ADD: new track message, Entity class and Position class
This commit is contained in:
462
libs/eigen/Eigen/src/Eigenvalues/ComplexSchur.h
Normal file
462
libs/eigen/Eigen/src/Eigenvalues/ComplexSchur.h
Normal file
@@ -0,0 +1,462 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra.
|
||||
//
|
||||
// Copyright (C) 2009 Claire Maurice
|
||||
// Copyright (C) 2009 Gael Guennebaud <gael.guennebaud@inria.fr>
|
||||
// Copyright (C) 2010,2012 Jitse Niesen <jitse@maths.leeds.ac.uk>
|
||||
//
|
||||
// This Source Code Form is subject to the terms of the Mozilla
|
||||
// Public License v. 2.0. If a copy of the MPL was not distributed
|
||||
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
||||
|
||||
#ifndef EIGEN_COMPLEX_SCHUR_H
|
||||
#define EIGEN_COMPLEX_SCHUR_H
|
||||
|
||||
#include "./HessenbergDecomposition.h"
|
||||
|
||||
namespace Eigen {
|
||||
|
||||
namespace internal {
|
||||
template<typename MatrixType, bool IsComplex> struct complex_schur_reduce_to_hessenberg;
|
||||
}
|
||||
|
||||
/** \eigenvalues_module \ingroup Eigenvalues_Module
|
||||
*
|
||||
*
|
||||
* \class ComplexSchur
|
||||
*
|
||||
* \brief Performs a complex Schur decomposition of a real or complex square matrix
|
||||
*
|
||||
* \tparam _MatrixType the type of the matrix of which we are
|
||||
* computing the Schur decomposition; this is expected to be an
|
||||
* instantiation of the Matrix class template.
|
||||
*
|
||||
* Given a real or complex square matrix A, this class computes the
|
||||
* Schur decomposition: \f$ A = U T U^*\f$ where U is a unitary
|
||||
* complex matrix, and T is a complex upper triangular matrix. The
|
||||
* diagonal of the matrix T corresponds to the eigenvalues of the
|
||||
* matrix A.
|
||||
*
|
||||
* Call the function compute() to compute the Schur decomposition of
|
||||
* a given matrix. Alternatively, you can use the
|
||||
* ComplexSchur(const MatrixType&, bool) constructor which computes
|
||||
* the Schur decomposition at construction time. Once the
|
||||
* decomposition is computed, you can use the matrixU() and matrixT()
|
||||
* functions to retrieve the matrices U and V in the decomposition.
|
||||
*
|
||||
* \note This code is inspired from Jampack
|
||||
*
|
||||
* \sa class RealSchur, class EigenSolver, class ComplexEigenSolver
|
||||
*/
|
||||
template<typename _MatrixType> class ComplexSchur
|
||||
{
|
||||
public:
|
||||
typedef _MatrixType MatrixType;
|
||||
enum {
|
||||
RowsAtCompileTime = MatrixType::RowsAtCompileTime,
|
||||
ColsAtCompileTime = MatrixType::ColsAtCompileTime,
|
||||
Options = MatrixType::Options,
|
||||
MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
|
||||
MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime
|
||||
};
|
||||
|
||||
/** \brief Scalar type for matrices of type \p _MatrixType. */
|
||||
typedef typename MatrixType::Scalar Scalar;
|
||||
typedef typename NumTraits<Scalar>::Real RealScalar;
|
||||
typedef Eigen::Index Index; ///< \deprecated since Eigen 3.3
|
||||
|
||||
/** \brief Complex scalar type for \p _MatrixType.
|
||||
*
|
||||
* This is \c std::complex<Scalar> if #Scalar is real (e.g.,
|
||||
* \c float or \c double) and just \c Scalar if #Scalar is
|
||||
* complex.
|
||||
*/
|
||||
typedef std::complex<RealScalar> ComplexScalar;
|
||||
|
||||
/** \brief Type for the matrices in the Schur decomposition.
