considered nonzero.
* For that, it uses the threshold value that you can control by calling
* setThreshold(const RealScalar&).
*
* Example: \include FullPivLU_image.cpp
* Output: \verbinclude FullPivLU_image.out
*
* \sa kernel()
*/
inline const internal::image_retval<FullPivLU>
image(const MatrixType& originalMatrix) const
{
eigen_assert(m_isInitialized && "LU is not initialized.");
return internal::image_retval<FullPivLU>(*this, originalMatrix);
}
#ifdef EIGEN_PARSED_BY_DOXYGEN
/** \return a solution x to the equation Ax=b, where A is the matrix of which
* *this is the LU decomposition.
*
* \param b the right-hand-side of the equation to solve. Can be a vector or a matrix,
* the only requirement in order for the equation to make sense is that
* b.rows()==A.rows(), where A is the matrix of which *this is the LU decomposition.
*
* \returns a solution.
*
* \note_about_checking_solutions
*
* \note_about_arbitrary_choice_of_solution
* \note_about_using_kernel_to_study_multiple_solutions
*
* Example: \include FullPivLU_solve.cpp
* Output: \verbinclude FullPivLU_solve.out
*
* \sa TriangularView::solve(), kernel(), inverse()
*/
template<typename Rhs>
inline const Solve<FullPivLU, Rhs>
solve(const MatrixBase<Rhs>& b) const;
#endif
/** \returns an estimate of the reciprocal condition number of the matrix of which \c *this is
the LU decomposition.
*/
inline RealScalar rcond() const
{
eigen_assert(m_isInitialized && "PartialPivLU is not initialized.");
return internal::rcond_estimate_helper(m_l1_norm, *this);
}
/** \returns the determinant of the matrix of which
* *this is the LU decomposition. It has only linear complexity
* (that is, O(n) where n is the dimension of the square matrix)
* as the LU decomposition has already been computed.
*
* \note This is only for square matrices.
*
* \note For fixed-size matrices of size up to 4, MatrixBase::determinant() offers
* optimized paths.
*
* \warning a determinant can be very big or small, so for matrices
* of large enough dimension, there is a risk of overflow/underflow.
*
* \sa MatrixBase::determinant()
*/
typename internal::traits<MatrixType>::Scalar determinant() const;
/** Allows to prescribe a threshold to be used by certain methods, such as rank(),
* who need to determine when pivots are to be considered nonzero. This is not used for the
* LU decomposition itself.
*
* When it needs to get the threshold value, Eigen calls threshold(). By default, this
* uses a formula to automatically determine a reasonable threshold.
* Once you have called the present method setThreshold(const RealScalar&),
* your value is used instead.
*
* \param threshold The new value to use as the threshold.
*
* A pivot will be considered nonzero if its absolute value is strictly greater than
* \f$ \vert pivot \vert \leqslant threshold \times \vert maxpivot \vert \f$
* where maxpivot is the biggest pivot.
*
* If you want to come back to the default behavior, call setThreshold(Default_t)
*/
FullPivLU& setThreshold(const RealScalar& threshold)
{
m_usePrescribedThreshold = true;
m_prescribedThreshold = threshold;
return *this;
}
/** Allows to come back to the default behavior, letting Eigen use its default formula for
* determining the threshold.
*
* You should pass the special object Eigen::Default as parameter here.
* \code lu.setThreshold(Eigen::Default); \endcode
*
* See the documentation of setThreshold(const RealScalar&).
*/
FullPivLU& setThreshold(Default_t)
{
m_usePrescribedThreshold = false;
return *this;
}
/** Returns the threshold that will be used by certain methods such as rank().
*
* See the documentation of setThreshold(const RealScalar&).
*/
RealScalar threshold() const
{
eigen_assert(m_isInitialized || m_usePrescribedThreshold);
return m_usePrescribedThreshold ? m_prescribedThreshold
// this formula comes from experimenting (see "LU precision tuning" thread on the list)
// and turns out to be identical to Higham's formula used already in LDLt.
: NumTraits<Scalar>::epsilon() * RealScalar(m_lu.diagonalSize());
}
/** \returns the rank of the matrix of which *this is the LU decomposition.
*
* \note This method has to determine which pivots should be considered nonzero.
* For that, it uses the threshold value that you can control by calling
* setThreshold(const RealScalar&).
*/
inline Index rank() const
{
using std::abs;
eigen_assert(m_isInitialized && "LU is not initialized.");
RealScalar premultiplied_threshold = abs(m_maxpivot) * threshold();
Index result = 0;
for(Index i = 0; i < m_nonzero_pivots; ++i)
result += (abs(m_lu.coeff(i,i)) > premultiplied_threshold);
return result;
}
/** \returns the dimension of the kernel of the matrix of which *this is the LU decomposition.
*
* \note This method has to determine which pivots should be considered nonzero.
* For that, it uses the threshold value that you can control by calling
* setThreshold(const RealScalar&).
*/
inline Index dimensionOfKernel() const
{
eigen_assert(m_isInitialized && "LU is not initialized.");
return cols() - rank();
}
/** \returns true if the matrix of which *this is the LU decomposition represents an injective
* linear map, i.e. has trivial kernel; false otherwise.
*
* \note This method has to determine which pivots should be considered nonzero.
* For that, it uses the threshold value that you can control by calling
* setThreshold(const RealScalar&).
*/
inline bool isInjective() const
{
eigen_assert(m_isInitialized && "LU is not initialized.");
return rank() == cols();
}
/** \returns true if the matrix of which *this is the LU decomposition represents a surjective
* linear map; false otherwise.
*
* \note This method has to determine which pivots should be considered nonzero.
* For that, it uses the threshold value that you can control by calling
* setThreshold(const RealScalar&).
*/
inline bool isSurjective() const
{
eigen_assert(m_isInitialized && "LU is not initialized.");
return rank() == rows();
}
/** \returns true if the matrix of which *this is the LU decomposition is invertible.
*
* \note This method has to determine which pivots should be considered nonzero.
* For that, it uses the threshold value that you can control by calling
* setThreshold(const RealScalar&).
*/
inline bool isInvertible() const
{
eigen_assert(m_isInitialized && "LU is not initialized.");
return isInjective() && (m_lu.rows() == m_lu.cols());
}
/** \returns the inverse of the matrix of which *this is the LU decomposition.
*
* \note If this matrix is not invertible, the returned matrix has undefined coefficients.
* Use isInvertible() to first determine whether this matrix is invertible.
*
* \sa MatrixBase::inverse()
*/
inline const Inverse<FullPivLU> inverse() const
{
eigen_assert(m_isInitialized && "LU is not initialized.");
eigen_assert(m_lu.rows() == m_lu.cols() && "You can't take the inverse of a non-square matrix!");
return Inverse<FullPivLU>(*this);
}
MatrixType reconstructedMatrix() const;
EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR
inline Index rows() const EIGEN_NOEXCEPT { return m_lu.rows(); }
EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR
inline Index cols() const EIGEN_NOEXCEPT { return m_lu.cols(); }
#ifndef EIGEN_PARSED_BY_DOXYGEN
template<typename RhsType, typename DstType>
void _solve_impl(const RhsType &rhs, DstType &dst) const;
template<bool Conjugate, typename RhsType, typename DstType>
void _solve_impl_transposed(const RhsType &rhs, DstType &dst) const;
#endif
protected:
static void check_template_parameters()
{
EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar);
}
void computeInPlace();
MatrixType m_lu;
PermutationPType m_p;
PermutationQType m_q;
IntColVectorType m_rowsTranspositions;
IntRowVectorType m_colsTranspositions;
Index m_nonzero_pivots;
RealScalar m_l1_norm;
RealScalar m_maxpivot, m_prescribedThreshold;
signed char m_det_pq;
bool m_isInitialized, m_usePrescribedThreshold;
};
template<typename MatrixType>
FullPivLU<MatrixType>::FullPivLU()
: m_isInitialized(false), m_usePrescribedThreshold(false)
{
}
template<typename MatrixType>
FullPivLU<MatrixType>::FullPivLU(Index rows, Index cols)
: m_lu(rows, cols),
m_p(rows),
m_q(cols),
m_rowsTranspositions(rows),
m_colsTranspositions(cols),
m_isInitialized(false),
m_usePrescribedThreshold(false)
{
}
template<typename MatrixType>
template<typename InputType>
FullPivLU<MatrixType>::FullPivLU(const EigenBase<InputType>& matrix)
: m_lu(matrix.rows(), matrix.cols()),
m_p(matrix.rows()),
m_q(matrix.cols()),
m_rowsTranspositions(matrix.rows()),
m_colsTranspositions(matrix.cols()),
m_isInitialized(false),
m_usePrescribedThreshold(false)
{
compute(matrix.derived());
}
template<typename MatrixType>
template<typename InputType>
FullPivLU<MatrixType>::FullPivLU(EigenBase<InputType>& matrix)
: m_lu(matrix.derived()),
m_p(matrix.rows()),
m_q(matrix.cols()),
m_rowsTranspositions(matrix.rows()),
m_colsTranspositions(matrix.cols()),
m_isInitialized(false),
m_usePrescribedThreshold(false)
{
computeInPlace();
}
template<typename MatrixType>
void FullPivLU<MatrixType>::computeInPlace()
{
check_template_parameters();
// the permutations are stored as int indices, so just to be sure:
eigen_assert(m_lu.rows()<=NumTraits<int>::highest() && m_lu.cols()<=NumTraits<int>::highest());
m_l1_norm = m_lu.cwiseAbs().colwise().sum().maxCoeff();
const Index size = m_lu.diagonalSize();
const Index rows = m_lu.rows();
const Index cols = m_lu.cols();
// will store the transpositions, before we accumulate them at the end.
// can't accumulate on-the-fly because that will be done in reverse order for the rows.
m_rowsTranspositions.resize(m_lu.rows());
m_colsTranspositions.resize(m_lu.cols());
Index number_of_transpositions = 0; // number of NONTRIVIAL transpositions, i.e. m_rowsTranspositions[i]!=i
m_nonzero_pivots = size; // the generic case is that in which all pivots are nonzero (invertible case)
m_maxpivot = RealScalar(0);
for(Index k = 0; k < size; ++k)
{
// First, we need to find the pivot.