|
||||
*
|
||||
* This is a square matrix with entries of type #ComplexScalar.
|
||||
* The size is the same as the size of \p _MatrixType.
|
||||
*/
|
||||
typedef Matrix<ComplexScalar, RowsAtCompileTime, ColsAtCompileTime, Options, MaxRowsAtCompileTime, MaxColsAtCompileTime> ComplexMatrixType;
|
||||
|
||||
/** \brief Default constructor.
|
||||
*
|
||||
* \param [in] size Positive integer, size of the matrix whose Schur decomposition will be computed.
|
||||
*
|
||||
* The default constructor is useful in cases in which the user
|
||||
* intends to perform decompositions via compute(). The \p size
|
||||
* parameter is only used as a hint. It is not an error to give a
|
||||
* wrong \p size, but it may impair performance.
|
||||
*
|
||||
* \sa compute() for an example.
|
||||
*/
|
||||
explicit ComplexSchur(Index size = RowsAtCompileTime==Dynamic ? 1 : RowsAtCompileTime)
|
||||
: m_matT(size,size),
|
||||
m_matU(size,size),
|
||||
m_hess(size),
|
||||
m_isInitialized(false),
|
||||
m_matUisUptodate(false),
|
||||
m_maxIters(-1)
|
||||
{}
|
||||
|
||||
/** \brief Constructor; computes Schur decomposition of given matrix.
|
||||
*
|
||||
* \param[in] matrix Square matrix whose Schur decomposition is to be computed.
|
||||
* \param[in] computeU If true, both T and U are computed; if false, only T is computed.
|
||||
*
|
||||
* This constructor calls compute() to compute the Schur decomposition.
|
||||
*
|
||||
* \sa matrixT() and matrixU() for examples.
|
||||
*/
|
||||
template<typename InputType>
|
||||
explicit ComplexSchur(const EigenBase<InputType>& matrix, bool computeU = true)
|
||||
: m_matT(matrix.rows(),matrix.cols()),
|
||||
m_matU(matrix.rows(),matrix.cols()),
|
||||
m_hess(matrix.rows()),
|
||||
m_isInitialized(false),
|
||||
m_matUisUptodate(false),
|
||||
m_maxIters(-1)
|
||||
{
|
||||
compute(matrix.derived(), computeU);
|
||||
}
|
||||
|
||||
/** \brief Returns the unitary matrix in the Schur decomposition.
|
||||
*
|
||||
* \returns A const reference to the matrix U.
|
||||
*
|
||||
* It is assumed that either the constructor
|
||||
* ComplexSchur(const MatrixType& matrix, bool computeU) or the
|
||||
* member function compute(const MatrixType& matrix, bool computeU)
|
||||
* has been called before to compute the Schur decomposition of a
|
||||
* matrix, and that \p computeU was set to true (the default
|
||||
* value).
|
||||
*
|
||||
* Example: \include ComplexSchur_matrixU.cpp
|
||||
* Output: \verbinclude ComplexSchur_matrixU.out
|
||||
*/
|
||||
const ComplexMatrixType& matrixU() const
|
||||
{
|
||||
eigen_assert(m_isInitialized && "ComplexSchur is not initialized.");
|
||||
eigen_assert(m_matUisUptodate && "The matrix U has not been computed during the ComplexSchur decomposition.");
|
||||
return m_matU;
|
||||
}
|
||||
|
||||
/** \brief Returns the triangular matrix in the Schur decomposition.
|
||||
*
|
||||
* \returns A const reference to the matrix T.
|
||||
*
|
||||
* It is assumed that either the constructor
|
||||
* ComplexSchur(const MatrixType& matrix, bool computeU) or the
|
||||
* member function compute(const MatrixType& matrix, bool computeU)
|
||||
* has been called before to compute the Schur decomposition of a
|
||||
* matrix.