// biggest coefficient in the remaining bottom-right corner (starting at row k, col k)
Index row_of_biggest_in_corner, col_of_biggest_in_corner;
typedef internal::scalar_score_coeff_op<Scalar> Scoring;
typedef typename Scoring::result_type Score;
Score biggest_in_corner;
biggest_in_corner = m_lu.bottomRightCorner(rows-k, cols-k)
.unaryExpr(Scoring())
.maxCoeff(&row_of_biggest_in_corner, &col_of_biggest_in_corner);
row_of_biggest_in_corner += k; // correct the values! since they were computed in the corner,
col_of_biggest_in_corner += k; // need to add k to them.
if(biggest_in_corner==Score(0))
{
// before exiting, make sure to initialize the still uninitialized transpositions
// in a sane state without destroying what we already have.
m_nonzero_pivots = k;
for(Index i = k; i < size; ++i)
{
m_rowsTranspositions.coeffRef(i) = internal::convert_index<StorageIndex>(i);
m_colsTranspositions.coeffRef(i) = internal::convert_index<StorageIndex>(i);
}
break;
}
RealScalar abs_pivot = internal::abs_knowing_score<Scalar>()(m_lu(row_of_biggest_in_corner, col_of_biggest_in_corner), biggest_in_corner);
if(abs_pivot > m_maxpivot) m_maxpivot = abs_pivot;
// Now that we've found the pivot, we need to apply the row/col swaps to
// bring it to the location (k,k).
m_rowsTranspositions.coeffRef(k) = internal::convert_index<StorageIndex>(row_of_biggest_in_corner);
m_colsTranspositions.coeffRef(k) = internal::convert_index<StorageIndex>(col_of_biggest_in_corner);
if(k != row_of_biggest_in_corner) {
m_lu.row(k).swap(m_lu.row(row_of_biggest_in_corner));
++number_of_transpositions;
}
if(k != col_of_biggest_in_corner) {
m_lu.col(k).swap(m_lu.col(col_of_biggest_in_corner));
++number_of_transpositions;
}
// Now that the pivot is at the right location, we update the remaining
// bottom-right corner by Gaussian elimination.
if(k<rows-1)
m_lu.col(k).tail(rows-k-1) /= m_lu.coeff(k,k);
if(k<size-1)
m_lu.block(k+1,k+1,rows-k-1,cols-k-1).noalias() -= m_lu.col(k).tail(rows-k-1) * m_lu.row(k).tail(cols-k-1);
}
// the main loop is over, we still have to accumulate the transpositions to find the
// permutations P and Q
m_p.setIdentity(rows);
for(Index k = size-1; k >= 0; --k)
m_p.applyTranspositionOnTheRight(k, m_rowsTranspositions.coeff(k));
m_q.setIdentity(cols);
for(Index k = 0; k < size; ++k)
m_q.applyTranspositionOnTheRight(k, m_colsTranspositions.coeff(k));
m_det_pq = (number_of_transpositions%2) ? -1 : 1;
m_isInitialized = true;
}
template<typename MatrixType>
typename internal::traits<MatrixType>::Scalar FullPivLU<MatrixType>::determinant() const
{
eigen_assert(m_isInitialized && "LU is not initialized.");
eigen_assert(m_lu.rows() == m_lu.cols() && "You can't take the determinant of a non-square matrix!");
return Scalar(m_det_pq) * Scalar(m_lu.diagonal().prod());
}
/** \returns the matrix represented by the decomposition,
* i.e., it returns the product: \f$ P^{-1} L U Q^{-1} \f$.
* This function is provided for debug purposes. */
template<typename MatrixType>
MatrixType FullPivLU<MatrixType>::reconstructedMatrix() const
{
eigen_assert(m_isInitialized && "LU is not initialized.");
const Index smalldim = (std::min)(m_lu.rows(), m_lu.cols());
// LU
MatrixType res(m_lu.rows(),m_lu.cols());
// FIXME the .toDenseMatrix() should not be needed...
res = m_lu.leftCols(smalldim)
.template triangularView<UnitLower>().toDenseMatrix()
* m_lu.topRows(smalldim)
.template triangularView<Upper>().toDenseMatrix();
// P^{-1}(LU)
res = m_p.inverse() * res;
// (P^{-1}LU)Q^{-1}
res = res * m_q.inverse();
return res;
}
/********* Implementation of kernel() **************************************************/
namespace internal {
template<typename _MatrixType>
struct kernel_retval<FullPivLU<_MatrixType> >
: kernel_retval_base<FullPivLU<_MatrixType> >
{
EIGEN_MAKE_KERNEL_HELPERS(FullPivLU<_MatrixType>)
enum { MaxSmallDimAtCompileTime = EIGEN_SIZE_MIN_PREFER_FIXED(
MatrixType::MaxColsAtCompileTime,
MatrixType::MaxRowsAtCompileTime)
};
template<typename Dest> void evalTo(Dest& dst) const
{
using std::abs;
const Index cols = dec().matrixLU().cols(), dimker = cols - rank();
if(dimker == 0)
{
// The Kernel is just {0}, so it doesn't have a basis properly speaking, but let's
// avoid crashing/asserting as that depends on floating point calculations. Let's
// just return a single column vector filled with zeros.
dst.setZero();
return;
}
/* Let us use the following lemma:
*
* Lemma: If the matrix A has the LU decomposition PAQ = LU,
* then Ker A = Q(Ker U).
*
* Proof: trivial: just keep in mind that P, Q, L are invertible.
*/
/* Thus, all we need to do is to compute Ker U, and then apply Q.
*
* U is upper triangular, with eigenvalues sorted so that any zeros appear at the end.
* Thus, the diagonal of U ends with exactly
* dimKer zero's. Let us use that to construct dimKer linearly
* independent vectors in Ker U.
*/
Matrix<Index, Dynamic, 1, 0, MaxSmallDimAtCompileTime, 1> pivots(rank());
RealScalar premultiplied_threshold = dec().maxPivot() * dec().threshold();
Index p = 0;
for(Index i = 0; i < dec().nonzeroPivots(); ++i)
if(abs(dec().matrixLU().coeff(i,i)) > premultiplied_threshold)
pivots.coeffRef(p++) = i;
eigen_internal_assert(p == rank());
// we construct a temporaty trapezoid matrix m, by taking the U matrix and
// permuting the rows and cols to bring the nonnegligible pivots to the top of
// the main diagonal. We need that to be able to apply our triangular solvers.
// FIXME when we get triangularView-for-rectangular-matrices, this can be simplified
Matrix<typename MatrixType::Scalar, Dynamic, Dynamic, MatrixType::Options,
MaxSmallDimAtCompileTime, MatrixType::MaxColsAtCompileTime>
m(dec().matrixLU().block(0, 0, rank(), cols));
for(Index i = 0; i < rank(); ++i)
{
if(i) m.row(i).head(i).setZero();
m.row(i).tail(cols-i) = dec().matrixLU().row(pivots.coeff(i)).tail(cols-i);
}
m.block(0, 0, rank(), rank());
m.block(0, 0, rank(), rank()).template triangularView<StrictlyLower>().setZero();
for(Index i = 0; i < rank(); ++i)
m.col(i).swap(m.col(pivots.coeff(i)));
// ok, we have our trapezoid matrix, we can apply the triangular solver.
// notice that the math behind this suggests that we should apply this to the
// negative of the RHS, but for performance we just put the negative sign elsewhere, see below.
m.topLeftCorner(rank(), rank())
.template triangularView<Upper>().solveInPlace(
m.topRightCorner(rank(), dimker)
);
// now we must undo the column permutation that we had applied!
for(Index i = rank()-1; i >= 0; --i)
m.col(i).swap(m.col(pivots.coeff(i)));
// see the negative sign in the next line, that's what we were talking about above.
for(Index i = 0; i < rank(); ++i) dst.row(dec().permutationQ().indices().coeff(i)) = -m.row(i).tail(dimker);
for(Index i = rank(); i < cols; ++i) dst.row(dec().permutationQ().indices().coeff(i)).setZero();
for(Index k = 0; k < dimker; ++k) dst.coeffRef(dec().permutationQ().indices().coeff(rank()+k), k) = Scalar(1);
}
};
/***** Implementation of image() *****************************************************/
template<typename _MatrixType>
struct image_retval<FullPivLU<_MatrixType> >
: image_retval_base<FullPivLU<_MatrixType> >
{
EIGEN_MAKE_IMAGE_HELPERS(FullPivLU<_MatrixType>)
enum { MaxSmallDimAtCompileTime = EIGEN_SIZE_MIN_PREFER_FIXED(
MatrixType::MaxColsAtCompileTime,
MatrixType::MaxRowsAtCompileTime)
};
template<typename Dest> void evalTo(Dest& dst) const
{
using std::abs;
if(rank() == 0)
{
// The Image is just {0}, so it doesn't have a basis properly speaking, but let's
// avoid crashing/asserting as that depends on floating point calculations. Let's
// just return a single column vector filled with zeros.
dst.setZero();
return;
}
Matrix<Index, Dynamic, 1, 0, MaxSmallDimAtCompileTime, 1> pivots(rank());
RealScalar premultiplied_threshold = dec().maxPivot() * dec().threshold();
Index p = 0;
for(Index i = 0; i < dec().nonzeroPivots(); ++i)
if(abs(dec().matrixLU().coeff(i,i)) > premultiplied_threshold)
pivots.coeffRef(p++) = i;
eigen_internal_assert(p == rank());
for(Index i = 0; i < rank(); ++i)
dst.col(i) = originalMatrix().col(dec().permutationQ().indices().coeff(pivots.coeff(i)));
}
};
/***** Implementation of solve() *****************************************************/
} // end namespace internal
#ifndef EIGEN_PARSED_BY_DOXYGEN
template<typename _MatrixType>
template<typename RhsType, typename DstType>
void FullPivLU<_MatrixType>::_solve_impl(const RhsType &rhs, DstType &dst) const
{
/* The decomposition PAQ = LU can be rewritten as A = P^{-1} L U Q^{-1}.
* So we proceed as follows:
* Step 1: compute c = P * rhs.
* Step 2: replace c by the solution x to Lx = c. Exists because L is invertible.
* Step 3: replace c by the solution x to Ux = c. May or may not exist.
* Step 4: result = Q * c;
*/
const Index rows = this->rows(),
cols = this->cols(),
nonzero_pivots = this->rank();
const Index smalldim = (std::min)(rows, cols);
if(nonzero_pivots == 0)
{
dst.setZero();
return;
}
typename RhsType::PlainObject c(rhs.rows(), rhs.cols());
// Step 1
c = permutationP() * rhs;
// Step 2
m_lu.topLeftCorner(smalldim,smalldim)
.template triangularView<UnitLower>()
.solveInPlace(c.topRows(smalldim));
if(rows>cols)
c.bottomRows(rows-cols) -= m_lu.bottomRows(rows-cols) * c.topRows(cols);
// Step 3
m_lu.topLeftCorner(nonzero_pivots, nonzero_pivots)
.template triangularView<Upper>()
.solveInPlace(c.topRows(nonzero_pivots));
// Step 4
for(Index i = 0; i < nonzero_pivots; ++i)
dst.row(permutationQ().indices().coeff(i)) = c.row(i);
for(Index i = nonzero_pivots; i < m_lu.cols(); ++i)
dst.row(permutationQ().indices().coeff(i)).setZero();
}
template<typename _MatrixType>
template<bool Conjugate, typename RhsType, typename DstType>
void FullPivLU<_MatrixType>::_solve_impl_transposed(const RhsType &rhs, DstType &dst) const
{
/* The decomposition PAQ = LU can be rewritten as A = P^{-1} L U Q^{-1},
* and since permutations are real and unitary, we can write this
* as A^T = Q U^T L^T P,
* So we proceed as follows:
* Step 1: compute c = Q^T rhs.
* Step 2: replace c by the solution x to U^T x = c. May or may not exist.
* Step 3: replace c by the solution x to L^T x = c.
* Step 4: result = P^T c.
* If Conjugate is true, replace "^T" by "^*" above.
*/
const Index rows = this->rows(), cols = this->cols(),
nonzero_pivots = this->rank();
const Index smalldim = (std::min)(rows, cols);
if(nonzero_pivots == 0)
{
dst.setZero();
return;
}
typename RhsType::PlainObject c(rhs.rows(), rhs.cols());
// Step 1
c = permutationQ().inverse() * rhs;
// Step 2
m_lu.topLeftCorner(nonzero_pivots, nonzero_pivots)
.template triangularView<Upper>()
.transpose()
.template conjugateIf<Conjugate>()
.solveInPlace(c.topRows(nonzero_pivots));
// Step 3
m_lu.topLeftCorner(smalldim, smalldim)
.template triangularView<UnitLower>()
.transpose()
.template conjugateIf<Conjugate>()
.solveInPlace(c.topRows(smalldim));
// Step 4
PermutationPType invp = permutationP().inverse().eval();
for(Index i = 0; i < smalldim; ++i)
dst.row(invp.indices().coeff(i)) = c.row(i);
for(Index i = smalldim; i < rows; ++i)
dst.row(invp.indices().coeff(i)).setZero();
}
#endif
namespace internal {
/***** Implementation of inverse() *****************************************************/
template<typename DstXprType, typename MatrixType>
struct Assignment<DstXprType, Inverse<FullPivLU<MatrixType> >, internal::assign_op<typename DstXprType::Scalar,typename FullPivLU<MatrixType>::Scalar>, Dense2Dense>
{
typedef FullPivLU<MatrixType> LuType;
typedef Inverse<LuType> SrcXprType;
static void run(DstXprType &dst, const SrcXprType &src, const internal::assign_op<typename DstXprType::Scalar,typename MatrixType::Scalar> &)
{
dst = src.nestedExpression().solve(MatrixType::Identity(src.rows(), src.cols()));
}
};
} // end namespace internal
/******* MatrixBase methods *****************************************************************/
/** \lu_module
*
* \return the full-pivoting LU decomposition of \c *this.
*
* \sa class FullPivLU
*/
template<typename Derived>
inline const FullPivLU<typename MatrixBase<Derived>::PlainObject>
MatrixBase<Derived>::fullPivLu() const
{
return FullPivLU<PlainObject>(eval());
}
} // end namespace Eigen
#endif // EIGEN_LU_H

View File

@@ -0,0 +1,432 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008-2010 Benoit Jacob <jacob.benoit.1@gmail.com>
// Copyright (C) 2014 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_INVERSE_IMPL_H
#define EIGEN_INVERSE_IMPL_H
namespace Eigen {
namespace internal {
/**********************************
*** General case implementation ***
**********************************/
template<typename MatrixType, typename ResultType, int Size = MatrixType::RowsAtCompileTime>
struct compute_inverse
{
EIGEN_DEVICE_FUNC
static inline void run(const MatrixType& matrix, ResultType& result)
{
result = matrix.partialPivLu().inverse();
}
};
template<typename MatrixType, typename ResultType, int Size = MatrixType::RowsAtCompileTime>
struct compute_inverse_and_det_with_check { /* nothing! general case not supported. */ };
/****************************
*** Size 1 implementation ***
****************************/
template<typename MatrixType, typename ResultType>
struct compute_inverse<MatrixType, ResultType, 1>
{
EIGEN_DEVICE_FUNC
static inline void run(const MatrixType& matrix, ResultType& result)
{
typedef typename MatrixType::Scalar Scalar;
internal::evaluator<MatrixType> matrixEval(matrix);
result.coeffRef(0,0) = Scalar(1) / matrixEval.coeff(0,0);
}
};
template<typename MatrixType, typename ResultType>
struct compute_inverse_and_det_with_check<MatrixType, ResultType, 1>
{
EIGEN_DEVICE_FUNC
static inline void run(
const MatrixType& matrix,
const typename MatrixType::RealScalar& absDeterminantThreshold,
ResultType& result,
typename ResultType::Scalar& determinant,
bool& invertible
)
{
using std::abs;
determinant = matrix.coeff(0,0);
invertible = abs(determinant) > absDeterminantThreshold;
if(invertible) result.coeffRef(0,0) = typename ResultType::Scalar(1) / determinant;
}
};
/****************************
*** Size 2 implementation ***
****************************/
template<typename MatrixType, typename ResultType>
EIGEN_DEVICE_FUNC
inline void compute_inverse_size2_helper(
const MatrixType& matrix, const typename ResultType::Scalar& invdet,
ResultType& result)
{
typename ResultType::Scalar temp = matrix.coeff(0,0);
result.coeffRef(0,0) = matrix.coeff(1,1) * invdet;
result.coeffRef(1,0) = -matrix.coeff(1,0) * invdet;
result.coeffRef(0,1) = -matrix.coeff(0,1) * invdet;
result.coeffRef(1,1) = temp * invdet;
}
template<typename MatrixType, typename ResultType>
struct compute_inverse<MatrixType, ResultType, 2>
{
EIGEN_DEVICE_FUNC
static inline void run(const MatrixType& matrix, ResultType& result)
{
typedef typename ResultType::Scalar Scalar;
const Scalar invdet = typename MatrixType::Scalar(1) / matrix.determinant();
compute_inverse_size2_helper(matrix, invdet, result);
}
};
template<typename MatrixType, typename ResultType>
struct compute_inverse_and_det_with_check<MatrixType, ResultType, 2>
{
EIGEN_DEVICE_FUNC
static inline void run(
const MatrixType& matrix,
const typename MatrixType::RealScalar& absDeterminantThreshold,
ResultType& inverse,
typename ResultType::Scalar& determinant,
bool& invertible
)
{
using std::abs;
typedef typename ResultType::Scalar Scalar;
determinant = matrix.determinant();
invertible = abs(determinant) > absDeterminantThreshold;
if(!invertible) return;
const Scalar invdet = Scalar(1) / determinant;
compute_inverse_size2_helper(matrix, invdet, inverse);
}
};
/****************************
*** Size 3 implementation ***
****************************/
template<typename MatrixType, int i, int j>
EIGEN_DEVICE_FUNC
inline typename MatrixType::Scalar cofactor_3x3(const MatrixType& m)
{
enum {
i1 = (i+1) % 3,
i2 = (i+2) % 3,
j1 = (j+1) % 3,
j2 = (j+2) % 3
};
return m.coeff(i1, j1) * m.coeff(i2, j2)
- m.coeff(i1, j2) * m.coeff(i2, j1);
}
template<typename MatrixType, typename ResultType>
EIGEN_DEVICE_FUNC
inline void compute_inverse_size3_helper(
const MatrixType& matrix,
const typename ResultType::Scalar& invdet,
const Matrix<typename ResultType::Scalar,3,1>& cofactors_col0,
ResultType& result)
{
// Compute cofactors in a way that avoids aliasing issues.