|
||||
*
|
||||
* Note that this function returns a plain square matrix. If you want to reference
|
||||
* only the upper triangular part, use:
|
||||
* \code schur.matrixT().triangularView<Upper>() \endcode
|
||||
*
|
||||
* Example: \include ComplexSchur_matrixT.cpp
|
||||
* Output: \verbinclude ComplexSchur_matrixT.out
|
||||
*/
|
||||
const ComplexMatrixType& matrixT() const
|
||||
{
|
||||
eigen_assert(m_isInitialized && "ComplexSchur is not initialized.");
|
||||
return m_matT;
|
||||
}
|
||||
|
||||
/** \brief Computes Schur decomposition of given matrix.
|
||||
*
|
||||
* \param[in] matrix Square matrix whose Schur decomposition is to be computed.
|
||||
* \param[in] computeU If true, both T and U are computed; if false, only T is computed.
|
||||
|
||||
* \returns Reference to \c *this
|
||||
*
|
||||
* The Schur decomposition is computed by first reducing the
|
||||
* matrix to Hessenberg form using the class
|
||||
* HessenbergDecomposition. The Hessenberg matrix is then reduced
|
||||
* to triangular form by performing QR iterations with a single
|
||||
* shift. The cost of computing the Schur decomposition depends
|
||||
* on the number of iterations; as a rough guide, it may be taken
|
||||
* on the number of iterations; as a rough guide, it may be taken
|
||||
* to be \f$25n^3\f$ complex flops, or \f$10n^3\f$ complex flops
|
||||
* if \a computeU is false.
|
||||
*
|
||||
* Example: \include ComplexSchur_compute.cpp
|
||||
* Output: \verbinclude ComplexSchur_compute.out
|
||||
*
|
||||
* \sa compute(const MatrixType&, bool, Index)
|
||||
*/
|
||||
template<typename InputType>
|
||||
ComplexSchur& compute(const EigenBase<InputType>& matrix, bool computeU = true);
|
||||
|
||||
/** \brief Compute Schur decomposition from a given Hessenberg matrix
|
||||
* \param[in] matrixH Matrix in Hessenberg form H
|
||||
* \param[in] matrixQ orthogonal matrix Q that transform a matrix A to H : A = Q H Q^T
|
||||
* \param computeU Computes the matriX U of the Schur vectors
|
||||
* \return Reference to \c *this
|
||||
*
|
||||
* This routine assumes that the matrix is already reduced in Hessenberg form matrixH
|
||||
* using either the class HessenbergDecomposition or another mean.
|
||||
* It computes the upper quasi-triangular matrix T of the Schur decomposition of H
|
||||
* When computeU is true, this routine computes the matrix U such that
|
||||
* A = U T U^T = (QZ) T (QZ)^T = Q H Q^T where A is the initial matrix
|
||||
*
|
||||
* NOTE Q is referenced if computeU is true; so, if the initial orthogonal matrix
|
||||
* is not available, the user should give an identity matrix (Q.setIdentity())
|
||||
*
|
||||
* \sa compute(const MatrixType&, bool)
|
||||
*/
|
||||
template<typename HessMatrixType, typename OrthMatrixType>
|
||||
ComplexSchur& computeFromHessenberg(const HessMatrixType& matrixH, const OrthMatrixType& matrixQ, bool computeU=true);
|
||||
|
||||
/** \brief Reports whether previous computation was successful.
|
||||
*
|
||||
* \returns \c Success if computation was successful, \c NoConvergence otherwise.
|
||||
*/
|
||||
ComputationInfo info() const
|
||||
{
|
||||
eigen_assert(m_isInitialized && "ComplexSchur is not initialized.");
|
||||
return m_info;
|
||||
}
|
||||
|
||||
/** \brief Sets the maximum number of iterations allowed.
|
||||
*
|
||||
* If not specified by the user, the maximum number of iterations is m_maxIterationsPerRow times the size
|
||||
* of the matrix.
|
||||
*/
|
||||
ComplexSchur& setMaxIterations(Index maxIters)
|
||||
{
|
||||
m_maxIters = maxIters;
|
||||
return *this;
|
||||
}
|
||||
|
||||
/** \brief Returns the maximum number of iterations. */
|
||||
Index getMaxIterations()
|
||||
{
|
||||
return m_maxIters;
|
||||
}
|
||||
|
||||
/** \brief Maximum number of iterations per row.
|
||||
*
|
||||
* If not otherwise specified, the maximum number of iterations is this number times the size of the
|
||||
* matrix. It is currently set to 30.
|
||||
*/
|
||||
static const int m_maxIterationsPerRow = 30;
|
||||
|
||||
protected:
|
||||
ComplexMatrixType m_matT, m_matU;
|
||||
HessenbergDecomposition<MatrixType> m_hess;
|
||||
ComputationInfo m_info;
|
||||
bool m_isInitialized;
|
||||
bool m_matUisUptodate;
|
||||
Index m_maxIters;
|
||||
|
||||
private:
|
||||
bool subdiagonalEntryIsNeglegible(Index i);
|
||||
ComplexScalar computeShift(Index iu, Index iter);
|
||||
void reduceToTriangularForm(bool computeU);
|
||||
friend struct internal::complex_schur_reduce_to_hessenberg<MatrixType, NumTraits<Scalar>::IsComplex>;
|
||||
};
|
||||
|
||||
/** If m_matT(i+1,i) is neglegible in floating point arithmetic
|
||||
* compared to m_matT(i,i) and m_matT(j,j), then set it to zero and
|
||||
* return true, else return false. */
|
||||
template<typename MatrixType>
|
||||
inline bool ComplexSchur<MatrixType>::subdiagonalEntryIsNeglegible(Index i)
|
||||
{
|
||||
RealScalar d = numext::norm1(m_matT.coeff(i,i)) + numext::norm1(m_matT.coeff(i+1,i+1));
|
||||
RealScalar sd = numext::norm1(m_matT.coeff(i+1,i));
|
||||
if (internal::isMuchSmallerThan(sd, d, NumTraits<RealScalar>::epsilon()))
|
||||
{
|
||||
m_matT.coeffRef(i+1,i) = ComplexScalar(0);
|
||||
return true;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
|
||||
/** Compute the shift in the current QR iteration. */
|
||||
template<typename MatrixType>
|
||||
typename ComplexSchur<MatrixType>::ComplexScalar ComplexSchur<MatrixType>::computeShift(Index iu, Index iter)
|
||||
{
|
||||
using std::abs;
|
||||
if (iter == 10 || iter == 20)
|
||||
{
|
||||
// exceptional shift, taken from http://www.netlib.org/eispack/comqr.f
|
||||
return abs(numext::real(m_matT.coeff(iu,iu-1))) + abs(numext::real(m_matT.coeff(iu-1,iu-2)));
|
||||
}
|
||||
|
||||
// compute the shift as one of the eigenvalues of t, the 2x2
|
||||
// diagonal block on the bottom of the active submatrix
|
||||
Matrix<ComplexScalar,2,2> t = m_matT.template block<2,2>(iu-1,iu-1);
|
||||
RealScalar normt = t.cwiseAbs().sum();
|
||||
t /= normt; // the normalization by sf is to avoid under/overflow
|
||||
|
||||
ComplexScalar b = t.coeff(0,1) * t.coeff(1,0);
|
||||
ComplexScalar c = t.coeff(0,0) - t.coeff(1,1);
|
||||
ComplexScalar disc = sqrt(c*c + RealScalar(4)*b);
|
||||
ComplexScalar det = t.coeff(0,0) * t.coeff(1,1) - b;
|
||||
ComplexScalar trace = t.coeff(0,0) + t.coeff(1,1);
|
||||
ComplexScalar eival1 = (trace + disc) / RealScalar(2);
|
||||
ComplexScalar eival2 = (trace - disc) / RealScalar(2);
|
||||
RealScalar eival1_norm = numext::norm1(eival1);
|
||||
RealScalar eival2_norm = numext::norm1(eival2);
|
||||
// A division by zero can only occur if eival1==eival2==0.