typedef typename ResultType::Scalar Scalar;
const Scalar c01 = cofactor_3x3<MatrixType,0,1>(matrix) * invdet;
const Scalar c11 = cofactor_3x3<MatrixType,1,1>(matrix) * invdet;
const Scalar c02 = cofactor_3x3<MatrixType,0,2>(matrix) * invdet;
result.coeffRef(1,2) = cofactor_3x3<MatrixType,2,1>(matrix) * invdet;
result.coeffRef(2,1) = cofactor_3x3<MatrixType,1,2>(matrix) * invdet;
result.coeffRef(2,2) = cofactor_3x3<MatrixType,2,2>(matrix) * invdet;
result.coeffRef(1,0) = c01;
result.coeffRef(1,1) = c11;
result.coeffRef(2,0) = c02;
result.row(0) = cofactors_col0 * invdet;
}
template<typename MatrixType, typename ResultType>
struct compute_inverse<MatrixType, ResultType, 3>
{
EIGEN_DEVICE_FUNC
static inline void run(const MatrixType& matrix, ResultType& result)
{
typedef typename ResultType::Scalar Scalar;
Matrix<typename MatrixType::Scalar,3,1> cofactors_col0;
cofactors_col0.coeffRef(0) = cofactor_3x3<MatrixType,0,0>(matrix);
cofactors_col0.coeffRef(1) = cofactor_3x3<MatrixType,1,0>(matrix);
cofactors_col0.coeffRef(2) = cofactor_3x3<MatrixType,2,0>(matrix);
const Scalar det = (cofactors_col0.cwiseProduct(matrix.col(0))).sum();
const Scalar invdet = Scalar(1) / det;
compute_inverse_size3_helper(matrix, invdet, cofactors_col0, result);
}
};
template<typename MatrixType, typename ResultType>
struct compute_inverse_and_det_with_check<MatrixType, ResultType, 3>
{
EIGEN_DEVICE_FUNC
static inline void run(
const MatrixType& matrix,
const typename MatrixType::RealScalar& absDeterminantThreshold,
ResultType& inverse,
typename ResultType::Scalar& determinant,
bool& invertible
)
{
typedef typename ResultType::Scalar Scalar;
Matrix<Scalar,3,1> cofactors_col0;
cofactors_col0.coeffRef(0) = cofactor_3x3<MatrixType,0,0>(matrix);
cofactors_col0.coeffRef(1) = cofactor_3x3<MatrixType,1,0>(matrix);
cofactors_col0.coeffRef(2) = cofactor_3x3<MatrixType,2,0>(matrix);
determinant = (cofactors_col0.cwiseProduct(matrix.col(0))).sum();
invertible = Eigen::numext::abs(determinant) > absDeterminantThreshold;
if(!invertible) return;
const Scalar invdet = Scalar(1) / determinant;
compute_inverse_size3_helper(matrix, invdet, cofactors_col0, inverse);
}
};
/****************************
*** Size 4 implementation ***
****************************/
template<typename Derived>
EIGEN_DEVICE_FUNC
inline const typename Derived::Scalar general_det3_helper
(const MatrixBase<Derived>& matrix, int i1, int i2, int i3, int j1, int j2, int j3)
{
return matrix.coeff(i1,j1)
* (matrix.coeff(i2,j2) * matrix.coeff(i3,j3) - matrix.coeff(i2,j3) * matrix.coeff(i3,j2));
}
template<typename MatrixType, int i, int j>
EIGEN_DEVICE_FUNC
inline typename MatrixType::Scalar cofactor_4x4(const MatrixType& matrix)
{
enum {
i1 = (i+1) % 4,
i2 = (i+2) % 4,
i3 = (i+3) % 4,
j1 = (j+1) % 4,
j2 = (j+2) % 4,
j3 = (j+3) % 4
};
return general_det3_helper(matrix, i1, i2, i3, j1, j2, j3)
+ general_det3_helper(matrix, i2, i3, i1, j1, j2, j3)
+ general_det3_helper(matrix, i3, i1, i2, j1, j2, j3);
}
template<int Arch, typename Scalar, typename MatrixType, typename ResultType>
struct compute_inverse_size4
{
EIGEN_DEVICE_FUNC
static void run(const MatrixType& matrix, ResultType& result)
{
result.coeffRef(0,0) = cofactor_4x4<MatrixType,0,0>(matrix);
result.coeffRef(1,0) = -cofactor_4x4<MatrixType,0,1>(matrix);
result.coeffRef(2,0) = cofactor_4x4<MatrixType,0,2>(matrix);
result.coeffRef(3,0) = -cofactor_4x4<MatrixType,0,3>(matrix);
result.coeffRef(0,2) = cofactor_4x4<MatrixType,2,0>(matrix);
result.coeffRef(1,2) = -cofactor_4x4<MatrixType,2,1>(matrix);
result.coeffRef(2,2) = cofactor_4x4<MatrixType,2,2>(matrix);
result.coeffRef(3,2) = -cofactor_4x4<MatrixType,2,3>(matrix);
result.coeffRef(0,1) = -cofactor_4x4<MatrixType,1,0>(matrix);
result.coeffRef(1,1) = cofactor_4x4<MatrixType,1,1>(matrix);
result.coeffRef(2,1) = -cofactor_4x4<MatrixType,1,2>(matrix);
result.coeffRef(3,1) = cofactor_4x4<MatrixType,1,3>(matrix);
result.coeffRef(0,3) = -cofactor_4x4<MatrixType,3,0>(matrix);
result.coeffRef(1,3) = cofactor_4x4<MatrixType,3,1>(matrix);
result.coeffRef(2,3) = -cofactor_4x4<MatrixType,3,2>(matrix);
result.coeffRef(3,3) = cofactor_4x4<MatrixType,3,3>(matrix);
result /= (matrix.col(0).cwiseProduct(result.row(0).transpose())).sum();
}
};
template<typename MatrixType, typename ResultType>
struct compute_inverse<MatrixType, ResultType, 4>
: compute_inverse_size4<Architecture::Target, typename MatrixType::Scalar,
MatrixType, ResultType>
{
};
template<typename MatrixType, typename ResultType>
struct compute_inverse_and_det_with_check<MatrixType, ResultType, 4>
{
EIGEN_DEVICE_FUNC
static inline void run(
const MatrixType& matrix,
const typename MatrixType::RealScalar& absDeterminantThreshold,
ResultType& inverse,
typename ResultType::Scalar& determinant,
bool& invertible
)
{
using std::abs;
determinant = matrix.determinant();
invertible = abs(determinant) > absDeterminantThreshold;
if(invertible && extract_data(matrix) != extract_data(inverse)) {
compute_inverse<MatrixType, ResultType>::run(matrix, inverse);
}
else if(invertible) {
MatrixType matrix_t = matrix;
compute_inverse<MatrixType, ResultType>::run(matrix_t, inverse);
}
}
};
/*************************
*** MatrixBase methods ***
*************************/
} // end namespace internal
namespace internal {
// Specialization for "dense = dense_xpr.inverse()"
template<typename DstXprType, typename XprType>
struct Assignment<DstXprType, Inverse<XprType>, internal::assign_op<typename DstXprType::Scalar,typename XprType::Scalar>, Dense2Dense>
{
typedef Inverse<XprType> SrcXprType;
EIGEN_DEVICE_FUNC
static void run(DstXprType &dst, const SrcXprType &src, const internal::assign_op<typename DstXprType::Scalar,typename XprType::Scalar> &)
{
Index dstRows = src.rows();
Index dstCols = src.cols();
if((dst.rows()!=dstRows) || (dst.cols()!=dstCols))
dst.resize(dstRows, dstCols);
const int Size = EIGEN_PLAIN_ENUM_MIN(XprType::ColsAtCompileTime,DstXprType::ColsAtCompileTime);
EIGEN_ONLY_USED_FOR_DEBUG(Size);
eigen_assert(( (Size<=1) || (Size>4) || (extract_data(src.nestedExpression())!=extract_data(dst)))
&& "Aliasing problem detected in inverse(), you need to do inverse().eval() here.");
typedef typename internal::nested_eval<XprType,XprType::ColsAtCompileTime>::type ActualXprType;
typedef typename internal::remove_all<ActualXprType>::type ActualXprTypeCleanded;
ActualXprType actual_xpr(src.nestedExpression());
compute_inverse<ActualXprTypeCleanded, DstXprType>::run(actual_xpr, dst);
}
};
} // end namespace internal
/** \lu_module
*
* \returns the matrix inverse of this matrix.
*
* For small fixed sizes up to 4x4, this method uses cofactors.
* In the general case, this method uses class PartialPivLU.
*
* \note This matrix must be invertible, otherwise the result is undefined. If you need an
* invertibility check, do the following:
* \li for fixed sizes up to 4x4, use computeInverseAndDetWithCheck().
* \li for the general case, use class FullPivLU.
*
* Example: \include MatrixBase_inverse.cpp
* Output: \verbinclude MatrixBase_inverse.out
*
* \sa computeInverseAndDetWithCheck()
*/
template<typename Derived>
EIGEN_DEVICE_FUNC
inline const Inverse<Derived> MatrixBase<Derived>::inverse() const
{
EIGEN_STATIC_ASSERT(!NumTraits<Scalar>::IsInteger,THIS_FUNCTION_IS_NOT_FOR_INTEGER_NUMERIC_TYPES)
eigen_assert(rows() == cols());
return Inverse<Derived>(derived());
}
/** \lu_module
*
* Computation of matrix inverse and determinant, with invertibility check.
*
* This is only for fixed-size square matrices of size up to 4x4.
*
* Notice that it will trigger a copy of input matrix when trying to do the inverse in place.
*
* \param inverse Reference to the matrix in which to store the inverse.
* \param determinant Reference to the variable in which to store the determinant.
* \param invertible Reference to the bool variable in which to store whether the matrix is invertible.
* \param absDeterminantThreshold Optional parameter controlling the invertibility check.
* The matrix will be declared invertible if the absolute value of its
* determinant is greater than this threshold.
*
* Example: \include MatrixBase_computeInverseAndDetWithCheck.cpp
* Output: \verbinclude MatrixBase_computeInverseAndDetWithCheck.out
*
* \sa inverse(), computeInverseWithCheck()
*/
template<typename Derived>
template<typename ResultType>
inline void MatrixBase<Derived>::computeInverseAndDetWithCheck(
ResultType& inverse,
typename ResultType::Scalar& determinant,
bool& invertible,
const RealScalar& absDeterminantThreshold
) const
{
// i'd love to put some static assertions there, but SFINAE means that they have no effect...
eigen_assert(rows() == cols());
// for 2x2, it's worth giving a chance to avoid evaluating.
// for larger sizes, evaluating has negligible cost and limits code size.
typedef typename internal::conditional<
RowsAtCompileTime == 2,
typename internal::remove_all<typename internal::nested_eval<Derived, 2>::type>::type,
PlainObject
>::type MatrixType;
internal::compute_inverse_and_det_with_check<MatrixType, ResultType>::run
(derived(), absDeterminantThreshold, inverse, determinant, invertible);
}
/** \lu_module
*
* Computation of matrix inverse, with invertibility check.
*
* This is only for fixed-size square matrices of size up to 4x4.
*
* Notice that it will trigger a copy of input matrix when trying to do the inverse in place.
*
* \param inverse Reference to the matrix in which to store the inverse.
* \param invertible Reference to the bool variable in which to store whether the matrix is invertible.
* \param absDeterminantThreshold Optional parameter controlling the invertibility check.
* The matrix will be declared invertible if the absolute value of its
* determinant is greater than this threshold.
*
* Example: \include MatrixBase_computeInverseWithCheck.cpp
* Output: \verbinclude MatrixBase_computeInverseWithCheck.out
*
* \sa inverse(), computeInverseAndDetWithCheck()
*/
template<typename Derived>
template<typename ResultType>
inline void MatrixBase<Derived>::computeInverseWithCheck(
ResultType& inverse,
bool& invertible,
const RealScalar& absDeterminantThreshold
) const
{
Scalar determinant;
// i'd love to put some static assertions there, but SFINAE means that they have no effect...
eigen_assert(rows() == cols());
computeInverseAndDetWithCheck(inverse,determinant,invertible,absDeterminantThreshold);
}
} // end namespace Eigen
#endif // EIGEN_INVERSE_IMPL_H

View File

@@ -0,0 +1,624 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2006-2009 Benoit Jacob <jacob.benoit.1@gmail.com>
// Copyright (C) 2009 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_PARTIALLU_H
#define EIGEN_PARTIALLU_H
namespace Eigen {
namespace internal {
template<typename _MatrixType> struct traits<PartialPivLU<_MatrixType> >
: traits<_MatrixType>
{
typedef MatrixXpr XprKind;
typedef SolverStorage StorageKind;
typedef int StorageIndex;
typedef traits<_MatrixType> BaseTraits;
enum {
Flags = BaseTraits::Flags & RowMajorBit,
CoeffReadCost = Dynamic
};
};
template<typename T,typename Derived>
struct enable_if_ref;
// {
// typedef Derived type;
// };
template<typename T,typename Derived>
struct enable_if_ref<Ref<T>,Derived> {
typedef Derived type;
};
} // end namespace internal
/** \ingroup LU_Module
*
* \class PartialPivLU
*
* \brief LU decomposition of a matrix with partial pivoting, and related features
*
* \tparam _MatrixType the type of the matrix of which we are computing the LU decomposition
*
* This class represents a LU decomposition of a \b square \b invertible matrix, with partial pivoting: the matrix A
* is decomposed as A = PLU where L is unit-lower-triangular, U is upper-triangular, and P
* is a permutation matrix.
*
* Typically, partial pivoting LU decomposition is only considered numerically stable for square invertible
* matrices. Thus LAPACK's dgesv and dgesvx require the matrix to be square and invertible. The present class
* does the same. It will assert that the matrix is square, but it won't (actually it can't) check that the
* matrix is invertible: it is your task to check that you only use this decomposition on invertible matrices.
*
* The guaranteed safe alternative, working for all matrices, is the full pivoting LU decomposition, provided
* by class FullPivLU.
*
* This is \b not a rank-revealing LU decomposition. Many features are intentionally absent from this class,
* such as rank computation. If you need these features, use class FullPivLU.
*
* This LU decomposition is suitable to invert invertible matrices. It is what MatrixBase::inverse() uses
* in the general case.
* On the other hand, it is \b not suitable to determine whether a given matrix is invertible.
*
* The data of the LU decomposition can be directly accessed through the methods matrixLU(), permutationP().
*
* This class supports the \link InplaceDecomposition inplace decomposition \endlink mechanism.
*
* \sa MatrixBase::partialPivLu(), MatrixBase::determinant(), MatrixBase::inverse(), MatrixBase::computeInverse(), class FullPivLU
*/
template<typename _MatrixType> class PartialPivLU
: public SolverBase<PartialPivLU<_MatrixType> >
{
public:
typedef _MatrixType MatrixType;
typedef SolverBase<PartialPivLU> Base;
friend class SolverBase<PartialPivLU>;
EIGEN_GENERIC_PUBLIC_INTERFACE(PartialPivLU)
enum {
MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime
};
typedef PermutationMatrix<RowsAtCompileTime, MaxRowsAtCompileTime> PermutationType;
typedef Transpositions<RowsAtCompileTime, MaxRowsAtCompileTime> TranspositionType;
typedef typename MatrixType::PlainObject PlainObject;
/**
* \brief Default Constructor.
*
* The default constructor is useful in cases in which the user intends to
* perform decompositions via PartialPivLU::compute(const MatrixType&).
*/
PartialPivLU();
/** \brief Default Constructor with memory preallocation
*
* Like the default constructor but with preallocation of the internal data
* according to the specified problem \a size.
* \sa PartialPivLU()
*/
explicit PartialPivLU(Index size);
/** Constructor.
*
* \param matrix the matrix of which to compute the LU decomposition.
*
* \warning The matrix should have full rank (e.g. if it's square, it should be invertible).
* If you need to deal with non-full rank, use class FullPivLU instead.
*/
template<typename InputType>
explicit PartialPivLU(const EigenBase<InputType>& matrix);
/** Constructor for \link InplaceDecomposition inplace decomposition \endlink
*
* \param matrix the matrix of which to compute the LU decomposition.
*
* \warning The matrix should have full rank (e.g. if it's square, it should be invertible).
* If you need to deal with non-full rank, use class FullPivLU instead.
*/
template<typename InputType>
explicit PartialPivLU(EigenBase<InputType>& matrix);
template<typename InputType>
PartialPivLU& compute(const EigenBase<InputType>& matrix) {
m_lu = matrix.derived();
compute();
return *this;
}
/** \returns the LU decomposition matrix: the upper-triangular part is U, the
* unit-lower-triangular part is L (at least for square matrices; in the non-square
* case, special care is needed, see the documentation of class FullPivLU).
*
* \sa matrixL(), matrixU()
*/
inline const MatrixType& matrixLU() const
{
eigen_assert(m_isInitialized && "PartialPivLU is not initialized.");
return m_lu;
}
/** \returns the permutation matrix P.
*/
inline const PermutationType& permutationP() const
{
eigen_assert(m_isInitialized && "PartialPivLU is not initialized.");
return m_p;
}
#ifdef EIGEN_PARSED_BY_DOXYGEN
/** This method returns the solution x to the equation Ax=b, where A is the matrix of which
* *this is the LU decomposition.
*
* \param b the right-hand-side of the equation to solve. Can be a vector or a matrix,
* the only requirement in order for the equation to make sense is that
* b.rows()==A.rows(), where A is the matrix of which *this is the LU decomposition.
*
* \returns the solution.
*
* Example: \include PartialPivLU_solve.cpp
* Output: \verbinclude PartialPivLU_solve.out
*
* Since this PartialPivLU class assumes anyway that the matrix A is invertible, the solution
* theoretically exists and is unique regardless of b.
*
* \sa TriangularView::solve(), inverse(), computeInverse()
*/
template<typename Rhs>
inline const Solve<PartialPivLU, Rhs>
solve(const MatrixBase<Rhs>& b) const;
#endif
/** \returns an estimate of the reciprocal condition number of the matrix of which \c *this is
the LU decomposition.
*/
inline RealScalar rcond() const
{
eigen_assert(m_isInitialized && "PartialPivLU is not initialized.");
return internal::rcond_estimate_helper(m_l1_norm, *this);
}
/** \returns the inverse of the matrix of which *this is the LU decomposition.
*
* \warning The matrix being decomposed here is assumed to be invertible. If you need to check for
* invertibility, use class FullPivLU instead.
*
* \sa MatrixBase::inverse(), LU::inverse()
*/
inline const Inverse<PartialPivLU> inverse() const
{
eigen_assert(m_isInitialized && "PartialPivLU is not initialized.");
return Inverse<PartialPivLU>(*this);
}
/** \returns the determinant of the matrix of which
* *this is the LU decomposition. It has only linear complexity
* (that is, O(n) where n is the dimension of the square matrix)
* as the LU decomposition has already been computed.
*
* \note For fixed-size matrices of size up to 4, MatrixBase::determinant() offers
* optimized paths.
*
* \warning a determinant can be very big or small, so for matrices
* of large enough dimension, there is a risk of overflow/underflow.
*
* \sa MatrixBase::determinant()
*/
Scalar determinant() const;
MatrixType reconstructedMatrix() const;
EIGEN_CONSTEXPR inline Index rows() const EIGEN_NOEXCEPT { return m_lu.rows(); }
EIGEN_CONSTEXPR inline Index cols() const EIGEN_NOEXCEPT { return m_lu.cols(); }
#ifndef EIGEN_PARSED_BY_DOXYGEN
template<typename RhsType, typename DstType>
EIGEN_DEVICE_FUNC
void _solve_impl(const RhsType &rhs, DstType &dst) const {
/* The decomposition PA = LU can be rewritten as A = P^{-1} L U.
* So we proceed as follows:
* Step 1: compute c = Pb.
* Step 2: replace c by the solution x to Lx = c.
* Step 3: replace c by the solution x to Ux = c.
*/
// Step 1
dst = permutationP() * rhs;
// Step 2
m_lu.template triangularView<UnitLower>().solveInPlace(dst);
// Step 3
m_lu.template triangularView<Upper>().solveInPlace(dst);
}
template<bool Conjugate, typename RhsType, typename DstType>
EIGEN_DEVICE_FUNC
void _solve_impl_transposed(const RhsType &rhs, DstType &dst) const {
/* The decomposition PA = LU can be rewritten as A^T = U^T L^T P.
* So we proceed as follows:
* Step 1: compute c as the solution to L^T c = b
* Step 2: replace c by the solution x to U^T x = c.
* Step 3: update c = P^-1 c.
*/
eigen_assert(rhs.rows() == m_lu.cols());
// Step 1
dst = m_lu.template triangularView<Upper>().transpose()
.template conjugateIf<Conjugate>().solve(rhs);
// Step 2
m_lu.template triangularView<UnitLower>().transpose()
.template conjugateIf<Conjugate>().solveInPlace(dst);
// Step 3
dst = permutationP().transpose() * dst;
}
#endif
protected:
static void check_template_parameters()
{
EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar);
}
void compute();
MatrixType m_lu;
PermutationType m_p;
TranspositionType m_rowsTranspositions;
RealScalar m_l1_norm;
signed char m_det_p;
bool m_isInitialized;
};
template<typename MatrixType>
PartialPivLU<MatrixType>::PartialPivLU()
: m_lu(),
m_p(),
m_rowsTranspositions(),
m_l1_norm(0),
m_det_p(0),
m_isInitialized(false)
{
}
template<typename MatrixType>
PartialPivLU<MatrixType>::PartialPivLU(Index size)
: m_lu(size, size),
m_p(size),
m_rowsTranspositions(size),
m_l1_norm(0),
m_det_p(0),
m_isInitialized(false)
{
}
template<typename MatrixType>
template<typename InputType>
PartialPivLU<MatrixType>::PartialPivLU(const EigenBase<InputType>& matrix)
: m_lu(matrix.rows(),matrix.cols()),
m_p(matrix.rows()),
m_rowsTranspositions(matrix.rows()),
m_l1_norm(0),
m_det_p(0),
m_isInitialized(false)
{
compute(matrix.derived());
}
template<typename MatrixType>
template<typename InputType>
PartialPivLU<MatrixType>::PartialPivLU(EigenBase<InputType>& matrix)
: m_lu(matrix.derived()),
m_p(matrix.rows()),
m_rowsTranspositions(matrix.rows()),
m_l1_norm(0),
m_det_p(0),
m_isInitialized(false)
{
compute();
}
namespace internal {
/** \internal This is the blocked version of fullpivlu_unblocked() */
template<typename Scalar, int StorageOrder, typename PivIndex, int SizeAtCompileTime=Dynamic>
struct partial_lu_impl
{
static const int UnBlockedBound = 16;
static const bool UnBlockedAtCompileTime = SizeAtCompileTime!=Dynamic && SizeAtCompileTime<=UnBlockedBound;
static const int ActualSizeAtCompileTime = UnBlockedAtCompileTime ? SizeAtCompileTime : Dynamic;
// Remaining rows and columns at compile-time:
static const int RRows = SizeAtCompileTime==2 ? 1 : Dynamic;
static const int RCols = SizeAtCompileTime==2 ? 1 : Dynamic;
typedef Matrix<Scalar, ActualSizeAtCompileTime, ActualSizeAtCompileTime, StorageOrder> MatrixType;
typedef Ref<MatrixType> MatrixTypeRef;
typedef Ref<Matrix<Scalar, Dynamic, Dynamic, StorageOrder> > BlockType;
typedef typename MatrixType::RealScalar RealScalar;
/** \internal performs the LU decomposition in-place of the matrix \a lu
* using an unblocked algorithm.