|
||||
// In this case, det==0, and all we have to do is checking that eival2_norm!=0
|
||||
if(eival1_norm > eival2_norm)
|
||||
eival2 = det / eival1;
|
||||
else if(eival2_norm!=RealScalar(0))
|
||||
eival1 = det / eival2;
|
||||
|
||||
// choose the eigenvalue closest to the bottom entry of the diagonal
|
||||
if(numext::norm1(eival1-t.coeff(1,1)) < numext::norm1(eival2-t.coeff(1,1)))
|
||||
return normt * eival1;
|
||||
else
|
||||
return normt * eival2;
|
||||
}
|
||||
|
||||
|
||||
template<typename MatrixType>
|
||||
template<typename InputType>
|
||||
ComplexSchur<MatrixType>& ComplexSchur<MatrixType>::compute(const EigenBase<InputType>& matrix, bool computeU)
|
||||
{
|
||||
m_matUisUptodate = false;
|
||||
eigen_assert(matrix.cols() == matrix.rows());
|
||||
|
||||
if(matrix.cols() == 1)
|
||||
{
|
||||
m_matT = matrix.derived().template cast<ComplexScalar>();
|
||||
if(computeU) m_matU = ComplexMatrixType::Identity(1,1);
|
||||
m_info = Success;
|
||||
m_isInitialized = true;
|
||||
m_matUisUptodate = computeU;
|
||||
return *this;
|
||||
}
|
||||
|
||||
internal::complex_schur_reduce_to_hessenberg<MatrixType, NumTraits<Scalar>::IsComplex>::run(*this, matrix.derived(), computeU);
|
||||
computeFromHessenberg(m_matT, m_matU, computeU);
|
||||
return *this;
|
||||
}
|
||||
|
||||
template<typename MatrixType>
|
||||
template<typename HessMatrixType, typename OrthMatrixType>
|
||||
ComplexSchur<MatrixType>& ComplexSchur<MatrixType>::computeFromHessenberg(const HessMatrixType& matrixH, const OrthMatrixType& matrixQ, bool computeU)
|
||||
{
|
||||
m_matT = matrixH;
|
||||
if(computeU)
|
||||
m_matU = matrixQ;
|
||||
reduceToTriangularForm(computeU);
|
||||
return *this;
|
||||
}
|
||||
namespace internal {
|
||||
|
||||
/* Reduce given matrix to Hessenberg form */
|
||||
template<typename MatrixType, bool IsComplex>
|
||||
struct complex_schur_reduce_to_hessenberg
|
||||
{
|
||||
// this is the implementation for the case IsComplex = true
|
||||
static void run(ComplexSchur<MatrixType>& _this, const MatrixType& matrix, bool computeU)
|
||||
{
|
||||
_this.m_hess.compute(matrix);
|
||||
_this.m_matT = _this.m_hess.matrixH();
|
||||
if(computeU) _this.m_matU = _this.m_hess.matrixQ();
|
||||
}
|
||||
};
|
||||
|
||||
template<typename MatrixType>
|
||||
struct complex_schur_reduce_to_hessenberg<MatrixType, false>
|
||||
{
|
||||
static void run(ComplexSchur<MatrixType>& _this, const MatrixType& matrix, bool computeU)
|
||||
{
|
||||
typedef typename ComplexSchur<MatrixType>::ComplexScalar ComplexScalar;
|
||||
|
||||
// Note: m_hess is over RealScalar; m_matT and m_matU is over ComplexScalar
|
||||
_this.m_hess.compute(matrix);
|
||||
_this.m_matT = _this.m_hess.matrixH().template cast<ComplexScalar>();
|
||||
if(computeU)
|
||||
{
|
||||
// This may cause an allocation which seems to be avoidable
|
||||
MatrixType Q = _this.m_hess.matrixQ();
|
||||
_this.m_matU = Q.template cast<ComplexScalar>();
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
} // end namespace internal
|
||||
|
||||
// Reduce the Hessenberg matrix m_matT to triangular form by QR iteration.