*
* In addition, this function returns the row transpositions in the
* vector \a row_transpositions which must have a size equal to the number
* of columns of the matrix \a lu, and an integer \a nb_transpositions
* which returns the actual number of transpositions.
*
* \returns The index of the first pivot which is exactly zero if any, or a negative number otherwise.
*/
static Index unblocked_lu(MatrixTypeRef& lu, PivIndex* row_transpositions, PivIndex& nb_transpositions)
{
typedef scalar_score_coeff_op<Scalar> Scoring;
typedef typename Scoring::result_type Score;
const Index rows = lu.rows();
const Index cols = lu.cols();
const Index size = (std::min)(rows,cols);
// For small compile-time matrices it is worth processing the last row separately:
// speedup: +100% for 2x2, +10% for others.
const Index endk = UnBlockedAtCompileTime ? size-1 : size;
nb_transpositions = 0;
Index first_zero_pivot = -1;
for(Index k = 0; k < endk; ++k)
{
int rrows = internal::convert_index<int>(rows-k-1);
int rcols = internal::convert_index<int>(cols-k-1);
Index row_of_biggest_in_col;
Score biggest_in_corner
= lu.col(k).tail(rows-k).unaryExpr(Scoring()).maxCoeff(&row_of_biggest_in_col);
row_of_biggest_in_col += k;
row_transpositions[k] = PivIndex(row_of_biggest_in_col);
if(biggest_in_corner != Score(0))
{
if(k != row_of_biggest_in_col)
{
lu.row(k).swap(lu.row(row_of_biggest_in_col));
++nb_transpositions;
}
lu.col(k).tail(fix<RRows>(rrows)) /= lu.coeff(k,k);
}
else if(first_zero_pivot==-1)
{
// the pivot is exactly zero, we record the index of the first pivot which is exactly 0,
// and continue the factorization such we still have A = PLU
first_zero_pivot = k;
}
if(k<rows-1)
lu.bottomRightCorner(fix<RRows>(rrows),fix<RCols>(rcols)).noalias() -= lu.col(k).tail(fix<RRows>(rrows)) * lu.row(k).tail(fix<RCols>(rcols));
}
// special handling of the last entry
if(UnBlockedAtCompileTime)
{
Index k = endk;
row_transpositions[k] = PivIndex(k);
if (Scoring()(lu(k, k)) == Score(0) && first_zero_pivot == -1)
first_zero_pivot = k;
}
return first_zero_pivot;
}
/** \internal performs the LU decomposition in-place of the matrix represented
* by the variables \a rows, \a cols, \a lu_data, and \a lu_stride using a
* recursive, blocked algorithm.
*
* In addition, this function returns the row transpositions in the
* vector \a row_transpositions which must have a size equal to the number
* of columns of the matrix \a lu, and an integer \a nb_transpositions
* which returns the actual number of transpositions.
*
* \returns The index of the first pivot which is exactly zero if any, or a negative number otherwise.
*
* \note This very low level interface using pointers, etc. is to:
* 1 - reduce the number of instantiations to the strict minimum
* 2 - avoid infinite recursion of the instantiations with Block<Block<Block<...> > >
*/
static Index blocked_lu(Index rows, Index cols, Scalar* lu_data, Index luStride, PivIndex* row_transpositions, PivIndex& nb_transpositions, Index maxBlockSize=256)
{
MatrixTypeRef lu = MatrixType::Map(lu_data,rows, cols, OuterStride<>(luStride));
const Index size = (std::min)(rows,cols);
// if the matrix is too small, no blocking:
if(UnBlockedAtCompileTime || size<=UnBlockedBound)
{
return unblocked_lu(lu, row_transpositions, nb_transpositions);
}
// automatically adjust the number of subdivisions to the size
// of the matrix so that there is enough sub blocks:
Index blockSize;
{
blockSize = size/8;
blockSize = (blockSize/16)*16;
blockSize = (std::min)((std::max)(blockSize,Index(8)), maxBlockSize);
}
nb_transpositions = 0;
Index first_zero_pivot = -1;
for(Index k = 0; k < size; k+=blockSize)
{
Index bs = (std::min)(size-k,blockSize); // actual size of the block
Index trows = rows - k - bs; // trailing rows
Index tsize = size - k - bs; // trailing size
// partition the matrix:
// A00 | A01 | A02
// lu = A_0 | A_1 | A_2 = A10 | A11 | A12
// A20 | A21 | A22
BlockType A_0 = lu.block(0,0,rows,k);
BlockType A_2 = lu.block(0,k+bs,rows,tsize);
BlockType A11 = lu.block(k,k,bs,bs);
BlockType A12 = lu.block(k,k+bs,bs,tsize);
BlockType A21 = lu.block(k+bs,k,trows,bs);
BlockType A22 = lu.block(k+bs,k+bs,trows,tsize);
PivIndex nb_transpositions_in_panel;
// recursively call the blocked LU algorithm on [A11^T A21^T]^T
// with a very small blocking size:
Index ret = blocked_lu(trows+bs, bs, &lu.coeffRef(k,k), luStride,
row_transpositions+k, nb_transpositions_in_panel, 16);
if(ret>=0 && first_zero_pivot==-1)
first_zero_pivot = k+ret;
nb_transpositions += nb_transpositions_in_panel;
// update permutations and apply them to A_0
for(Index i=k; i<k+bs; ++i)
{
Index piv = (row_transpositions[i] += internal::convert_index<PivIndex>(k));
A_0.row(i).swap(A_0.row(piv));
}
if(trows)
{
// apply permutations to A_2
for(Index i=k;i<k+bs; ++i)
A_2.row(i).swap(A_2.row(row_transpositions[i]));
// A12 = A11^-1 A12
A11.template triangularView<UnitLower>().solveInPlace(A12);
A22.noalias() -= A21 * A12;
}
}
return first_zero_pivot;
}
};
/** \internal performs the LU decomposition with partial pivoting in-place.
*/
template<typename MatrixType, typename TranspositionType>
void partial_lu_inplace(MatrixType& lu, TranspositionType& row_transpositions, typename TranspositionType::StorageIndex& nb_transpositions)
{
// Special-case of zero matrix.
if (lu.rows() == 0 || lu.cols() == 0) {
nb_transpositions = 0;
return;
}
eigen_assert(lu.cols() == row_transpositions.size());
eigen_assert(row_transpositions.size() < 2 || (&row_transpositions.coeffRef(1)-&row_transpositions.coeffRef(0)) == 1);
partial_lu_impl
< typename MatrixType::Scalar, MatrixType::Flags&RowMajorBit?RowMajor:ColMajor,
typename TranspositionType::StorageIndex,
EIGEN_SIZE_MIN_PREFER_FIXED(MatrixType::RowsAtCompileTime,MatrixType::ColsAtCompileTime)>
::blocked_lu(lu.rows(), lu.cols(), &lu.coeffRef(0,0), lu.outerStride(), &row_transpositions.coeffRef(0), nb_transpositions);
}
} // end namespace internal
template<typename MatrixType>
void PartialPivLU<MatrixType>::compute()
{
check_template_parameters();
// the row permutation is stored as int indices, so just to be sure:
eigen_assert(m_lu.rows()<NumTraits<int>::highest());
if(m_lu.cols()>0)
m_l1_norm = m_lu.cwiseAbs().colwise().sum().maxCoeff();
else
m_l1_norm = RealScalar(0);
eigen_assert(m_lu.rows() == m_lu.cols() && "PartialPivLU is only for square (and moreover invertible) matrices");
const Index size = m_lu.rows();
m_rowsTranspositions.resize(size);
typename TranspositionType::StorageIndex nb_transpositions;
internal::partial_lu_inplace(m_lu, m_rowsTranspositions, nb_transpositions);
m_det_p = (nb_transpositions%2) ? -1 : 1;
m_p = m_rowsTranspositions;
m_isInitialized = true;
}
template<typename MatrixType>
typename PartialPivLU<MatrixType>::Scalar PartialPivLU<MatrixType>::determinant() const
{
eigen_assert(m_isInitialized && "PartialPivLU is not initialized.");
return Scalar(m_det_p) * m_lu.diagonal().prod();
}
/** \returns the matrix represented by the decomposition,
* i.e., it returns the product: P^{-1} L U.
* This function is provided for debug purpose. */
template<typename MatrixType>
MatrixType PartialPivLU<MatrixType>::reconstructedMatrix() const
{
eigen_assert(m_isInitialized && "LU is not initialized.");
// LU
MatrixType res = m_lu.template triangularView<UnitLower>().toDenseMatrix()
* m_lu.template triangularView<Upper>();
// P^{-1}(LU)
res = m_p.inverse() * res;
return res;
}
/***** Implementation details *****************************************************/
namespace internal {
/***** Implementation of inverse() *****************************************************/
template<typename DstXprType, typename MatrixType>
struct Assignment<DstXprType, Inverse<PartialPivLU<MatrixType> >, internal::assign_op<typename DstXprType::Scalar,typename PartialPivLU<MatrixType>::Scalar>, Dense2Dense>
{
typedef PartialPivLU<MatrixType> LuType;
typedef Inverse<LuType> SrcXprType;
static void run(DstXprType &dst, const SrcXprType &src, const internal::assign_op<typename DstXprType::Scalar,typename LuType::Scalar> &)
{
dst = src.nestedExpression().solve(MatrixType::Identity(src.rows(), src.cols()));
}
};
} // end namespace internal
/******** MatrixBase methods *******/
/** \lu_module
*
* \return the partial-pivoting LU decomposition of \c *this.
*
* \sa class PartialPivLU
*/
template<typename Derived>
inline const PartialPivLU<typename MatrixBase<Derived>::PlainObject>
MatrixBase<Derived>::partialPivLu() const
{
return PartialPivLU<PlainObject>(eval());
}
/** \lu_module
*
* Synonym of partialPivLu().
*
* \return the partial-pivoting LU decomposition of \c *this.
*
* \sa class PartialPivLU
*/
template<typename Derived>
inline const PartialPivLU<typename MatrixBase<Derived>::PlainObject>
MatrixBase<Derived>::lu() const
{
return PartialPivLU<PlainObject>(eval());
}
} // end namespace Eigen
#endif // EIGEN_PARTIALLU_H

View File

@@ -0,0 +1,83 @@
/*
Copyright (c) 2011, Intel Corporation. All rights reserved.
Redistribution and use in source and binary forms, with or without modification,
are permitted provided that the following conditions are met:
* Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.
* Neither the name of Intel Corporation nor the names of its contributors may
be used to endorse or promote products derived from this software without
specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
********************************************************************************
* Content : Eigen bindings to LAPACKe
* LU decomposition with partial pivoting based on LAPACKE_?getrf function.
********************************************************************************
*/
#ifndef EIGEN_PARTIALLU_LAPACK_H
#define EIGEN_PARTIALLU_LAPACK_H
namespace Eigen {
namespace internal {
/** \internal Specialization for the data types supported by LAPACKe */
#define EIGEN_LAPACKE_LU_PARTPIV(EIGTYPE, LAPACKE_TYPE, LAPACKE_PREFIX) \
template<int StorageOrder> \
struct partial_lu_impl<EIGTYPE, StorageOrder, lapack_int> \
{ \
/* \internal performs the LU decomposition in-place of the matrix represented */ \
static lapack_int blocked_lu(Index rows, Index cols, EIGTYPE* lu_data, Index luStride, lapack_int* row_transpositions, lapack_int& nb_transpositions, lapack_int maxBlockSize=256) \
{ \
EIGEN_UNUSED_VARIABLE(maxBlockSize);\
lapack_int matrix_order, first_zero_pivot; \
lapack_int m, n, lda, *ipiv, info; \
EIGTYPE* a; \
/* Set up parameters for ?getrf */ \
matrix_order = StorageOrder==RowMajor ? LAPACK_ROW_MAJOR : LAPACK_COL_MAJOR; \
lda = convert_index<lapack_int>(luStride); \
a = lu_data; \
ipiv = row_transpositions; \
m = convert_index<lapack_int>(rows); \
n = convert_index<lapack_int>(cols); \
nb_transpositions = 0; \
\
info = LAPACKE_##LAPACKE_PREFIX##getrf( matrix_order, m, n, (LAPACKE_TYPE*)a, lda, ipiv ); \
\
for(int i=0;i<m;i++) { ipiv[i]--; if (ipiv[i]!=i) nb_transpositions++; } \
\
eigen_assert(info >= 0); \
/* something should be done with nb_transpositions */ \
\
first_zero_pivot = info; \
return first_zero_pivot; \
} \
};
EIGEN_LAPACKE_LU_PARTPIV(double, double, d)
EIGEN_LAPACKE_LU_PARTPIV(float, float, s)
EIGEN_LAPACKE_LU_PARTPIV(dcomplex, lapack_complex_double, z)
EIGEN_LAPACKE_LU_PARTPIV(scomplex, lapack_complex_float, c)
} // end namespace internal
} // end namespace Eigen
#endif // EIGEN_PARTIALLU_LAPACK_H

View File

@@ -0,0 +1,351 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2001 Intel Corporation
// Copyright (C) 2010 Gael Guennebaud <gael.guennebaud@inria.fr>
// Copyright (C) 2009 Benoit Jacob <jacob.benoit.1@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
//
// The algorithm below is a reimplementation of former \src\LU\Inverse_SSE.h using PacketMath.
// inv(M) = M#/|M|, where inv(M), M# and |M| denote the inverse of M,
// adjugate of M and determinant of M respectively. M# is computed block-wise
// using specific formulae. For proof, see:
// https://lxjk.github.io/2017/09/03/Fast-4x4-Matrix-Inverse-with-SSE-SIMD-Explained.html
// Variable names are adopted from \src\LU\Inverse_SSE.h.
//
// The SSE code for the 4x4 float and double matrix inverse in former (deprecated) \src\LU\Inverse_SSE.h
// comes from the following Intel's library:
// http://software.intel.com/en-us/articles/optimized-matrix-library-for-use-with-the-intel-pentiumr-4-processors-sse2-instructions/
//
// Here is the respective copyright and license statement:
//
// Copyright (c) 2001 Intel Corporation.
//
// Permition is granted to use, copy, distribute and prepare derivative works
// of this library for any purpose and without fee, provided, that the above
// copyright notice and this statement appear in all copies.
// Intel makes no representations about the suitability of this software for
// any purpose, and specifically disclaims all warranties.
// See LEGAL.TXT for all the legal information.
//
// TODO: Unify implementations of different data types (i.e. float and double).
#ifndef EIGEN_INVERSE_SIZE_4_H
#define EIGEN_INVERSE_SIZE_4_H
namespace Eigen
{
namespace internal
{
template <typename MatrixType, typename ResultType>
struct compute_inverse_size4<Architecture::Target, float, MatrixType, ResultType>
{
enum
{
MatrixAlignment = traits<MatrixType>::Alignment,
ResultAlignment = traits<ResultType>::Alignment,
StorageOrdersMatch = (MatrixType::Flags & RowMajorBit) == (ResultType::Flags & RowMajorBit)
};
typedef typename conditional<(MatrixType::Flags & LinearAccessBit), MatrixType const &, typename MatrixType::PlainObject>::type ActualMatrixType;
static void run(const MatrixType &mat, ResultType &result)
{
ActualMatrixType matrix(mat);
const float* data = matrix.data();
const Index stride = matrix.innerStride();
Packet4f _L1 = ploadt<Packet4f,MatrixAlignment>(data);
Packet4f _L2 = ploadt<Packet4f,MatrixAlignment>(data + stride*4);
Packet4f _L3 = ploadt<Packet4f,MatrixAlignment>(data + stride*8);
Packet4f _L4 = ploadt<Packet4f,MatrixAlignment>(data + stride*12);
// Four 2x2 sub-matrices of the input matrix
// input = [[A, B],
// [C, D]]
Packet4f A, B, C, D;
if (!StorageOrdersMatch)
{
A = vec4f_unpacklo(_L1, _L2);
B = vec4f_unpacklo(_L3, _L4);
C = vec4f_unpackhi(_L1, _L2);
D = vec4f_unpackhi(_L3, _L4);
}
else
{
A = vec4f_movelh(_L1, _L2);
B = vec4f_movehl(_L2, _L1);
C = vec4f_movelh(_L3, _L4);
D = vec4f_movehl(_L4, _L3);
}
Packet4f AB, DC;
// AB = A# * B, where A# denotes the adjugate of A, and * denotes matrix product.
AB = pmul(vec4f_swizzle2(A, A, 3, 3, 0, 0), B);
AB = psub(AB, pmul(vec4f_swizzle2(A, A, 1, 1, 2, 2), vec4f_swizzle2(B, B, 2, 3, 0, 1)));
// DC = D#*C
DC = pmul(vec4f_swizzle2(D, D, 3, 3, 0, 0), C);
DC = psub(DC, pmul(vec4f_swizzle2(D, D, 1, 1, 2, 2), vec4f_swizzle2(C, C, 2, 3, 0, 1)));
// determinants of the sub-matrices
Packet4f dA, dB, dC, dD;
dA = pmul(vec4f_swizzle2(A, A, 3, 3, 1, 1), A);
dA = psub(dA, vec4f_movehl(dA, dA));
dB = pmul(vec4f_swizzle2(B, B, 3, 3, 1, 1), B);
dB = psub(dB, vec4f_movehl(dB, dB));
dC = pmul(vec4f_swizzle2(C, C, 3, 3, 1, 1), C);
dC = psub(dC, vec4f_movehl(dC, dC));
dD = pmul(vec4f_swizzle2(D, D, 3, 3, 1, 1), D);
dD = psub(dD, vec4f_movehl(dD, dD));
Packet4f d, d1, d2;
d = pmul(vec4f_swizzle2(DC, DC, 0, 2, 1, 3), AB);
d = padd(d, vec4f_movehl(d, d));
d = padd(d, vec4f_swizzle2(d, d, 1, 0, 0, 0));
d1 = pmul(dA, dD);
d2 = pmul(dB, dC);
// determinant of the input matrix, det = |A||D| + |B||C| - trace(A#*B*D#*C)
Packet4f det = vec4f_duplane(psub(padd(d1, d2), d), 0);
// reciprocal of the determinant of the input matrix, rd = 1/det
Packet4f rd = pdiv(pset1<Packet4f>(1.0f), det);
// Four sub-matrices of the inverse
Packet4f iA, iB, iC, iD;
// iD = D*|A| - C*A#*B
iD = pmul(vec4f_swizzle2(C, C, 0, 0, 2, 2), vec4f_movelh(AB, AB));
iD = padd(iD, pmul(vec4f_swizzle2(C, C, 1, 1, 3, 3), vec4f_movehl(AB, AB)));
iD = psub(pmul(D, vec4f_duplane(dA, 0)), iD);
// iA = A*|D| - B*D#*C
iA = pmul(vec4f_swizzle2(B, B, 0, 0, 2, 2), vec4f_movelh(DC, DC));
iA = padd(iA, pmul(vec4f_swizzle2(B, B, 1, 1, 3, 3), vec4f_movehl(DC, DC)));
iA = psub(pmul(A, vec4f_duplane(dD, 0)), iA);
// iB = C*|B| - D * (A#B)# = C*|B| - D*B#*A
iB = pmul(D, vec4f_swizzle2(AB, AB, 3, 0, 3, 0));
iB = psub(iB, pmul(vec4f_swizzle2(D, D, 1, 0, 3, 2), vec4f_swizzle2(AB, AB, 2, 1, 2, 1)));
iB = psub(pmul(C, vec4f_duplane(dB, 0)), iB);
// iC = B*|C| - A * (D#C)# = B*|C| - A*C#*D
iC = pmul(A, vec4f_swizzle2(DC, DC, 3, 0, 3, 0));
iC = psub(iC, pmul(vec4f_swizzle2(A, A, 1, 0, 3, 2), vec4f_swizzle2(DC, DC, 2, 1, 2, 1)));
iC = psub(pmul(B, vec4f_duplane(dC, 0)), iC);
const float sign_mask[4] = {0.0f, numext::bit_cast<float>(0x80000000u), numext::bit_cast<float>(0x80000000u), 0.0f};
const Packet4f p4f_sign_PNNP = ploadu<Packet4f>(sign_mask);
rd = pxor(rd, p4f_sign_PNNP);
iA = pmul(iA, rd);
iB = pmul(iB, rd);
iC = pmul(iC, rd);
iD = pmul(iD, rd);
Index res_stride = result.outerStride();
float *res = result.data();
pstoret<float, Packet4f, ResultAlignment>(res + 0, vec4f_swizzle2(iA, iB, 3, 1, 3, 1));
pstoret<float, Packet4f, ResultAlignment>(res + res_stride, vec4f_swizzle2(iA, iB, 2, 0, 2, 0));
pstoret<float, Packet4f, ResultAlignment>(res + 2 * res_stride, vec4f_swizzle2(iC, iD, 3, 1, 3, 1));
pstoret<float, Packet4f, ResultAlignment>(res + 3 * res_stride, vec4f_swizzle2(iC, iD, 2, 0, 2, 0));
}
};
#if !(defined EIGEN_VECTORIZE_NEON && !(EIGEN_ARCH_ARM64 && !EIGEN_APPLE_DOUBLE_NEON_BUG))
// same algorithm as above, except that each operand is split into
// halves for two registers to hold.