|
||||
template<typename MatrixType>
|
||||
void ComplexSchur<MatrixType>::reduceToTriangularForm(bool computeU)
|
||||
{
|
||||
Index maxIters = m_maxIters;
|
||||
if (maxIters == -1)
|
||||
maxIters = m_maxIterationsPerRow * m_matT.rows();
|
||||
|
||||
// The matrix m_matT is divided in three parts.
|
||||
// Rows 0,...,il-1 are decoupled from the rest because m_matT(il,il-1) is zero.
|
||||
// Rows il,...,iu is the part we are working on (the active submatrix).
|
||||
// Rows iu+1,...,end are already brought in triangular form.
|
||||
Index iu = m_matT.cols() - 1;
|
||||
Index il;
|
||||
Index iter = 0; // number of iterations we are working on the (iu,iu) element
|
||||
Index totalIter = 0; // number of iterations for whole matrix
|
||||
|
||||
while(true)
|
||||
{
|
||||
// find iu, the bottom row of the active submatrix
|
||||
while(iu > 0)
|
||||
{
|
||||
if(!subdiagonalEntryIsNeglegible(iu-1)) break;
|
||||
iter = 0;
|
||||
--iu;
|
||||
}
|
||||
|
||||
// if iu is zero then we are done; the whole matrix is triangularized
|
||||
if(iu==0) break;
|
||||
|
||||
// if we spent too many iterations, we give up
|
||||
iter++;
|
||||
totalIter++;
|
||||
if(totalIter > maxIters) break;
|
||||
|
||||
// find il, the top row of the active submatrix
|
||||
il = iu-1;
|
||||
while(il > 0 && !subdiagonalEntryIsNeglegible(il-1))
|
||||
{
|
||||
--il;
|
||||
}
|
||||
|
||||
/* perform the QR step using Givens rotations. The first rotation
|
||||
creates a bulge; the (il+2,il) element becomes nonzero. This
|
||||
bulge is chased down to the bottom of the active submatrix. */
|
||||
|
||||
ComplexScalar shift = computeShift(iu, iter);
|
||||
JacobiRotation<ComplexScalar> rot;
|
||||
rot.makeGivens(m_matT.coeff(il,il) - shift, m_matT.coeff(il+1,il));
|
||||
m_matT.rightCols(m_matT.cols()-il).applyOnTheLeft(il, il+1, rot.adjoint());
|
||||
m_matT.topRows((std::min)(il+2,iu)+1).applyOnTheRight(il, il+1, rot);
|
||||
if(computeU) m_matU.applyOnTheRight(il, il+1, rot);
|
||||
|
||||
for(Index i=il+1 ; i<iu ; i++)
|
||||
{
|
||||
rot.makeGivens(m_matT.coeffRef(i,i-1), m_matT.coeffRef(i+1,i-1), &m_matT.coeffRef(i,i-1));
|
||||
m_matT.coeffRef(i+1,i-1) = ComplexScalar(0);
|
||||
m_matT.rightCols(m_matT.cols()-i).applyOnTheLeft(i, i+1, rot.adjoint());
|
||||
m_matT.topRows((std::min)(i+2,iu)+1).applyOnTheRight(i, i+1, rot);
|
||||
if(computeU) m_matU.applyOnTheRight(i, i+1, rot);
|
||||
}
|
||||
}
|
||||
|
||||
if(totalIter <= maxIters)
|
||||
m_info = Success;
|
||||
else
|
||||
m_info = NoConvergence;
|
||||
|
||||
m_isInitialized = true;
|
||||
m_matUisUptodate = computeU;
|
||||
}
|
||||
|
||||
} // end namespace Eigen
|
||||
|
||||
#endif // EIGEN_COMPLEX_SCHUR_H
|
||||
Reference in New Issue
Block a user