template <typename MatrixType, typename ResultType>
struct compute_inverse_size4<Architecture::Target, double, MatrixType, ResultType>
{
enum
{
MatrixAlignment = traits<MatrixType>::Alignment,
ResultAlignment = traits<ResultType>::Alignment,
StorageOrdersMatch = (MatrixType::Flags & RowMajorBit) == (ResultType::Flags & RowMajorBit)
};
typedef typename conditional<(MatrixType::Flags & LinearAccessBit),
MatrixType const &,
typename MatrixType::PlainObject>::type
ActualMatrixType;
static void run(const MatrixType &mat, ResultType &result)
{
ActualMatrixType matrix(mat);
// Four 2x2 sub-matrices of the input matrix, each is further divided into upper and lower
// row e.g. A1, upper row of A, A2, lower row of A
// input = [[A, B], = [[[A1, [B1,
// [C, D]] A2], B2]],
// [[C1, [D1,
// C2], D2]]]
Packet2d A1, A2, B1, B2, C1, C2, D1, D2;
const double* data = matrix.data();
const Index stride = matrix.innerStride();
if (StorageOrdersMatch)
{
A1 = ploadt<Packet2d,MatrixAlignment>(data + stride*0);
B1 = ploadt<Packet2d,MatrixAlignment>(data + stride*2);
A2 = ploadt<Packet2d,MatrixAlignment>(data + stride*4);
B2 = ploadt<Packet2d,MatrixAlignment>(data + stride*6);
C1 = ploadt<Packet2d,MatrixAlignment>(data + stride*8);
D1 = ploadt<Packet2d,MatrixAlignment>(data + stride*10);
C2 = ploadt<Packet2d,MatrixAlignment>(data + stride*12);
D2 = ploadt<Packet2d,MatrixAlignment>(data + stride*14);
}
else
{
Packet2d temp;
A1 = ploadt<Packet2d,MatrixAlignment>(data + stride*0);
C1 = ploadt<Packet2d,MatrixAlignment>(data + stride*2);
A2 = ploadt<Packet2d,MatrixAlignment>(data + stride*4);
C2 = ploadt<Packet2d,MatrixAlignment>(data + stride*6);
temp = A1;
A1 = vec2d_unpacklo(A1, A2);
A2 = vec2d_unpackhi(temp, A2);
temp = C1;
C1 = vec2d_unpacklo(C1, C2);
C2 = vec2d_unpackhi(temp, C2);
B1 = ploadt<Packet2d,MatrixAlignment>(data + stride*8);
D1 = ploadt<Packet2d,MatrixAlignment>(data + stride*10);
B2 = ploadt<Packet2d,MatrixAlignment>(data + stride*12);
D2 = ploadt<Packet2d,MatrixAlignment>(data + stride*14);
temp = B1;
B1 = vec2d_unpacklo(B1, B2);
B2 = vec2d_unpackhi(temp, B2);
temp = D1;
D1 = vec2d_unpacklo(D1, D2);
D2 = vec2d_unpackhi(temp, D2);
}
// determinants of the sub-matrices
Packet2d dA, dB, dC, dD;
dA = vec2d_swizzle2(A2, A2, 1);
dA = pmul(A1, dA);
dA = psub(dA, vec2d_duplane(dA, 1));
dB = vec2d_swizzle2(B2, B2, 1);
dB = pmul(B1, dB);
dB = psub(dB, vec2d_duplane(dB, 1));
dC = vec2d_swizzle2(C2, C2, 1);
dC = pmul(C1, dC);
dC = psub(dC, vec2d_duplane(dC, 1));
dD = vec2d_swizzle2(D2, D2, 1);
dD = pmul(D1, dD);
dD = psub(dD, vec2d_duplane(dD, 1));
Packet2d DC1, DC2, AB1, AB2;
// AB = A# * B, where A# denotes the adjugate of A, and * denotes matrix product.
AB1 = pmul(B1, vec2d_duplane(A2, 1));
AB2 = pmul(B2, vec2d_duplane(A1, 0));
AB1 = psub(AB1, pmul(B2, vec2d_duplane(A1, 1)));
AB2 = psub(AB2, pmul(B1, vec2d_duplane(A2, 0)));
// DC = D#*C
DC1 = pmul(C1, vec2d_duplane(D2, 1));
DC2 = pmul(C2, vec2d_duplane(D1, 0));
DC1 = psub(DC1, pmul(C2, vec2d_duplane(D1, 1)));
DC2 = psub(DC2, pmul(C1, vec2d_duplane(D2, 0)));
Packet2d d1, d2;
// determinant of the input matrix, det = |A||D| + |B||C| - trace(A#*B*D#*C)
Packet2d det;
// reciprocal of the determinant of the input matrix, rd = 1/det
Packet2d rd;
d1 = pmul(AB1, vec2d_swizzle2(DC1, DC2, 0));
d2 = pmul(AB2, vec2d_swizzle2(DC1, DC2, 3));
rd = padd(d1, d2);
rd = padd(rd, vec2d_duplane(rd, 1));
d1 = pmul(dA, dD);
d2 = pmul(dB, dC);
det = padd(d1, d2);
det = psub(det, rd);
det = vec2d_duplane(det, 0);
rd = pdiv(pset1<Packet2d>(1.0), det);
// rows of four sub-matrices of the inverse
Packet2d iA1, iA2, iB1, iB2, iC1, iC2, iD1, iD2;
// iD = D*|A| - C*A#*B
iD1 = pmul(AB1, vec2d_duplane(C1, 0));
iD2 = pmul(AB1, vec2d_duplane(C2, 0));
iD1 = padd(iD1, pmul(AB2, vec2d_duplane(C1, 1)));
iD2 = padd(iD2, pmul(AB2, vec2d_duplane(C2, 1)));
dA = vec2d_duplane(dA, 0);
iD1 = psub(pmul(D1, dA), iD1);
iD2 = psub(pmul(D2, dA), iD2);
// iA = A*|D| - B*D#*C
iA1 = pmul(DC1, vec2d_duplane(B1, 0));
iA2 = pmul(DC1, vec2d_duplane(B2, 0));
iA1 = padd(iA1, pmul(DC2, vec2d_duplane(B1, 1)));
iA2 = padd(iA2, pmul(DC2, vec2d_duplane(B2, 1)));
dD = vec2d_duplane(dD, 0);
iA1 = psub(pmul(A1, dD), iA1);
iA2 = psub(pmul(A2, dD), iA2);
// iB = C*|B| - D * (A#B)# = C*|B| - D*B#*A
iB1 = pmul(D1, vec2d_swizzle2(AB2, AB1, 1));
iB2 = pmul(D2, vec2d_swizzle2(AB2, AB1, 1));
iB1 = psub(iB1, pmul(vec2d_swizzle2(D1, D1, 1), vec2d_swizzle2(AB2, AB1, 2)));
iB2 = psub(iB2, pmul(vec2d_swizzle2(D2, D2, 1), vec2d_swizzle2(AB2, AB1, 2)));
dB = vec2d_duplane(dB, 0);
iB1 = psub(pmul(C1, dB), iB1);
iB2 = psub(pmul(C2, dB), iB2);
// iC = B*|C| - A * (D#C)# = B*|C| - A*C#*D
iC1 = pmul(A1, vec2d_swizzle2(DC2, DC1, 1));
iC2 = pmul(A2, vec2d_swizzle2(DC2, DC1, 1));
iC1 = psub(iC1, pmul(vec2d_swizzle2(A1, A1, 1), vec2d_swizzle2(DC2, DC1, 2)));
iC2 = psub(iC2, pmul(vec2d_swizzle2(A2, A2, 1), vec2d_swizzle2(DC2, DC1, 2)));
dC = vec2d_duplane(dC, 0);
iC1 = psub(pmul(B1, dC), iC1);
iC2 = psub(pmul(B2, dC), iC2);
const double sign_mask1[2] = {0.0, numext::bit_cast<double>(0x8000000000000000ull)};
const double sign_mask2[2] = {numext::bit_cast<double>(0x8000000000000000ull), 0.0};
const Packet2d sign_PN = ploadu<Packet2d>(sign_mask1);
const Packet2d sign_NP = ploadu<Packet2d>(sign_mask2);
d1 = pxor(rd, sign_PN);
d2 = pxor(rd, sign_NP);
Index res_stride = result.outerStride();
double *res = result.data();
pstoret<double, Packet2d, ResultAlignment>(res + 0, pmul(vec2d_swizzle2(iA2, iA1, 3), d1));
pstoret<double, Packet2d, ResultAlignment>(res + res_stride, pmul(vec2d_swizzle2(iA2, iA1, 0), d2));
pstoret<double, Packet2d, ResultAlignment>(res + 2, pmul(vec2d_swizzle2(iB2, iB1, 3), d1));
pstoret<double, Packet2d, ResultAlignment>(res + res_stride + 2, pmul(vec2d_swizzle2(iB2, iB1, 0), d2));
pstoret<double, Packet2d, ResultAlignment>(res + 2 * res_stride, pmul(vec2d_swizzle2(iC2, iC1, 3), d1));
pstoret<double, Packet2d, ResultAlignment>(res + 3 * res_stride, pmul(vec2d_swizzle2(iC2, iC1, 0), d2));
pstoret<double, Packet2d, ResultAlignment>(res + 2 * res_stride + 2, pmul(vec2d_swizzle2(iD2, iD1, 3), d1));
pstoret<double, Packet2d, ResultAlignment>(res + 3 * res_stride + 2, pmul(vec2d_swizzle2(iD2, iD1, 0), d2));
}
};
#endif
} // namespace internal
} // namespace Eigen
#endif